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Abstract
Background Biochar’s role as a carbon sequestration
agent, while simultaneously providing soil fertility
improvements when used as an amendment, has been
receiving significant attention across all sectors of
society, ranging from academia, industry, government,
as well as the general public. This has lead to some
exaggeration and possible confusion regarding biochar’s
actual effectiveness as a soil amendment. One sparsely
explored area where biochar appears to have real
potential for significant impact is the soil nitrogen cycle.
Scope Taghizadeh-Toosi et al. (this issue) examined
ammonia sorption on biochar as a means of providing
a nitrogen-enriched soil amendment. The longevity of
the trapped ammonia was particularly remarkable; it
was sequestered in a stable form for at least 12 days
under laboratory air flow. Furthermore, the authors
observed increased 15N uptake by plants grown in soil
amended with the 15N-enriched biochar, indicating

that the 15N was not irreversibly bound, but, was
plant-available.
Conclusions Their observations add credence to
utilizing biochar as a carrier for nitrogen fertilization,
while potentially reducing the undesired environmen-
tal consequences through gas emissions, overland
flow, and leaching.

Keywords Biochar . Black carbon . Nitrogen
fertilization . Nitrogen cycle

Background

Innovative agricultural management systems are
needed to fulfill the future global demand for food,
feed, and fiber products while minimizing negative
atmospheric, soil, and water quality impacts (Hayati
et al. 2011; Lal 2000; Lambin and Meyfroidt 2011).
One such proposed management innovation is the use
of biochar as a soil amendment (Laird 2008; Lehmann
2007). Before addressing some of the details and
implications of the Taghizadeh-Toosi et al. (2011)
study, it is important to provide some background on
biochar.

Varying definitions have been applied to the term
biochar (Cabrera-Mesa and Spokas 2011) and black
carbon (Jones et al. 1997). For the purposes of this
article, we will use biochar to describe the solid
residual resulting from the thermal-chemical conver-
sion of renewable biomass feedstocks created specif-
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ically for carbon sequestration (Goldberg 1985;
Kuhlbusch and Crutzen 1995; Lehmann 2007). On
the other hand, black carbon is the term for the
spectrum of carbon thermal-chemical conversion
products, regardless of the creation purpose (i.e.,
naturally produced or anthropogenic for energy, fuel,
or carbon sequestration) or source of material (i.e.,
biomass or fossil fuels) (Jones et al. 1997; Schmidt
and Noack 2000). As shown in Fig. 1, black carbon as
a term describes a range of thermal-chemical solid by-
products, from graphite to chars, as a function of the
oxygen to carbon ratio in the residual product (Fig. 1).
By examining the chemical characteristics of a variety
of biochars, biochar spans black carbon materials
(Fig. 1), from soot to char (Spokas 2010). Soot
formation, which is a function of the conditions
during the thermal-chemical conversion process, can
occur from biomass and is not exclusive to fossil fuel
sources (e.g., Zamperlini et al. 1997). One particuar
property of soot is that it contains no residual relic
structures of the original feedstock material, due to
the formation through combustion condensation reac-
tions, typically from gas phase (Hedges et al. 2000).
On the other hand, char and charcoal do possess relic
structures as combustion residues (Hedges et al.
2000). However, the universaility in this black carbon
terminology and analytical quantification of these
divisions in the black carbon continuum are lacking
(e.g., Hammes et al. 2007; Jones et al. 1997).

Black carbon materials have been applied to soils
throughout human history to improve soil fertility and
crop productivity (Lefroy 1883). One example is soil
application of wood ash (solid residuals from fire pits

or wood fired boilers) (Pitman 2006). Depending on
the conditions of the reactions, wood ash can contain
high carbon residuals, which would be classified as
chars or charcoals in the black carbon continuum
(Muse and Mitchell 1995; Pitman 2006). However,
both negative and positive agronomic effects have
been observed following amendments of black carbon
materials to soils (Atkinson et al. 2010; Lehmann et
al. 2003; Lehmann et al. 2011; Major et al. 2010;
Novak et al. 2009; Spokas et al. 2011a). This suggests
that current biochar application to soil is not a ‘one-
size fit-all paradigm’, but instead requires careful
consideration of the properties associated with each
particular black carbon material and how those
properties might remedy a specific soil deficiency
(Novak and Busscher 2011).

As previously stated, the name biochar does not
provide information on the chemical nature or
composition of the actual material, which varies
widely. Biochar is composed of a heterogeneous
collection of carbonized structures with random
entrained inorganic elements as well as potential relic
chemical structures from the parent feedstock, asso-
ciated sorbed volatiles and ash (Brewer et al. 2009;
Keiluweit et al. 2010; Spokas et al. 2011b). This
variability is evident when one examines the organic
and inorganic compositional data across biochar
forms reported in the literature (Spokas 2010). Even
biochar created from the same feedstock under
equivalent pyrolysis conditions but in different units
can result in chemically dissimilar black carbon
materials (Table 1). Furthermore, different chemical
and physical properties can exist as a function of
particle size of the same black carbon material
(Francioso et al. 2011; Nocentini et al. 2010). However,
elemental compositional data of black carbon material
does not adequately describe the variability in surface
chemical functional groups (Boehm 1966; Boehm et
al. 1964; Rodriguez-Reinoso et al. 1992) or core-
structure that can occur (Novak et al. 2009; Novak and
Busscher 2011).

Scope

Carbon surface functional groups will determine
interactions between black carbon material and
elements in the environment (Boehm 1994). Recent
studies have hypothesized relationships in black
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Fig. 1 Illustration of the various material forms within the
black carbon continuum as defined by the range in the oxygen
to carbon (O:C) ratio. Figure is adapted from Elmquist et al.
(2006) and Hedges et al. (2000)
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carbon sorption capacities of various compounds with
respective general physical properties of the black
carbon material, such as surface area and pore
structure (Chen and Chen 2009; Chen et al. 2008;
Chun et al. 2004; Kasozi et al. 2010; Lammirato et al.
2011). However, the actual chemical make-up of the
surface groups on black carbon materials can exert
more direction over chemical sorption than the
previously mentioned physical parameters (Ania et
al. 2007; Biniak et al. 1997; Fletcher et al. 2007;
Franz et al. 2000; Hina et al. 2010; Mattson et al.
1969; Pereira et al. 2003; Pesavento et al. 2003; Qiu
et al. 2008; Uchimiya et al. 2011). Only a limited
number of recent studies (e.g., Azargohar and Dalai
2011; Cheng et al. 2006; Chun et al. 2004; Hina et al.
2010; Mukherjee et al. 2011; Nguyen et al. 2008; Qiu
et al. 2009; Singh et al. 2010; Zhou et al. 2010) have
characterized groups responsible for surface acidity.
The composition of the surface groups is an important
characteristic for the successful implementation of
black carbon materials as a soil amendment at field
scales, and could aid in understanding the aged or
delayed response to biochar amendments occasionally
observed (Ascough et al. 2011; Cheng et al. 2008;
Major et al. 2010). Therefore, understanding a priori
the interaction of black carbon materials on nitrogen
is desirable, otherwise, it may have properties that
could infringe on soil nitrogen availability (Atkinson
et al. 2010) and inadvertently reduce crop yields (Van
Zwieten et al. 2010).

It is becoming evident that black carbon
materials have particular properties that can influ-

ence the soil nitrogen cycle and hence, nitrogen
availability (Bailey et al. 2011; Clough and Condron
2010; Smith et al. 2010). Sorbed organic compounds
on black carbon have been postulated to interfere
with soil microbial nitrification and denitrification
reactions (Clough et al. 2010; Spokas et al. 2010;
Spokas et al. 2011b). Furthermore, black carbon has
been observed to react with various nitrogen com-
pounds (Guo et al. 2001; Singoredjo et al. 1993). In
the recent study, Taghizadeh-Toosi et al. (2011)
provided data showing the sorption of ammonia to
black carbons produced at different conditions from
the same pine species (Pinus radiata). This work is
important, if not unique, from the standpoint of
utilizing stable N isotopes to track its movement
through the entire system (i.e., biochar, soil, and
plant), which illustrated plant availability of the
trapped nitrogen.

The ability of black carbon materials to sorb
ammonia has been known for some time (Holmes
and Beebe 1957). Previous work has shown a range
of ammonia sorption capacities from <1 mg ammonia
g−1 for non-oxidized black carbons to >60 mg
ammonia g−1 for dry oxidized black carbon materials
(Seredych and Bandosz 2007), compared with an
average of 6 mg ammonia g−1 observed by
Taghizadeh-Toosi et al. (2011). Sorbed ammonia at
ambient conditions can exist in multiple forms on
black carbon, which range from physical (e.g.,
aqueous dissolution, trapped in pores, intercalated
between graphitic sheets) to chemical adsorption/
reaction mechanisms (Boehm et al. 1994; Petit et al.

Production Temperature pH C O N Surface Area Reference
(°C) (H2O) (g kg−1) (m2 g−1)

500 8.3 817 2 (Gaskin et al. 2008)

500 827 114 1 16 (Amutio et al. 2011)

500 800 150 60 (Garcia-Perez et al. 2008)

500 814 34 2 (Kwapinski et al. 2010)

550 9.8 777 167 6 235 (Hina et al. 2010)

500 5.6 (Rajkovich 2010)

500 7.7 678 3 (Warnock et al. 2010)

465 6.8 750 90 3 0.1 (Spokas et al. 2011b)

500 7.3 733 2 (Spokas et al. 2011b)

500 819 145 1 196 (Keiluweit et al. 2010)

500 6.6 826 2 (Taghizadeh-Toosi et al. 2011)

525 806 140 206 (Zimmerman 2010)

Table 1 Select physical and
chemical composition data
for Pinus spp. biochar cre-
ated at nearly equivalent
pyrolysis conditions

pH was measured in water;
surface area listed was de-
termined by BET-N2 gas
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2009; Seredych and Bandosz 2007; Seredych et al.
2009; Seredych et al. 2010).

A review of the potential reactions between ammonia
and black carbon materials are given in Jansen and van
Bekkum (1994). Briefly, ammonia sorption on oxidized
black carbon surfaces is known to react with surface
oxygen groups leading to the formation of amines and
amides at ambient conditions (Seredych and Bandosz
2007) and potential chemical ring structure develop-
ment (e.g., pyrroles, pyridines, quaternary ammonium)
at elevated temperatures (Jansen and van Bekkum
1994). Liquid water and water vapor can compete with
ammonia for sorption sites (Seredych and Bandosz
2007; Seredych et al. 2009), whereas the water films
present on black carbon increase dissolution of
ammonia into the water film, creating ammonium ions
(Seredych and Bandosz 2007).

At ambient conditions, ammonia can act as a
Brownsted and/or Lewis acid, which leads to the
formation of an ammonium salt or an amide following
reaction with a surface carboxyl group (Fig. 2). After
considering the reactions shown in Fig. 2, one can
conceptualize the reasons for hysteresis in the
desorption of ammonia (Holmes and Beebe 1957).
Since ammonium salts could dissociate in water, the
nitrogen would then be available as ammonium. On
the other hand, additional chemical reactions would
be required to liberate the nitrogen from the amide
(Fig. 2). The presence of amides and amines on the
surface of black carbon following exposure to
ammonia was confirmed by X-ray photoelectron
(XPS) and spectroscopic methods (Petit et al. 2009).
In addition, the presence of sulfur groups (Petit et al.
2010; Seredych et al. 2010), alkali earth metals
(Bandosz and Petit 2009), and other metals (Petit
and Bandosz 2011) entrained within the black carbon

structure increase sorption of ammonia and other
compounds by catalyzing chemical reactions.

Since ammonia is an alkaline gas, the presence of
acidic groups on the surface, and thus the pH of the
carbon surface, would directly impact the removal
processes (Bandosz 2006; Le Leuch and Bandosz
2007). Similar observations were reported by
Taghizadeh-Toosi et al. (2011). In their study, the black
carbon with the least impact on plant growth (presum-
ably through the lowest contribution of nitrogen to the
plant-soil system) possessed the highest pH. This
means that there was an increase in hydroxyl ion
(OH-) availability, thus deprotonation of the carboxyl
surface group occurs forming a resonance stabilized
carboxyl anion (March 1992). This stabilized anion
suppresses potential ammonia acidic reactions (Fig. 2).
Additional studies have reported similar findings;
ammonia sorption on black carbon was correlated to
the quantity of surface acidic groups (Holmes and
Beebe 1957; Huang et al. 2008; Molina-Sabio et al.
2011; Seredych and Bandosz 2007). Therefore, black
carbon can sorb ammonia through several sorption and
reaction pathways that are pH dependent.

Sorption of compounds on black carbon surfaces at
low (ambient) temperatures are generally considered
reversible (Leon and Radovic 1994). Holmes and
Beebe (1957) suggested the reversibility of the
ammonia sorption, and in fact, this reversibility is
the basis for the use of black carbon as a chemical
sensor for ammonia detection (Suehiro et al. 2003).
This reversibility of ammonia trapping through the
formation of ammonium salts could be the underlying
mechanism explaining a portion of 15N presence as
ammonium in solution that was plant available as
reported in Taghizadeh-Toosi et al. (2011), since the
15N was detected in the plant roots and tissue

Fig. 2 Example reactions of a black carbon material (repre-
sented by the benzene ring labeled with BC) carboxyl surface
group reacting with ammonia, with ammonia acting as a

Brownsted or b Lewis acid. Figure is adapted from Jansen
and van Bekkum (1994) and Seredych and Bandosz (2007)
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materials. However, there was no detailed evaluation
of other 15N forms (i.e., nitrogen gas, nitric oxide,
nitrous oxide, pyridines, amines, amides, etc.), be-
sides extractable ammonium and nitrate.

Despite not investigating the eventual end form of
the incorporated 15N, Taghizadeh-Toosi et al. (2011)
did demonstrate the stability of the total sorbed 15N
under a gas stream (of unknown humidity). Further
chemical characterization or leaching potential of the
15N was not performed. Therefore, the potential forms
of the sorbed 15N on the black carbon were not fully
elucidated. However, mass balance calculations did
reveal that the 15N atom was not fully incorporated
into the nitrogen pools associated with ammonium
and nitrate (Taghizadeh-Toosi et al. 2011). In other
words, the 15N from ammonia is distributed among
other nitrogen containing inorganic or organic com-
pounds that have not been accounted for or identified.

Another noteworthy observation from Taghizadeh-
Toosi et al. (2011) was the disappearance of extract-
able nitrate following exposure of the black carbon to
ammonia (Fig. 3 in original manuscript), which could
be a vital clue in the interaction of black carbon with
the soil N cycle. Black carbon has been observed to
sorb nitrate from solution (Mizuta et al. 2004). The
exact mechanism for this disappearance is not known.
However, the reaction of nitrate with black carbon
materials should not be surprising, since it is the
chemical basis for black powder (gunpowder) (Russel
2009). In addition, black carbon materials react with
other nitrogen oxide forms (Guo et al. 2001;
Singoredjo et al. 1993). The most critical component
of this observation is the potential explanation for the
observed reductions in nitrous oxide production
(Spokas and Reicosky 2009; Van Zwieten et al.
2010; Yanai et al. 2007), which could be directly
linked to reduced nitrate availability for denitrifica-
tion. This interaction between black carbon and
nitrate is speculative. However, the extreme economic
and environmental value of potentially harnessing the
ability of black carbon materials to reduce nitrous
oxide formation requires further study.

Conclusions

In summary, certain nitrogen compounds can react with
black carbon materials, even at ambient conditions. Past
research has shown that ammonia can be sorbed to black

carbon with hysteric effects on its release. The sorption
and reaction potential of black carbon with nitrogen
depends on the surface oxygen groups. Taghizadeh-
Toosi et al. (2011) have demonstrated that some portion
of sorbed ammonia on black carbon is plant available.
The differences in the surface group chemistry of black
carbon materials may be the main reason for mixed
results in the literature with respect to black carbon’s
effects on the soil nitrogen cycle, but further studies are
needed. However, higher concentrations of surface
oxygen groups results in a black carbon with decreased
carbon sequestration potential (Spokas 2010). Suggest-
ing, a balance might be needed between the potential
carbon sequestration length and the reactivity of the
black carbon material with nitrogen compounds for
current biochar efforts. Regardless, there needs to be an
improved insight into the intricacies of black carbon’s
effect on the soil system, which would lead to
consistent and predictable results for best management
guidance for black carbon applications.

This knowledge begins with the recognition that
biochar needs to be evaluated in context of the black
carbon continuum, since biochar as a material is not new
and is comprised of various forms of black carbon
(Fig. 1). This recognition will extend our understanding
to optimize biochar production and perhaps lead to the
tailoring of the chemical surface properties to insure
that we can effectively use biochar to improve the
overall health and fertility of our soil resources. As
highlighted by Clough and Condron (2010) and the
observations of plant avaiable nitrogen in Taghizadeh-
Toosi et al. (2011), the potential role of black carbon
materials in the soil nitrogen cycle offers attractive
opportunities for agriculture to reduce the environmen-
tal footprint of food, feed, fiber and renewable energy
production. However, we need to understand the
fundamental mechanisms behind these interactions in
order to optimize new agricultural management sys-
tems to take advantage of black carbon’s potential as an
effective soil amendment.
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