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Abstract

Climate change has altered life history events in many plant species; however, little

is known about genetic variation underlying seasonal thermal response. In this study,

we simulated current and three future warming climates and measured flowering time

across a globally diverse set of Arabidopsis thaliana accessions. We found that increased

diurnal and seasonal temperature (1 to 3◦C) decreased flowering time in two fall co-

horts. The early fall cohort was unique in that both rapid cycling and overwintering

life history strategies were revealed; the proportion of rapid cycling plants increased

by 3-7% for each 1◦C temperature increase. We performed genome wide association

studies (GWAS) to identify the underlying genetic basis of thermal sensitivity. GWAS

identified five main effect quantitative trait loci (QTL) controlling flowering time and

another five QTL with thermal sensitivity. Candidate genes include known flowering

loci, a co-chaperone that interacts with Heat Shock Protein 90, and a flowering hormone,

Gibberellic Acid, biosynthetic enzyme. The identified genetic architecture allowed ac-

curate prediction of flowering phenotypes (R2 > 0.95) that has application for genomic

selection of adaptive genotypes for future environments. This work may serve as a

reference for breeding and conservation genetic studies under changing environments.
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Summary

Climate change is accelerating, altering growing seasons, and affecting the developmental

timings or phenology of plant species. This study investigates the complex genetic basis of

Arabidopsis flowering time under seasonal warming. Certain genotypes switch from over-

wintering to rapid fall flowering in warmer winter seasons. Thermal sensitive alleles were

identified in genes of the heat shock and hormone response pathways. The genetic model

was able to accurately predict flowering time of new genotypes in our future conditions illus-

trating an important method for breeding and facilitating adaptation in other species.
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INTRODUCTION

The impact of climate change on life history traits has been observed in many species, in-

cluding earlier leaf and flower bud burst in plants, earlier breeding date in birds and frogs,

and first observed flight date for butterflies (Parmesan, 2006; Rosenzweig et al., 2008).

Flowering time (FT) in plants is an important life history trait underlying reproductive fit-

ness and is sensitive to local growing conditions. FT, like many other adaptive traits, affects

survival. For example, over the past 150 years, species with flowering times less responsive

to warming temperatures have decreased in local abundance (Willis et al., 2008), suggest-

ing that flowering time sensitivity is important for climate adaptation. Flowering time is

influenced by genotype (G), environment (E) and their interaction (GxE). Several studies in

plants and animals have looked at how quickly populations can adapt to rapid climate change

given quantitative genetic variation along with reproduction and migration rates (Shaw and

Etterson, 2012; Franks and Hoffmann, 2012), The genetic loci underlying this pheno-

typic sensitivity can be detected by examining GxE. These alleles would enable a population

to adapt to changing environments (Via and Lande, 1985). GxE is also important for model

prediction of phenotypic variation, species diversity and distribution, and crop yield stability

under changing climates (Nicotra et al., 2010; Hoffmann and Willi, 2008).

Plants such as A. thaliana have evolved different life history strategies to adapt to a wide

range of growing regions and seasons through two major life history strategies (Mitchell-

Olds and Schmitt, 2006). The rapid cycling strategy is to germinate both in spring and

early autumn, then flower and set seeds rapidly. Winter annuals germinate in early or late

autumn and overwinter as a rosette, while receiving a vernalizing cold period that promotes

flowering in spring. Many plants require vernalization to ensure reproductive success.

Several genes have been identified controlling flowering that are sensitive to the envi-

ronment. In brassicas, including Arabidopsis, flowering locus C (FLC) is the major gene

underlying the vernalization requirement. FLC prevents flowering during winter by repress-

ing the floral integrator genes such as flowering locus T (Simpson and Dean, 2002). FLC
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is activated by a life history switch FRIDIDA (FRI) (Johanson et al., 2000) but repressed

by vernalization. Together, functional FRI and FLC alleles promote overwintering while null

alleles at either locus allow rapid cycling when conditions allow. In addition to the genetic

requirements, the variation in life history depends on the seasonal environment, with differ-

ent germination times as a result of different seasonal cues that are perceived by plants (Li

et al., 2010; Wilczek et al., 2009). For example, accessions with FRI null alleles are rapid

cyclers when they germinate in early fall, but overwinter when they germinate in late fall.

These alterations indicate the importance of germination timing under seasonal environments

and as well as genetic modifications (Wilczek et al., 2009). The fall germination time of a

population cohort can also affect flowering time under basic greenhouse conditions with only

minimal temperature augmentation (Botto and Coluccio, 2007).

Knowledge of what genetic loci sense climate cues is important to understand and predict

phenotypic responses to future climate change. For example, populations with variation at

thermal sensitive loci would be able to adapt than those lacking variation. In addition, plant

breeders could select for particular alleles for certain environments as conditions change. Li

et al. (2010) investigated the natural genetic variation underlying flowering time of A. thaliana

under early and late spring simulated climates for both the southern and northern range. We

used a diverse mapping set of accessions typed at 213k SNPs to finely map the genetic

loci using genome wide association studies (GWAS). Here we use the same mapping set

to investigate overwintering conditions under current and future warmer seasonal climates.

The goal of this study is to investigate the genetic variation underlying FT sensitivity to

future seasonal warming within A. thaliana. We hypothesized that genotypes would vary in

flowering responses dependent on the extent of future warming but that this may be restricted

to particular fall germination times.
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MATERIALS AND METHODS

Experimental Design Seeds of a genetic and geographically diverse core set of accessions

were obtained from a previous study (Li et al., 2010) and were grown in the same condition in

3x3x3 inch pots. Specifically, the seeds were stratified for 6 days in the dark at 4◦C in 5 mg/L

GA water to promote germinations (gibberellic acid, GA3, Sigma-Aldrich, Inc.). They were

then transferred to soil under 24 h light at 23◦C for 10 days to synchronize the germination

(most seeds germinated within 3 days). Plants were thinned to one in each pot and moved

into each of four simulated fall seasonal climate conditions that represent current and future

years (2010, 2025, 2040, and 2055) with an increased diurnal and seasonal temperature.

Flowering time was recorded daily as days to flower (DTF) bud after germination.

A typical Northern Hemisphere continental climate, where populations have been well

studied, was selected for our study. We simulated this climate using SolarCalc 2.0 (Spokas

and Forcella, 2006) with latitude 41.84, longitude -87.68, elevation 182 meters (Chicago,

IL, USA) using the 30-year average air temperature within the program for the current

prediction. SolarCalc uses the local maximum and minimum daily air temperatures derived

using Global TempSIM (Legates andWillmott, 2006, 1990;New et al., 1999;Willmott

and Matsuura, 1995). Predicted warming values from the IPCC fourth assessment report

(Medium A1B Scenario) were used in the generation of the predicted air temperatures. Two

walk-in growth chambers (AR-916, Percival Scientific, Inc. Perry, IA) were programmed to

cycle the simulated climates with adjustments made every five minutes to light spectrum, light

intensity, temperature and relative humidity throughout the day and the season. For each

planting, one chamber ran simulated 2010 conditions while the other chamber ran simulated

2040 conditions. Within chambers, the top shelf matched the target temperature while the

bottom shelf was recorded as 1◦C warmer and thus simulated additional future conditions of

2025 and 2055. Together, these conditions reflect current (2010) and predicted future warmer

growing seasons for 2025, 2040, and 2055 (Supplemental Figure S1A and B). The maximum

humidity was 75% and the minimum temperature was 5◦C, due to the chamber limitations.

3



However, 5◦C is an effective temperature for vernalization (Wilczek et al., 2009). To reduce

the number of winter days with minimal growth, a shortened winter season was simulated by

running only every second day in November and March, only every third day in December,

January and February, compressing the treatment down from five months to two.

Germination cohorts in the wild are triggered by rainfall and/or soil tilling and can occur

at various times during fall. In this study, we simulated fall climate conditions by performing

synchronized plantings in September and October to bracket the growth season window.

Synchronized germination is necessary to measure relative flowering time variation among

genotypes and their sensitivity to temperature in early and late fall growing seasons. The

final September data set contained 1479 plants that survived and ultimately flowered. This

represented 417 distinct accessions, with 288 flowering in all 4 conditions, 85 in 3 conditions,

28 in 2 conditions, and 16 in a single condition. All data in this study is available as

supplementry material and at http://borevitzlab.anu.edu.au/resources/association-studies.

Association Mapping Analysis We considered the following model for our data anal-

ysis

yij = xxxij
′βββ + ζ∗i + x∗

ja
∗ + x∗

jb
∗
i + uij + εij, i ∈ {1, 2, 3, 4}, j ∈ {1, 2, · · · , n} (1)

where yij is the phenotypic value of j-th accession in the i-th environment (i.e., one of

the four climate conditions simulated for years 2010, 2025, 2040 and 2055 respectively), xxxij

represents intercept and covariates (if any) with effects βββ, ζ∗i (ζ∗0 = 0) is the effect of the i-th

environment, x∗
j is a coding variable (with a value 0 or 1) of two genotypes at the scanning

locus and a∗ is the effect of the putative QTL, b∗i (b∗0 = 0) is the interactive effect of the

i-th environment with the putative QTL, uij represents polygenic variation, and εij denotes

the residual effect. While uij and εij are random, the rest are fixed effects. We assumed

that εij
iid∼ N(0, σ2), uij ∼ N(0, 2Kjjσ

2
i ) and cov(ui1j1 , ui2j2) = 2Kj1j2σi1σi2 with KKK = (Kij)

being the kinship matrix, and cov(εi1j1 , ui2j2) = 0. The kinship matrixKKK was estimated from

genotypic data by using software EMMA (Kang et al., 2008).
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Under model (1) without the putative QTL effects, the environmental effect ζ∗i was statis-

tically significant at 0.05. Its estimate, e∗i , was approximately linear in the temperature across

the 2010, 2025, 2040, and 2055 thermal seasonal environments (R2 = 0.9976). Considering

temperature is a major gauge for the environmental conditions in our simulations, it was

reasonable to replace the environmental effect ζ∗i with temperature or rather the estimated

environmental effect because of the approximate linearity. Therefore, we used the following

model for genome-wide association and model selection:

yij = xxxij
′βββ + e∗iβ

∗ + x∗
ja

∗ + e∗ix
∗
jb

∗ + uij + εij (2)

where β∗ was a parameter corresponding to the environmental effect ζ∗i ’s when their scores

e∗i ’s were used. The advantages of using e∗i ’s rather than ζ∗i ’s in model (2) included: 1) we

were interested in the genetic basis of FT and its sensitivity across temperature environments

(GxE) rather than to each specific temperature environment; and 2) the number of param-

eters was reduced, which was potentially beneficial for the statistical power to detect GxE

effects with a reduced number of total tests.

In the analysis of the days-to-flowering (DTF) data, 10k or so SNPs with a minor allele

frequency less than 5% were filtered out, and the genome-wide scan for FT QTL was per-

formed separately for the September and October planting data using the R package QTLRel

(Cheng et al., 2011). Forward model selection was then performed to determine the number

and locations of putative QTL among SNPs with LOD scores larger than the 0.05 empiri-

cal genome-wide significance threshold, which was estimated from 5000 permutations of the

genotype data (Cheng and Palmer, 2013). The entry value to include a new QTL in the

model selection procedure was the 0.05 empirical genome-wide significance threshold. Next,

the genome-wide scan was performed to identify genotype by environment (GxE) QTL (or

THERM QTL) by using model (2) with the identified FT QTL being included as covariates,

and the model selection procedure was performed to determine the number and locations

of THERM QTL in the same as above with the FT QTL being added to THERM QTL
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candidates.

Finally, the identified FT QTL and THERM QTL were included in model (2) to estimate

QTL effects as well as other parameters and to make best linear unbiased prediction (BLUP)

of the phenotype. The BLUPs were used to predict phenotypes as compared to observed

phenotypes in particular environments. If E, G, GxE and polygenic effects were effectively

modeled, the prediction should be reasonably accurate and provide useful information about

the performance of a plant in a future environment.

RESULTS

Impact of Future Seasonal Warming on Flowering Time at the Population Level

We simulated changing diurnal light intensity, quality, and day-lengths for early and late fall

planting times for a typical location where Arabidopsis grows naturally. Diurnal and seasonal

temperature fluctuations were set to current (2010) and predicted future climates (2025, 2040,

2055) increased by ∼1◦C for each 15 years into the future (Supplemental Figure S1A and

B). This simulation extends the growing season by days to weeks, due to shorter winters

(Supplemental Figure S2A). Under these conditions, the average flowering date of our global

population advanced as a consequence of the warmer growing seasons for both September

and October planting cohorts (Supplemental Figure S1C and D and Supplemental Figure

S2B).

[Figure 1 about here.]

The phenotypic variation in FT was largely hidden in the late fall germination cohort

as essentially all accessions overwintered. In contrast, the September germination cohort

displayed both life history strategies (Figure 1 and Supplemental Figures S1-S5). Rapid

cyclers flowered in fall while overwintering annuals flowered in spring. A third maladapted

minority class flowered in winter. The proportion of rapid cycling plants (flowering in fall)
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was incrementally higher for each 1◦C temperature increase (Supplemental Figure S2B).

Natural Variation in Flowering Responses to Future Warming among Indi-

viduals In order to evaluate the variation in flowering response to warmer climates among

individual genotypes, we compared FT of each accession in current vs. future environments

(e.g. 2010 vs. 2040). Substantial genetic variation in thermal sensitivity of FT was observed

in the September cohort (Figure 1 and Supplemental Figure S5). Some accessions showed

strong FT responses to warming. For example, the accession labeled c flowered in spring (108

d after germination) in the 2010 climate, but flowered in fall (37 d after germination) in sim-

ulated 2040 climate, displaying altered life history in warmer future climate. The accessions

that switched their life history strategy contribute to the increased frequency of rapid cycling

plants under warmer climates. However, other accessions displayed unaltered life history in

2040 climate (accessions a, b and d).

In contrast, the October germination cohort, composed of the same global set of acces-

sions, showed little variation in the FT sensitivity to future warming. Here, all accessions

overwintered revealing the dramatic plasticity of potentially rapid cycling accessions. The

October cohort did respond quantitatively to future seasonal climates with advanced flow-

ering time under warmer climates (Figure 1A and Supplemental Figures S1, S3 and S5).

Taken together, the flowering time response was influenced by germination date, genotype,

and climate (diurnal and seasonal temperature).

[Figure 2 about here.]

Genetic Loci for Fall Flowering Time and Thermal Sensitivity in Early Fall

Planting

[Figure 3 about here.]

Genetic variation was hidden in October cohort but revealed in the September cohort.

Therefore, we chose to focus on the discovery of the genetic basis for fall flowering time

(FFT) and thermal sensitivity (THERM) as GxE, in the September planting. Figure 2
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displays Manhattan plots of a single SNP (A) and temperature environment interaction

scan (B), showing several potential FFT QTL and THERM QTL. QQ plots are shown in

Supplemental Figures S6 and S7. The model selection process, described in the methods,

ended up with five FFT QTL: snp1 3978064, snp2 8272902, snp4 383752, snp4 493905, and

snp4 1330749. Three of these five FFT QTL (snp1 3978064, snp4 383752, snp4 1330749)

were also identified as spring FT QTL when the same accessions were phenotyped in our

previous climate study (Li et al., 2010) (Figure 3A and B, Table 1). Another, FFT4.2b

(snp4 493905) was tightly linked to the candidate gene Light Responsive Bric-a-Brac3 gene,

At4g01160, with family members shown to interact with phytochrome B and D diurnal and

seasonal signaling pathway (Christians et al., 2012).

[Table 1 about here.]

[Figure 4 about here.]

Two additional SNPs were identified as QTL at significance level 5% in a genome-wide

scan but they were not retained by the selection procedure. They are located within 10 kb of

apriori candidate genes (FLC and CRP) so we included them subsequently in the model. We

also included the two known major loss-of-function alleles at FRI (Li et al., 2010). These four

SNPs were included with the initial five FFT QTL as covariates in a subsequent GxE scan. In

this run, the model selection process identified a further five THERM QTL: snp1 18900758,

snp3 9185447, snp4 7148335, snp4 7626840, and snp5 23690898. For 4 of 5 THERM QTLs,

the main effect on FT (Table 1) was not significant while the interaction with temperature

was considerable. The THERM3 QTL SNP3 9185447 is located within 10 kb of the Rotamase

FKBP 1 gene, ROF1 (AtFKBP62, AT3G25230, Figure 3C). THERM4.2 and THERM5 QTLs

displayed a large deviation in allele frequencies between the thermal sensitive and insensitive

groups. Accessions that contain the thermal sensitive (non reference) allele at this SNP,

showed a substantial increase in the frequency of the rapid cyclers under future warming, as

compared to accessions with the Col allele (Figure 4). THERM5 (SNP5 23690898) is located
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within 10 kb of a phospholipase C1 gene (PLC1, AT5G58670). Another strong candidate

gene was identified for THERM QTL at SNP1 18900758) which is within 10 kb of gibberellin

2-oxidase (GA2OX7, AT1G50960) a flowering time hormone biosynthetic gene.

We investigated epistasis among all the identified QTL; however, none of the interactions

exceeded the 0.05 empirical significance threshold. Table 1 shows the results of a fit with

full model with all 5 FFT, 4 a priori loci, and 5 THERM QTL. The proportion of variation

explained by factor groups is also shown. Note that together the major FFT QTL explain

only 12% while the THERM QTL explain a similar 7% of the variation. The dominant factor

(76%) is the polygenic background, estimated as a random effect using the pairwise kinship

matrix.

[Figure 5 about here.]

Phenotype Prediction In order to assess the potential to forecast phenotypes from

genotypes under future climates, we calculated the best linear unbiased predictors (BLUPs)

of QTL effects in two different scenarios. First, we used the phenotype and genotype data

from three simulated climates (2010, 2025, 2040) to fit model (2) including all identified

QTL and then treated the estimates of the model parameters as their true values to predict

flowering time in the final simulated climate (Figure 5A). Second, we randomly selected a

subset of 90% of the accessions across all environments to fit model (2) in the same way

and then predicted flowering time for the remaining 10% accessions. Figure 5B displays the

BLUP results. The prediction was quite accurate in both scenarios because of the model (2)

could account for approximately 95% of the total phenotypic variation (Table 1). However

if the polygenic term is not included the predictive power is largely reduced (Figure 5C).

This highlights the importance of background genetic variation on phenotype, with positive

implications for genomic selection even when major QTL are not known.
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DISCUSSION

A general trend of advanced flowering time has been seen in many species due to climate

warming (Parmesan, 2006), but little was known about the natural variation within a species

or the genetic architecture underlying these responses. The genetic factors allow predictions

on population persistence and/or species range shifts under environmental change (Chevin

et al., 2010; Duputié et al., 2012). In the field, germination is highly variable and may

change in future climates. In this study we selected an early and a late fall time point

for germination to bracket the natural range to study seasonal flowering time response. The

genetic loci sensing climate variation (GxE loci) can reveal alleles involved in local adaptation

(Fournier-Level et al., 2011; Hancock et al., 2011; Méndez-Vigo et al., 2011; Horton

et al., 2011) and provide an opportunity to breed crops for future climate change (Nicotra

et al., 2010).

In this study, we identify candidate genes and pathways underlying the thermal varia-

tion in seasonal flowering time (THERM QTL, GxE). ROF1 modulates thermotolerance by

interacting with heat-shock protein 90 (HSP90) and affects the accumulation of small HSPs

(Meiri and Breiman, 2009). HSPs are well known for their importance in thermotolerance,

but more interestingly, they are chaperons of many regulatory proteins and buffer genetic

variation. Recent studies in A. thaliana have shown that HSP90 contributes to phenotypic

variation and plays a role in developmental plasticity by buffering or releasing variation un-

der shifting environments (Queitsch et al., 2002; Sangster et al., 2007, 2008). PLC1 is

induced by various environmental stresses such as dehydration, salinity, and low tempera-

ture. Finally, variation in QTL near two gibberellin oxidases, suggest GA as the important

pathway underlying seasonal thermal sensitivity in flowering time, previously known to be

important only in constant temperature sensing (Blazquez et al., 2003).

Subtle, but consistent, changes in environmental cues perceived by A. thaliana are ampli-

fied through THERM QTL alleles, affecting downstream signaling cascades that result in a

qualitative shift from overwintering to rapid cycling which would have dramatic effects on re-
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production. Alleles at unlinked THERM QTL can be combined to provide varying degrees of

overall thermal sensitivity depending on the environment and standing genetic variation. The

candidate genes reveal the molecular signaling underlying the altered life history outcomes

and include cross talk among previously characterized photoperiod, gibberellin, vernaliza-

tion, and autonomous pathways of FT regulation (Henderson and Dean, 2004). Together,

FFT and THERM QTL, environmental change, along with the polygenic background, cause

a highly predictable switch to rapid cycling.

Some accessions and many common alleles in this mapping population were originally

collected from the US, and represent genotypes that occur as local populations in Chicago

area where climates were simulated. Among these, both thermal sensitive and non-sensitive

genotypes have been found. The common alleles at THERM QTL discovered in this study

represent the natural variation in specific local populations (Platt et al., 2010). If FFT

and THERM QTL played an important role in the distribution of Arabidopsis across its

range we would expect to find a strong association with latitude of origin; however, this was

not the case for the FFT and THERM QTL identified in this study. Future studies could

use multiple local populations and seasonal environmental gradients to more carefully assess

their role in local adaptation.

In summary, this study focuses on the natural genetic variation in thermal sensitivity of

the life history trait, flowering time, under simulated current and future fall growing seasons,

in a large diverse mapping set of A. thaliana. The average FT of the population advanced

with increasing temperature. Qualitative, genotype level variation in flowering responses to

future warming was observed. Select genotypes of an early fall germination cohort, switched

from overwintering to rapid cycling in future warmer climates. These observations suggest

interactions between light and thermosensory pathways controlling FT. Here, we report sev-

eral major QTL for natural variation in the FT and thermal sensitivity for this life history

transition. By simulating seasonal temperature increases, in climate chambers, we identified

a genetic model that accurately predicts future flowering phenotypes (Figure 5). Further, we
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identify candidate genes responding to temperature that are part of the gibberellin and heat

shock pathways. The QTL identify allelic variation, which may provide A. thaliana with

the potential to adapt to warming climates. Genotypes with a switched life history strategy

(from overwintering to rapid cycling) can set seeds rapidly before winter and germinate again

in spring, which would enable them to reproduce multiple times per year, a clear fitness ad-

vantage in many conditions. Indeed, the thermal sensitivity loci identified may provide the

plasticity in flowering time to help A. thaliana continue to adapt to a wider range of locations

and future growing seasons. Further experiments such as the one presented here, on standing

genetic variation in crop plants and foundation species can reveal the source populations and

alleles that should be utilized and conserved to keep pace with future climate change.

Early warnings about the limits of genetic adaptation under rapid climate change (Davis

and Shaw, 2001), stated that the limited connectivity and large range shifts required leave

populations and species vulnerable to extinction. Specialists are particularly at risk, while

generalists showing a higher degree of environmental plasticity may fair better (Ander-

son et al., 2012). Variation in climate sensitivity also exists within species and between

populations (Angert et al., 2011) complicating migration under climate change. An un-

derstanding of the genetic basis of climate sensitivity can aid breeder and land managers

in finding a match between genotype and environment. Here we identify quantitative trait

loci differing in seasonal thermal sensitivity. This allows predictions about the resilience of a

given genotype or population to under a particular environmental shift and can guide collec-

tion and restoration efforts in foundation species through managed relocation (Schwartz

et al., 2012). Our study suggests a pathway to facilitate adaptation into new and variable

climates.
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Table 1 Identified QTL and their estimated effects

Candidatea QTL Chr Positionb Freqc Effect Std Error %Var
Intercept 55.8 38.1
Environment 5.1 0.8 ∗∗∗ 0.15%

SFT1 FFT1 1 3978064 19% -25.0 4.9 ∗∗∗ 12.03%
FFT2 2 8272902 17% 21.9 4.3 ∗∗∗

SFT4.2 FFT4.2 4 383752 31% 19.4 3.8 ∗∗∗

LRB3 FFT4.2b 4 493905 44% -18.0 3.5 ∗∗∗

SFT4.3 FFT4.3 4 1330749 24% 24.0 4.6 ∗∗∗

CRP 4 219919 15% 9.4 5.4 . 1.40%
FRller 4 268809 91% 8.9 5.9
FRlcol 4 269962 6% -7.3 6.1
FLC(-) 5 3188327 22% -17.7 4.6 ∗∗∗

GA2ox7 THERM1 1 18897058 17% 16.8 4.5 ∗∗∗ 0.15%
ROF1 THERM3 3 9185447 25% 8.5 4.3 ∗

ARCK1 THERM4.1 4 7148335 6% -14.3 7.8 .

THERM4.2 4 7626840 48% 8.0 3.6 ∗

PLC1 THERM5 5 23690898 51% -6.4 3.7 .

GA2ox7 THERM1.e 1 18897058 17% -1.5 0.3 ∗∗∗ 7.04%
ROF1 THERM3.e 3 9185447 25% -1.2 0.2 ∗∗∗

ARCK1 THERM4.1.e 4 7148335 6% -2.3 0.4 ∗∗∗

THERM4.2.e 4 7626840 48% 0.9 0.2 ∗∗∗

PLC1 THERM5.e 5 23690898 51% -0.9 0.2 ∗∗∗

Polygenic all all >5% 76.59%

aCandidate gene or QTL identified by Li et al. (2010).
bPhysical position (in bp) according to TAIR9.
cReference Col-0 allele frequency.
Signif. codes: ‘∗∗∗ 0.001’, ‘∗∗ 0.01’, ‘∗ 0.05’, ‘. 0.1’. Based on t test.
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Figure 1 Natural variation in flowering time sensitivity to future warming among A. thaliana
accessions in (A) September and (B) October germination cohorts. Each dot represents the
flowering time of one accession in two environments. The accessions labeled as a, b, c, and
d in (B) are Lu-1, Ts-5, N7, and Col-0, respectively. DTF: days to flower after germination.
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Figure 2 Genome-wide association of flowering time (days to flower) for main FT QTL (A)
and THERM QTL (B) across four environments (2010, 2025, 2040, and 2055). The dashed
horizontal line represents the 5% empirical genome-wide significance threshold.
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Figure 3 (A) and (B) illustrate the effects of major fall flowering time QTL across simulated
climates, while (C) and (D) show the differential effects of THERM QTL.
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Figure 4 THERM5 shows common GxE effect. (A) Scatterplot of FT for accessions in 2010
vs 2040 color coded by genotype at THERM5 QTL. (B) and (C) Life history stages of the
different genotypes across each of the four simulated climates.
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Figure 5 Flowering time in 2055 was predicted from data in the first three environments 2010,
2025, and 2040 (A), or flowering time of a random subset of 10% accessions was predicted
from data of the remaining 90% accessions (B). Finally we show the flowering times that
would be obtained for the QTL alone without polygenic term vs the actual flowering times
(C).
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