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The next generation of weed seed germination models will need to account for variable soil microclimate conditions. To
predict this microclimate environment we have developed a suite of individual tools (models) that can be used in
conjunction with the next generation of weed seed germination models. The three tools that will be outlined here are
GlobalTempSIM, GlobalRainSIM, and the soil temperature and moisture model (STM2). Each model was compared with
several sets of observed data from worldwide locations. Overall, the climate predictors compared favorably.
GlobalTempSIM had a bias between 22.7 and +0.9 C, mean absolute errors between 1.9 and 5.0 C, and an overall
Willmott d-index of 0.79 to 0.95 (where d 5 1 represents total agreement between observed and modeled data) for 12
global validation sites in 2007. GlobalRainSIM had a bias for cumulative precipitation ranging from 2210 to +305 mm, a
mean absolute error between 29 and 311 mm, and a corresponding d-index of 0.78 to 0.99 for the sites and years
compared. The high d-indices indicate that the models adequately captured the annual patterns for the validation sites.
STM2 also performed well in comparisons with actual soil temperatures with a range of 22 to +4.6 C biases and mean
absolute errors between 0.7 and 6.8 C, with the d-index ranging from 0.83 to 0.99 for the soil temperature comparisons.
The soil moisture prediction annual bias was between 20.09 and +0.12 cm3 cm23, mean absolute errors ranging from
0.02 to 0.16 cm3 cm23, and possessed a d-index between 0.32 and 0.91 for the validation sites. These models were
developed in JAVA, are simple to use, operate on multiple platforms (e.g., Mac, personal computer, Sun), and are freely
available for download from the U.S. Department of Agriculture Agricultural Research Service website (http://www.ars.
usda.gov/Services/docs.htm?docid511787).
Nomenclature: Environmental modeling, climate, simulation, JAVA.

Effective weed management is and will continue to be an
integral component of a profitable, competitive, and
sustainable agricultural production. The economic conse-
quences of weed infestations are established well via reduced
yields (e.g., Cousens 1985; Lindquist et al. 1994) and
diminished quality (e.g., Kleinhenz and Cardina 2003).
Annual losses from weeds in agricultural commodities in the
United States were estimated at billions of dollars in 1991
(Bridges 1992). Such expensive losses are not restricted to the
United States, as recent estimates suggest annual billion-dollar
agricultural losses in Australia too (Sinden et al. 2004). Even
with the recent proliferation of herbicide-resistant crops (Dill
2005), application timing still is vital in the prevention of
important yield losses (Cox et al. 2005).

Ironically, application timing is one of the most critical
aspects in the selection pressure for development of weed
resistance to herbicides like glyphosate (Neve et al. 2003).
Furthermore, improperly timed mechanical control measures
(tillage) can actually increase weed pressure by providing the
environmental stimulus for germination or bringing addi-
tional seeds into optimum emergence depths (Chancellor
1985; Lamour and Lotz 2007; Spokas et al. 2007). This
clearly signifies the need for improved decision-making tools
for weed management that are applicable globally.

Predominantly, agricultural production systems rely upon
synthetic herbicides for weed control. This is demonstrated by
predictions that financial losses in the agricultural sector
would increase 500% (from $4 billion to $20 billion per year
in the United States) without the use of herbicides (Bridges
1992). Other anecdotal evidence of herbicide use is the
growing trend in the increasing acreage of glyphosate-resistant
crops (Dill 2005). To minimize unnecessary application,

protect the environment from excessive chemical applications,
and curtail evolution of resistant weeds, efficacy and timeliness
of selected weed control measures need to be maximized
(Oriade and Forcella 1999). To achieve this goal, knowledge
of weed behavior is needed, in particular germination,
emergence, and early seedling growth. We propose that this
can be gained through the use of weed emergence models that
mechanistically relate the weed seed bank to emerged
seedlings using soil microclimate simulations.

Numerous models already exist in the literature for the
simulation of daily climatic variables. The most widely used
weather simulation model has been the model introduced by
Richardson (1981) and subsequent revisions (e.g., Richardson
and Wright 1984). This has led to the development of a large
number of meteorological simulation models: CLIGEN
(Nicks and Lane 1989), USCLIMATE (Hanson et al.
1994), WXGEN (Nicks et al. 1990; Williams 1995), and
CLIMGEN (Stockle and Nelson 1999). The major purpose
of these models is to provide data to supplement existing
meteorological measurements or to provide climate informa-
tion where measured data are not available (Johnson et al.
2007). The major drawbacks are that a majority of these
models have been solely developed for the continental United
States (Phillips et al. 1992) and some also have large input
data requirements (e.g., training data for fitting statistical
coefficients; Dubrovský et al. 2004; Wilks and Wilby 1999).
In addition, Harmel et al. (2002) discovered that these
models result in simulated monthly temperature populations
that do not represent the distribution of measured temper-
ature data sets. They hypothesized that that was due to
substantial seasonal and geographic variability in actual
temperatures, leading to skewness that violates the normality
assumption of the weather generators. Furthermore, these
models are written in several different computer languages
and are platform specific (e.g., personal computer, Mac,
mainframe). These factors hamper their direct incorporation
into existing as well as future weed germination and
emergence models.
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Several coupled soil moisture and temperature models have
been validated in the literature (e.g., Ács et al. 1991;
Flerchinger 1987; Hammel et al. 1981; Nagai 2002; Xiao et
al. 2006). However, a major user-oriented difficulty with
these models is the large input requirements both for soil
properties and climatic data. Our goal was to develop a
theoretical soil moisture and temperature model that utilized
validated empirical relationships to ease the soil input
requirements and required only maximum and minimum
daily air temperature along with precipitation as the sole
climatic inputs. A soil water simulation model developed by
Chanzy et al. (2008) represents a step in this direction.
However, our developed soil temperature and moisture model
has even fewer user inputs, allows infinitely small depth
increments, and has an improved user interface.

All of these tools have been programmed in JAVA. The
JAVA language is gaining popularity in the scientific and
commercial software programming arenas (Bull et al. 2003;
Fox and Furmanski 1998), despite a few drawbacks in terms
of availability of variable types and mathematical functions
(Gudenberg 1998). Furthermore, a program’s execution speed
difference between JAVA and older languages (e.g., C,
FORTRAN) is becoming less of an issue, especially for
desktop computers (Bull et al. 2003).

Materials and Methods

GlobalTempSIM. The purpose of this tool is to estimate
daily maximum and minimum air temperatures for a yearly
cycle at any location on the globe. GlobalTempSIM predicts
the daily average air temperature on the basis of 30-yr (1961–
1990) temperature records that were compiled and interpo-
lated by Legates and Willmott (1990a,b), with further
improvements by Willmott and Matsuura (1995). This 30-
min (0.5u grid [361 by 721 elements]) interpolated data set is
based upon 24,941 independent surface air temperature and
oceanic grid point estimates from a variety of sources (Legates
and Willmott 1990a). Diurnal temperature ranges (TDTR)
were interpolated from monthly averages from data collected
from 1961 to 1990 and cross-validated by New et al. (1999).
These also were interpolated to the 30-min (0.5u) grid.

Both the average monthly temperatures and diurnal
temperature ranges were fitted to separate spline extrapola-
tions to estimate daily values. Extrapolation was performed
using day of year, with each month assigned to the respective
day of year for half of the month. The extrapolated values
from the spline resulted in the estimation of daily average air
temperatures. Average daily temperature (Tmean) was used
together with the daily temperature ranges (again extrapolated
through a spline) to calculate daily maximum (Tmax) and
minimum temperatures (Tmin) as given in Equation 1:

Tmax ~ Tmean {
1

2
TDTR: ½1�

and

Tmin ~ Tmean {
1

2
TDTR:

The sole input from the user is the geographical latitude and
longitude as well as whether or not the daily temperatures
should account for random diurnal variability. This random
variability was assumed to be a function of the annual

temperature amplitude at the location. This random factor
produces a more variable output. However, statistically this
random factor may or may not result in improved statistical
measures since it is a random calculation. For the analyses
conducted here, the random factor was not selected. The
output file is a comma-spaced value (CSV) file that has the
following format: day of year, maximum temperature,
minimum temperature. GlobalTempSIM is a JAVA jar file.
To execute the model, the JAVA run-time library from Sun
Microsystems (www.java.com) is required to be installed on
the appropriate computer platform. Once JAVA is installed
the model can be run. The user input for the model is limited
to solely the geographical information (latitude, longitude)
and then the year for the simulation. The year is only used in
establishing the daily output for the output file (i.e., leap
year). This output file can be loaded into a spreadsheet
program or directly incorporated into another model through
the use of the JAVA JAR file (library).

GlobalRainSIM. The purpose of this tool is to estimate
daily precipitation patterns for a yearly cycle at any location
on the globe. GlobalRainSIM forecasts the daily rainfall on
the basis of two databases. The first was the average number
of days in a month with precipitation (wet days) that were
compiled and interpolated by Legates and Willmott
(1990a,b) with further improvements by Willmott and
Matsuura (1995). This 30-min (0.5u grid) interpolated data
set is based upon 26,858 independent precipitation stations
and oceanic grid point estimates from a variety of sources
(Legates and Willmott 1990a). The second database was the
global average monthly precipitation data collected from
1961 to 1990, cross-validated by New et al. (1999), and also
interpolated to the 0.5u grid. These two data sets then were
used to establish the monthly precipitation totals and the
frequency of precipitation in a month. The average
precipitation event was calculated as the monthly mean
divided by the number of wet days. This mean value was
then randomly assigned to a day of the month looping
through the number of wet days. In other words, if the
average monthly rainfall was 10 mm with 5 average wet days,
each rain event was 2 mm. This amount (2 mm) then was
assigned randomly to 5 days of that month. The advantage
of this tool is that a typical pattern of precipitation can be
simulated for any global location arriving at an average year
as a baseline case for comparison. This tool also outputs the
daily rainfall as a CSV file or can be embedded easily within
another program.

Soil Temperature and Moisture Model (STM2). Despite
the fact that there are several soil physics models for water and
heat transport (e.g., SWIM [Verburg et al. 1996], SHAW
[Flerchinger 1987], HYDRUS [Šimůnek et al. 2008],
UNSAT-H [Fayer 2000)]), the major difficulty limiting the
widespread use of these models is the large input requirement
in terms of soil physical constants and climatic variables. In
addition, numerical stability problems can occur on the basis
of these user-supplied soil parameters. Some of these soil
properties are unknown to the general user and this hampers
widespread user acceptance of soil temperature and moisture
models. The purpose of the STM2 model was to keep these
required inputs to a minimum. Therefore, to achieve this
reduced input requirement, empirical models were used to
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estimate fundamental soil physical parameters to improve the
usability of the model. The model also possesses an advanced
tab to enable experienced users to input these soil physical
values directly or adjust the calculated empirical parameters
(Figure 1). Briefly, field capacity water content was estimated
on the basis of soil pedotransfer functions (PTF) of Saxton
and Rawls (2006). Overall correlation coefficient for the
volumetric water content at field capacity was 0.63, with a
standard error of 60.05 m3 m23 for over 2,000 soil samples
(Rawls et al. 1982; Saxton and Rawls 2006). For soil
parameters, basically the user need only select the desired soil
to be simulated from a screen version of the soil textural
triangle and then select organic matter content from a sliding
bar (Figure 1). No other physical soil characteristics need be
known.

Bulk density was estimated by taking the average of four
PTFs on the basis of soil texture and organic matter
classifications from Federer (1983), Kaur et al. (2002),
Leonavičiutė (2000), and Saxton and Rawls (2006). Saturated
volumetric moisture content for the soil is calculated from
Saxton and Rawls (2006). Saturated hydraulic conductivity
was estimated on the basis of the average of Saxton and Rawls
(2006) and Kaur et al. (2002). The estimated hydraulic
conductivity was then used to estimate the air entry potential
and the slope of the lnY vs. lnh graph (Campbell B), with the
empirical relationships developed on the basis of the available
data from all soil textural classes (Rawls et al. 1982; Saxton
and Rawls 2006). Unsaturated conductivity is estimated on
the basis of Campbell (1985):

Ku ~ Ks
yair

ym

� �2 z 3
B

, ½2�

where Ku is the unsaturated conductivity, Ks is the saturated
conductivity, Yair is the air entry potential, Ym is the current
soil moisture potential, and B is the slope of the lnY vs. lnh
graph (Campbell B). The formula for water potential
(Campbell 1985) is:

ym ~ yair

h

hs

� �{B

, ½3�

where Ym is the current soil moisture potential, Yair is the air
entry potential, h is the current moisture content, hs is the
saturated soil moisture, and B is the slope of the lnY vs. lnh
graph (Campbell B). Thermal properties of the soil are
calculated from de Vries (1963) and Farouki (1986)
relationships. Solar radiation is modeled using a previously
validated hourly solar radiation model (Spokas and Forcella
2006). Water transport is solved through a finite-difference
solution to Richard’s equation accounting for both liquid and
vapor fluxes and a coupled finite-difference solution for heat
flow.

Besides the soil texture and organic matter input, the other
input from the user is the climatic data (weather file). The
inputs required are day of year, maximum air temperature,
minimum air temperature, and precipitation amounts in a
CSV file (no headers).

Statistical Model Validation. Model performance was
analyzed by several measures. Bias was calculated following
the formula of Daly et al. (1994):

bias ~
1

n

Xn

i~1

Mi { Oið Þ, ½4�

where Mi is the model output and Oi is the observed
quantity (rain, temperature, soil moisture content, etc.), and
n is the total number of comparisons. As indicated by
Willmott and Matsuura (2005), bias is also simply the
mathematical difference between the two means (M̄ 2 Ō).
Bias can be used as an indication of systematic over- or
underprediction by the model (Willmott and Matsuura
2005). Mean absolute error (MAE) was also calculated by the
following:

MAE ~
1

n

Xn

i~1

Mi { Oij j
" #

, ½5�

where Oi are the measured values and Mi are the modeled
values (Willmott 1982). An ‘‘index of agreement’’ or
modeling index (d) was calculated with the following
expression:

d ~ 1 {

Pn
i~1

Oi { Mið Þ2

Pn
i~1

Oi { Oi

�� ��z Mi { Oi

�� ��� 	2

2
664

3
775, ½6�

where Oi are the observed values (i.e., air temperature,
rainfall, soil temperature, soil moisture) with a mean of Ōi,
and Mi are the modeled values (Mayer and Butler 1993;
Willmott 1981). The value of d will vary between 0 and 1,
with a value of 1 indicating perfect model agreement
(Willmott 1981). The coefficient of modeling efficiency
(ME) was calculated by the following formula:

ME ~ 1 {

Pn
i~1

Oi { Mið Þ2

Pn
i~1

Oi { Oi

� 	2

2
664

3
775, ½7�

where Oi are the measured values with a mean of Ōi and Mi

are the corresponding modeled values (Legates and McCabe
1999; Mayer and Butler 1993). ME will vary between 2‘
and 1, with higher values (closer to 1) indicative of superior
model performance (Willmott 1982). These indices have
been used in other modeling comparisons (e.g., Diekkrüger
et al. 1995; Eitzinger et al. 2004; Legates and McCabe 1999;
Spokas and Forcella 2006) and are recommended measures
in assessing model performance (Willmott 1982; Willmott
and Matsuura 2005).

Relative percentage difference (RPD) was also calculated
for the precipitation modeling, since the millimeters of rainfall
are variable for each location. RPD was calculated by the
following:

RPD ~
Myr { Oyr

�� ��
Oyr z Myr

� 	 | 200, ½8�

where Oyr is annual measured rainfall (mm) for the
comparison year and Myr is the modeled cumulative
annual rainfall (mm). This provides a relative means to
compare the precipitation predictions from various cli-
mates.
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Figure 1. Example screen captures of the STM2 JAVA program. (A) Soil selection and organic matter input screen, (B) program preferences tab, (C) weather data input
tab, (D) advanced soil properties tab, (E) advanced model parameters tab, and (F) screen shot of the model during calculations.
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Results and Discussion

GlobalTempSIM. Graphical comparisons of output from
GlobalTempSIM and corresponding measured air tempera-
ture values for four selected locations are given in Figure 2.
The model output from GlobalTempSIM is actually
predicted maximum and minimum temperatures for each
day. For these comparisons, just the mean temperature
predictions are actually compared. Table 1 presents the
statistics of all the validation comparisons. As seen in Figure 2
and Table 1, GlobalTempSIM does simulate the annual
temperature wave. Model bias ranged from 24.3 to +0.5 C,
with the model possessing a slight negative bias (average 5
21.55 C) . Mean absolute errors ranged from 1.87 to 4.95 C;
average MAE was 3.06 C. The d-index ranged from 0.8 to
0.95 (average 0.90), with corresponding ME ranging from
0.10 to 0.71 (average 0.52). These errors are within the same
order of magnitude of other more complex weather simulators
(e.g., Semenov et al. 1998). These measures indicate that the
model did match the annual temperature pattern at all 12 sites
evaluated.

GlobalRainSIM. Output from GlobalRainSIM also was
compared with seven sites with precipitation data and the
results are summarized in Table 2 as well as a graphical
comparison of selected sites in Figure 3. Overall, there was
good agreement between the GlobalRainSIM output and the
precipitation records for the evaluation sites. The bias for all
the sites and years ranged between 2210 and +305 mm of
annual rainfall and mean absolute errors were between 60 and
311 mm of rain. However, despite these high apparent errors,
the model did simulate the precipitation patterns at the sites as
indicated by the d-index values ranging from 0.836 and 0.995
(average 5 0.94), and corresponding modeling efficiencies
were between 0.034 and 0.980 (average 5 0.75). Figure 3
illustrates some of the comparisons graphically, and in
Figure 2d multiple years of precipitation data and the output

Table 1. Statistical measures of the GlobalTempSIM for 12 global sites.

Site and Year Latitude/longitude Bias (C) Mean absolute error (C) d-index ME

Sydney, Australia 33.9uS, 151.2uE
2007 20.94 1.98 0.907 0.642

Paris, France 48.7uN, 2.3uE
2005 21.82 3.38 0.885 0.396
2006 22.01 3.45 0.892 0.409
2007 21.99 3.16 0.873 0.472

Hong Kong, China 22.3uN, 113.9uE
2007 22.16 2.62 0.902 0.612

Düsseldorf, Germany 51.2uN, 6.8uE
2007 21.65 2.88 0.910 0.455

Cape Town, South Africa 34.0uS, 18.6uE
2007 +0.05 1.87 0.877 0.298

Reykjavik, Iceland 64.1uN, 21.9W
2007 20.99 2.47 0.887 0.473

Los Angles, CA 34.1uN, 118.2uW
2007 22.74 2.90 0.800 0.101

Houston, TX 29.7uN, 95.2uW
2007 20.71 2.84 0.922 0.639

New York, NY 40.8uN, 74.0uW
2007 24.3 4.95 0.898 0.538

Omaha, NE 41.3uN, 95.9uW
2007 21.2 3.90 0.953 0.779

Ames, IA 42.0uN, 93.6uW
2007 20.41 3.82 0.954 0.786

Jay, FL 30.8uN, 87.1uW
2007 20.85 2.62 0.923 0.672

Average 21.55 3.06 0.90 0.52

Figure 2. Comparisons of the output from GlobalTempSIM to measured air
temperatures from (A) Sydney, Australia; (B) Cape Town, South Africa; (C)
Omaha, NE; and (d) Paris, France. Measured data were retrieved from Weather
Underground (www.wunderground.com) for 2007.
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of GlobalRainSIM visually demonstrate the ability of the
model to match the annual precipitation cycle. At a majority
of the validation sites RPD fell within a 630% bracket. High
values of RPD are a direct result of the variability of
precipitation and the difficulties encountered in attempting to
duplicate nature in mathematical models (Airey and Hulme
1995). Other more mathematically complex precipitation
models are able to make precipitation predictions to within

620% RPD (Thornton et al. 1997). However, these models
require extensive user inputs and training sets. GlobalRain-
SIM provides a simple model to predict a typical annual cycle
of precipitation for any location.

STM2. The ability to model the natural system is paramount
to weed seed germination prediction. However, environmen-
tal modeling is also important in several other research areas.
The next generation of weed seed germination models will
need to account for soil microclimate conditions. To predict
this microclimate environment, we have developed a suite of
models. The major emphasis for this work was to provide a
typical year of climatic data along with the generation of soil
microclimate conditions from limited meteorological and site
data. Granted, the year-to-year variability will not be captured
with these tools, like the weather simulators mentioned above.
However, the ability to generate a typical year of climatic data
(air temperature and precipitation) from only a latitude and
longitude input does have a wide range of applications. Many
important weed species have worldwide distributions (Holm

Figure 3. Graphical comparison of (A) and (B) cumulative vs. GloablRainSIM
output for Jay, FL (2004); (C) and (D) cumulative vs. GlobalRainSIM output for
London, UK (2007); and (E) a comparison of the output for Seattle, WA against
3 yr of precipitation data (2005, 2006, and 2007).

Table 2. Statistical measures of the GlobalRainSIM for seven global sites and various years.

Site and year Bias (mm) Mean absolute error (mm) d-index ME a RPD (%)

Paris, France
2007 60.3 60.3 0.985 0.821 23

Seattle, WA
2005 76.3 76.3 0.965 0.865 9
2006 266.4 75.0 0.964 0.852 18
2007 105.1 107.4 0.931 0.753 14

Minneapolis, MN
2005 239.0 49.7 0.980 0.902 1.8
2006 23.2 28.6 0.995 0.980 4
2007 235.9 72.5 0.970 0.846 19

Dallas, TX
2004 268.2 71.9 0.974 0.885 17
2005 132.1 159.4 0.777 0.439 59
2006 266.7 72.9 0.966 0.859 15
2007 2209.6 209.6 0.863 0.034 38

Jay, FL
2004 92.5 99.4 0.983 0.926 1
2007 304.5 311.1 0.836 0.419 25

London, UK
2007 59.79 62.66 0.938 0.799 30

Sydney, Australia
2007 227.6 68.8 0.980 0.901 8

Average 20.9 101.7 0.940 0.752 19

a Abbreviations: ME, modeling efficiency; d-index is described in the statistical section; RPD, relative percentage difference.

Figure 4. Comparison of soil temperature from the SCAN network compared
with the independent measurement of soil temperature (Mesonet) at 10 cm in
Ames, IA.
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Table 3. Statistical measures of the temperature simulations with soil temperature and moisture model (STM2) for 15 global sites.

Site and soil depth Latitude/longitude n Bias (C) Mean absolute error (C) d-index MEa

Amargosa Desert Research Siteb (Beatty, NV) 36.77uN, 116.69uW
2005 – 1 cm 8,760 0.90 5.34 0.927 0.687

Odessa, WAc 47.31uN, 118.88uW
2007 – 2.5 cm 333 21.80 4.39 0.943 0.815
2007 – 5 cm 333 21.86 2.87 0.970 0.884
2007 – 20 cm 333 21.78 2.65 0.958 0.788
2007 – 100 cm 333 21.68 2.65 0.886 0.178

Aberdeen, IDc 42.95uN, 112.83uW
2000 – 10 cm 366 22.07 2.65 0.964 0.873

Padua, Italy 45.34uN, 11.97uE
2006 – 5 cm 221 0.57 1.31 0.991 0.962

Everglades, Fld (ARS SCAN site) 25.5uN, 80.55uW
2006 – 5 cm 363 1.64 1.93 0.829 0.231

Ames, IAd,e 42.02uN, 93.73uW
2005 – 5 cm 362 20.12 3.89 0.919 0.791
2005 – 10 cm 362 0.17 3.74 0.922 0.797
2005 – 10 cm (Mesonet) 365 22.05 2.92 0.966 0.865
2006 – 5 cm 365 2.25 3.70 0.923 0.786
2006 – 10 cm 365 1.02 2.99 0.944 0.840
2006 – 10 cm (Mesonet) 365 20.73 2.12 0.980 0.909
2007 – 5 cm 365 4.59 6.83 0.835 0.587
2007 – 10 cm 365 20.37 3.99 0.920 0.796
2007 – 10 cm (Mesonet) 365 1.69 2.70 0.937 0.820

White Bear Lake, MN 45.12uN, 92.95uW
2006 – 5 cm 57 0.04 0.72 0.988 0.950
2007 – 5 cm 122 0.52 1.52 0.934 0.944

Morris, MN (Swan Lake Research Farm) 45.68uN, 95.80uW
2007 – 1 cm 333 21.80 4.39 0.943 0.815
2007 – 2 cm 333 21.86 2.87 0.970 0.884
2007 – 5 cm 333 21.78 2.65 0.958 0.788
2007 – 10 cm 333 22.10 3.55 0.911 0.688

Beasley Lake, MSd 33.83uN, 90.65uW
2006 – 5 cm 8,639 1.10 2.02 0.977 0.916
2006 – 10 cm 8,639 1.50 1.77 0.983 0.931

Sellers Lake, FLd 29.10uN, 81.63uW
2006 – 5 cm 8,757 0.03 1.85 0.966 0.862
2006 – 10 cm 8,757 20.19 1.69 0.967 0.855

Crossroads, NMd 33.53uN, 103.23uW
2006 – 5 cm 8,758 0.150 5.76 0.864 0.440
2006 – 10 cm 8,758 0.190 3.67 0.933 0.700

Dexter, MOd 36.78uN, 89.93uW
2006 – 5 cm (hourly) 8,182 1.41 3.74 0.940 0.773
2006 – 10 cm (hourly) 8,182 1.36 2.60 0.970 0.875
2006 – 5 cm daily 342 1.35 1.77 0.985 0.940
2006 – 10 cm daily 342 1.25 1.57 0.987 0.949

Lye Brook, VTd 43.05uN, 73.03uW
2006 – 5 cm 6,346 2.14 3.29 0.902 0.708
2006 – 10 cm 6,266 1.91 2.69 0.932 0.789

FermiLab, IL 41.86uN, 88.22uW
2007 – 10 cm 363 1.12 1.90 0.981 0.934
2007 – 50 cm 361 1.91 2.07 0.952 0.802

St. Paul, MN University of MN Weather Station 44.99uN, 93.18uW
2007

Bare soil – 1 cm 8,760 0.19 4.68 0.955 0.844
Bare soil – 5 cm 8,760 0.29 3.69 0.967 0.887
Bare soil – 10 cm 8,760 0.39 3.45 0.970 0.895
Grass (turf) – 1 cm 8,760 21.44 4.52 0.928 0.789
Grass (turf) – 5 cm 8,760 21.25 3.64 0.945 0.831
Grass (turf) – 10 cm 8,760 21.10 3.20 0.952 0.848

Without frozen soil period
Grass (turf) – 1 cm 5,412 0.46 2.99 0.928 0.762
Grass (turf) – 5 cm 5,412 0.43 2.06 0.957 0.839
Grass (turf) – 10 cm 5,412 0.42 1.61 0.971 0.883

a Abbreviaton: ME, modeling efficiency.
b Data from Johnson et al. (2007).
c Data from AgriMet: The Pacific Northwest Cooperative Agricultural Weather Network (http://www.usbr.gov/pn/agrimet/webarcread.html).
d Data from Soil Climate Analysis Network (SCAN) (http://www.wcc.nrcs.usda.gov/scan/).
e Secondary Soil Temperatures from Iowa Environmental Mesonet (http://mesonet.agron.iastate.edu/agclimate/hist/dailyRequest.php).
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et al. 1977, 1997), and the chemical and mechanical tactics
used to control these plants may have equally broad or
broader ranges. Consequently, when studying topics spanning
from weed ecology to pesticide fate, weed scientists,
environmental scientists, and perhaps even regulatory agencies
may have need to simulate daily temperature and rainfall
conditions in locations where measured meteorological data
are not readily available. GlobalTempSIM and GlobalRain-
SIM assist users in approximating these variables easily and on
a worldwide basis.

STM2 results were compared for multiple sites and
locations. One of the databases utilized for this comparison
came from the U.S. Department of Agriculture National
Resources Conservation Service—Soil Climate Analysis
Network (SCAN: www.wcc.nrcs.usda.gov/scan/). This al-
lowed a selection of sites across various climates and soils to
be evaluated. Results of the temperature and soil moisture
simulations will be discussed individually below.

Soil Temperature Modeling. Improved model fits for soil
temperature were achieved when there were independent soil
temperature sensors (thermistor or thermocouple) opposed to
the use of temperature data from the enclosed soil moisture
probe from the SCAN network. This is seen clearly in the
Ames, IA comparison where the 10-cm soil temperature was
compared with the SCAN data (enclosed temperature sensor)
and the Iowa Environmental Mesonet (independent temper-
ature probe). There was a consistent reduction in the mean
absolute error as well as a corresponding increase in the STM2

comparison as measured by the d-index and the modeling
efficiency for the 3 yr compared at Ames, IA when the
independent soil temperature data were used (Table 3). When

the data between the soil moisture probe (SCAN) and the
independent soil temperature probe (Mesonet) were com-
pared, a negative bias in the SCAN data in the summer
months and a positive bias in the winter months was observed
(Figure 4). However, these two sources of temperature data
were from different sites (even though in proximity) and
multiple factors could contribute to observed differences.
Curiously, the SCAN soil moisture probe does not report
negative soil temperatures, even in the winter months for the
northern climate sites (Figure 4). For the remainder of the
SCAN sites, independent data for the soil temperature were
not located and the soil moisture probe temperature data were
used as the basis of the model comparisons.

Improved temperature model fits occurred when daily
average temperatures were used as opposed to hourly values
(Table 3). This can largely be attributed to the difficulty in
simulating the diurnal temperature pattern (Cesaraccio et al.
2001). The site at Dexter, MO demonstrates this improve-
ment: mean absolute error changed from 3.7 C for the hourly
values to 1.8 C for the daily averages, with corresponding
improvement also observed in the d-index (0.940 to 0.985)
and modeling efficiency (0.773 to 0.940). However, hourly
data also fit extremely well, such as at Sellers Lake, FL (bias 5
0.3 C and modeling efficiency of 0.865), the values for which
are shown in Figure 5.

Also in Table 3 are statistics on the basis of the data from
the St. Paul, MN weather station, which offered an
opportunity to compare the ability to simulate temperatures
below sod (grass) as well as bare soil. The model performed
similarly in both situations, indicating that it is capable of
simulating temperatures below surface vegetation, which
would be important for modeling weed behavior in turf of
golf courses, etc. The difficulty encountered was with the
insulating properties of the snow + grass system that was not
considered during model development (Figure 6). When the
snow-covered period (frozen soil) is eliminated from the
comparison, the statistical assessments are virtually identical to
the bare soil simulation (Table 3).

For comparison of model performance, a more detailed
physical process model (SHAW) possessed an average bias of
0.6 to 0.9 C and a model efficiency of 0.94 (Flerchinger et al.
1998). Therefore, even with the empirical simplifications,
STM2 performed well at simulating soil temperatures and
resulting statistical measures are virtually equivalent to the
more sophisticated soil temperature models.

Figure 5. Example of graphical comparison for Sellers Lake, FL, for (A) modeled
vs. measured 5-cm soil temperatures throughout 2007 and (B) during the first
15 d in July 2007.

Figure 6. Example of underestimation of soil temperatures (5 cm) during the
winter for Aberdeen, ID in 2006.
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Soil Moisture Modeling. The STM2 model performed well
in duplicating the annual cycle of changes in soil moisture at
the sites. One of the difficulties in comparing model soil
moisture performance is the large errors due to installation
and measurement issues (e.g., Plauborg et al. 2005). Soil
moisture potential was measured with Watermark sensors
both at the Padua, Italy and Morris, MN sites. Despite
numerous laboratory efforts at developing universal calibra-
tion equations (e.g., Thomson and Armstrong 1987;
Thomson et al. 1996), existing calibration equations
underestimate when they are compared with actual soil
moisture potentials for some soils (Irmak and Haman 2001),
and responses for each sensor are variable and not necessarily
reproducible (Spaans and Baker 1991). Therefore, the
readings without regular individual calibration and correc-

tions should be considered only a relative indicator of soil
moisture status rather than an absolute measurement (Leib et
al. 2003). The other important factor is that the soil moisture
data for the SCAN network is processed with the manufac-
turer’s provided calibration and no site-specific calibration is
performed on the data (D. Harms, personal communication).
Evett et al. (2006) indicated that the lack of soil-specific
calibration is a potential source of error in soil moisture
measurements.

Despite these sources of error, the model did compare
favorably with the soil moisture measurements (Tables 4 and
5; Figure 7). Overall, the soil moisture bias was between
20.09 to 0.12 cm3 cm23, with mean absolute errors between
0.02 and 0.16 cm3 cm23. Overall, the mean absolute errors
for the soil moisture model are well within the range of errors

Table 4. Statistical measures for the soil moisture simulations with soil temperature and moisture model (STM2) for 12 global sites.

Site and soil depth n Bias (cm3 cm23)
Mean absolute error

(cm3 cm23) d-index MEa

Calibrated soil moisture sensors
Amargosa Desert Research Site (Beatty, NV)

2005 – 1 cm 8,760 0.01 0.02 0.911 0.572
White Bear Lake, MN

2008 288 0.03 0.05 0.914 0.655
FermiLab, IL

2007 – 10 cm 362 0.01 0.03 0.668 20.637
Watkins, GA

2007 – 5 cm 8,730 0.01 0.03 0.905 0.463
Morris, MN

2005 – 5 cm 146 20.01 0.16 0.757 0.710
2006 – 5 cm 259 20.08 0.15 0.799 0.620

Soil moisture sensors using default calibration
Everglades, Flb

2006 5 cmc 365 0.05 0.07 0.622 20.287
Ames, IA

2005 – 5 cm 364 0.02 0.05 0.667 22.63
2005 – 10 cm 364 20.06 0.06 0.450 24.40

Beasley Lake, MS
2006 – 5 cm 8,758 20.06 0.06 0.535 21.58
2006 – 10 cm 8,758 20.05 0.05 0.603 21.63

Sellers Lake, FL
2006 – 5 cm 8,754 0.05 0.07 0.366 216.5
2006 – 10 cm 8,754 0.12 0.12 0.392 24.687

Crossroads, NM
2006 – 5 cm 8,758 0.11 0.11 0.354 29.58
2006 – 10 cm 8,758 0.11 0.11 0.321 212.40

Dexter, MO
2006 – 5 cm (hourly) 8,180 0.04 0.06 0.777 20.349
2006 – 10 cm (hourly) 8,180 0.01 0.05 0.765 20.199
2006 – 5 cm daily 342 0.04 0.06 0.781 20.322
2006 – 10 cm daily 342 0.01 0.04 0.775 0.145

Santarem Forest, Brazil (logged)
2001 – 20 cm 340 20.09 0.14 0.430 27.147

a Abbreviation: ME, modeling efficiency.
b Data from Johnson et al. (2007).
c Precipitation data was not available from the site (instrumentation error), used precipitation data from Naples, Fl (70-km distance).

Table 5. Statistical measures for the soil moisture potential simulations with soil temperature and moisture model (STM2) for two sites.a

Site and soil depth N
Mean error

(kPa)
Mean absolute error

(kPa) d-index MEb

Padua, Italy
2007 – 10 cm 177 241 54 0.861 0.11

Morris, MN (Swan Lake Research Farm)
2007 – 3 cm 169 254.8 62.4 0.531 0.02
2007 – 5 cm 191 240.3 56.6 0.400 21.50
2007 – 10 cm 214 234.1 35.7 0.648 20.02

a Frozen soil periods were eliminated from the comparisons.
b Abbreviations: ME.
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expected with field soil moisture measurements (Evett et al. 2006;
Vitel 1994; Yu et al. 1999). The model did duplicate the annual
cycle in soil moisture at the sites with a d-index between 0.32 and
0.91 (average 5 0.64) and a modeling efficiency between 216.5
and 0.71 (average 22.96). As seen in Table 4, there is a slight
improvement in the statistical measures of the model in the
comparisons with soil moisture data that were calibrated to the
specific soil. For comparison, Hymer et al. (2000) observed that
detailed soil physics models had errors that typically fell within
0.03 to 0.07 cm3 cm23, whereas our simplified model had errors
in the range of 0.02 to 0.16 cm3 cm23. Therefore, our developed
model is close to the more detailed theoretical models despite the
simplified user inputs.

For soil moisture potential, data from two sites were
compared (Table 5). The model had a consistent negative bias
from 255 to 234 kPa and a mean absolute error between 36
and 63 kPa. However, the model predicted the annual cycle
with d-index values ranging between 0.40 and 0.86, and
modeling efficiencies were between 21.5 and 0.11 for the soil
moisture potential comparisons. In contrast to the soil
temperature data, comparing hourly vs. daily values did not
improve the statistical measures (Dexter, MO; Table 5). This
is probably linked to the reduced diurnal fluctuations in soil
moisture as compared with soil temperatures.

Another source of error with STM2 is the lack of exact
timing of precipitation events. The model extrapolates the
daily precipitation evenly over the 24-h period. This is a
source of error in the modeling and is hypothesized for the lag
in the timing of the soil moisture response in the measured vs.
model data. In addition, the positive bias of the model could
be due to improved infiltration as a consequence of the
reduced intensity of the rainfall. Rainfall intensity greatly
affects runoff vs. infiltration amounts (e.g., Pruski and
Nearing 2002). A potential scenario is where the rainfall
might have occurred solely within a 1-h time period in the
morning (1:00 to 2:00 A.M.), whereas the model will distribute
this rainfall amount evenly over a 24-h period. A correction
factor (% runoff) has been incorporated in the model to aid in
reducing the impact of this bias by reducing the available
precipitation by the runoff percentages (Figure 1). Despite
these simplifications, the predictions still are within a usable
range of values to be used for model purposes.

STM2 has admitted shortcomings due to the simple
handling of the soil moisture retention curve as well as the
empirical relationships in deriving the soil physical constants.
Soil porosity and residual soil moisture contents have been
cited as vital properties for proper modeling efforts, since
these values largely control the ability of the model to match
soil moisture contents during extreme wet or dry periods
(Walker et al. 2001). This impact of residual soil moisture can
be seen in Figures 7b and 7c, where the model simulations do
not drop as low as the actual soil moisture measurements.
Finke et al. (1996) already documented the fact that the
uncertainty in the empirical relationships can play an
important role in specific aspects of soil moisture behavior.
Despite these shortcomings, empirical relationships provide
values comparable with actual spatial means of soil properties
(Soet and Stricker 2003). A further simplification was the fact
that the model handles only one type of soil. This can be seen
as a large source of error both for moisture and temperature
comparisons at depth since alterations in bulk density,
structure, or texture are not considered. However, for the
majority of studies on weed seeds and seedlings, and perhaps

even pesticide fate, where the emphasis is on shallow soil
depths, this error should not be a significant factor.

The insulating properties of snow are ignored in the current
version of STM2. Consequently, the model underpredicts the
winter soil temperatures as a result of this omission (Figure 7).
Despite the simplifications taken in the model, as well as
ignoring other soil moisture modeling complexities (e.g.,
O’Connell and Todini 1996), the model still predicts the
annual cycles in soil microclimate conditions well (Tables 3 to
5), particularly the simulation of surface soil temperature and
moisture profiles needed for weed seed germination models.

As seen in the above comparisons, STM2 did have more
difficulty in modeling soil moisture than soil temperature,
which is related to the use of the empirical models for the
simplification of data input requirements. STM2 also had a
slight positive bias for soil moisture (Table 3) for the sites
evaluated. This results from assumptions and shortfalls, such
as the one-dimensional nature of the model, underestimating
runoff, alterations of soil texture and structure with depth, or
neglecting horizontal moisture redistribution. Despite these
limitations, the model provides a more user-friendly tool for
predicting soil moisture and temperature profiles than existing
models and has already proved useful in weed germination
studies (e.g., McGiffen et al. 2008; Schutte et al. 2008).
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