A Bibliography of the Pink Bollworm, *Pectinophora gossypiella* (Saunders)
A Bibliography of the Pink Bollworm, *Pectinophora gossypiella* (Saunders)

Steven E. Naranjo, George D. Butler, Jr., and Thomas J. Henneberry

The authors are with the USDA–ARS Western Cotton Research Laboratory, Phoenix, Arizona, where Naranjo is a research entomologist, Butler is a collaborator, and Henneberry is a research entomologist and the laboratory director.
Abstract


The pink bollworm, Pectinophora gossypiella (Saunders), was described by W.W. Saunders in 1843 as Depressaria gossypiella from specimens found to be damaging cotton in India. Infestations in the United States first occurred in Texas cotton in 1917. At present, the pink bollworm has been recorded in nearly all cotton-growing countries of the world and is a key pest in many of these areas. Existing tactics for achieving a high degree of suppression of established pink bollworm populations are well advanced and feasible on a field-by-field basis. A combination of tactics may achieve even higher levels of pest suppression if implemented on an areawide basis. The longstanding nature of the pink bollworm problem in many areas of the world and the likely development of areawide management programs in the future prompted us to develop this bibliography as an information base to assist those in program planning, implementation, and evaluation. The bibliography should also be a useful aid to researchers, educators, extension personnel, agricultural producers, industry, and government administrators involved in managing this serious pest.

While supplies last, single copies of this publication may be obtained at no cost from Steven E. Naranjo, USDA–ARS–PWA, 4135 East Broadway Rd., Phoenix, AZ 85040–8803.

Copies of this publication may be purchased from the National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161; telephone (703) 605–6000.

Electronic copies of this bibliography and annual addenda may be downloaded free of charge from the World Wide Web at http://www.wcrl.ars.usda.gov/biblios/pbw/pbwbiblios.html.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, sex, religion, age, disability, political beliefs, sexual orientation, or marital or family status. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at (202) 720–2600 (voice and TDD).


Issued August 2002
Introduction

The pink bollworm, *Pectinophora gossypiella* (Saunders), was described by W.W. Saunders in 1843 as *Depressaria gossypiella* from specimens found to be damaging cotton in India in 1842 (Ingram 1994). The insect has been taxonomically designated under several other generic names, and the complete synonymy was reported by Common (1958). The origin of pink bollworm remains unknown but the diversity of parasite species found in Pakistan (Cheema et al. 1980) appears to support an Indo-Pakistan origin (Ingram 1994). It has also been suggested that its origin occurred in the area of the eastern Indian Ocean bordered on the east by northwestern Australia and on the west by the various islands of Indonesia-Malaysia (Common 1958). However, Wilson (1972) suggested that the pink bollworm may have been introduced into Australia in cotton seed. Pearson (1958) documents spread of the pink bollworm Sri Lanka, Burma, and Malaysia (Lefroy 1906) and China before 1918 (Hunter 1918).

The pink bollworm was first recorded in Australia in 1911 (Wilson 1972). The first records from the African continent were in Tanzania (Vosseler 1904), Egypt about 1906–1907 (Willcocks 1916), and Sudan in 1914–1915 (Ripper and George 1965). The insect did not reach Malawi until 1939 (Smee 1940), and it appeared in Zimbabwe as late as 1959 (Whellan 1960).

It was introduced into the Western Hemisphere between 1911 and 1913 in cottonseed shipped from Egypt to Brazil, Mexico, the West Indies, and the Philippine Islands (U.S. Department of Agriculture 1977). Spread in the New World started in Hawaii, where it was imported from India in cotton seed (Fullaway 1909). From Hawaii it spread to St. Croix in 1911 (Hunter 1918).

Infestations in the United States first occurred in Texas cotton in 1917. The source was traced to cottonseed shipped from Mexico to Texas oil mills in 1916 (Spears 1968, U.S. Department of Agriculture 1977). Cotton-free zones and extensive cleanup measures eliminated the Texas infestation, as well as an infestation found in Louisiana in 1919.

Pink bollworm was eradicated from cultivated cotton in parts of Florida and Georgia in 1932, but it still exists in wild cotton and backyard cotton in southern Florida. Reinvasions in Texas in 1936 occurred in the lower Rio Grande Valley, probably from windborne moths from Mexico, and eventually spread by the mid-1950s to other areas in Texas, New Mexico, Oklahoma, Arizona, Arkansas, and Louisiana. Infestations in eastern Arizona were reported in 1926 and at intervals thereafter in other parts of the state. These infestations were suppressed through cooperative Federal, State, and industry programs. Termination of these efforts in 1963 resulted in spread to the Imperial and Palo Verde Valleys of California in 1965. Severe losses had occurred by 1967 in southern California cotton production areas. Moths were detected in the high desert areas of Los Angeles and San Bernardino Counties in early 1967, and moths and larvae were found in cotton in the San Joaquin Valley near Bakersfield later that year. Native moths have been trapped in the San Joaquin Valley each year since, except for 1968, and a few larvae have also been found some years.

As of this writing, the San Joaquin Valley remains the only cotton-growing area in Arizona and California that does not have a firmly established pink bollworm population. This fact is partially explained by extensive cultural control, pheromone monitoring, and a sterile-moth release system initiated in 1968 (see Henneberry 1994 for a review of this system). Other factors, such as differences in environmental conditions, suggest that even if pink bollworms were established there, generations would be fewer and population levels would be lower compared with the lower desert cotton-growing areas of the far west. The effect of the region’s climate on the pink bollworm is an unknown in this circumstance.

The pink bollworm is now recorded in nearly all the cotton-growing countries of the world (CAB Institute of Entomology 1990), and is a key pest in many of these areas. The only major cotton-growing countries where pink bollworm is still absent appear to be Russia, Central America (Belize, Costa Rica, Guatemala, Honduras, Nicaragua, and Salvador), parts of South America (Ecuador, Guyana, and Surinam), and Queensland, Australia (Ingram 1994).

Existing tactics for achieving a high degree of suppression of established native pink bollworm
populations on a field-by-field basis are well advanced (Henneberry and Naranjo 1998) and feasible. A combination of tactics may achieve even higher levels of pest suppression if implemented on an areawide basis. The components of such an areawide management program must be carefully selected to ensure compatibility. Because of the broad geographical areas involved in cotton production, many different environmental, agricultural, and social communities are involved. Population densities of pink bollworm vary considerably between areas, moth dispersal over hundreds of miles has been demonstrated, and cotton production practices and cotton cultivars grown vary considerably. These factors combined suggest that a single type of standard pink bollworm management program would not be applicable to all growing areas. All management tactics would not be needed in every production area; rather, programs tailor-made for specific cotton production areas may be the most viable option. Identification of tactics that are compatible and feasible will require expertise from many areas of the agricultural community. Crop scientists and entomologists working with cooperative extension, growers, pest control advisers, state departments of agriculture, the agricultural chemical industry, and cotton commodity support groups must combine their efforts in all stages of planning, implementation, and assessment.

Development of areawide pink bollworm management programs in the near future is a highly desirable option. The high probability of this occurring prompted us to develop this bibliography as an information base to assist those in the planning, implementation, and evaluation stages. The bibliography should also be a useful aid to researchers, educators, extension personnel, agricultural producers, industry, and government administrators involved in managing this serious pest.

This bibliography attempts to compile the world literature of *P. gossypiella* since the original description by Saunders in 1843. The bibliography was derived from a number of sources, including the personal reprint collections and databases of the authors, the unpublished manuscripts of Harned (1952) and Gordh (1988), and the published reviews of Noble (1965), Ingram (1994), and Henneberry and Naranjo (1998). The Current Awareness Literature Service of the National Agricultural Library (NAL) was also helpful in conducting searches of various abstracting databases, such as AGRICOLA (NAL), AGRIS (United Nations, Food & Agriculture Organization), Biological Abstracts (BIOSIS), Commonwealth Agricultural Bureaux Abstracts (CABI), Zoological Records (BIOSIS), Current Contents (Institute for Scientific Information), and Dissertation Abstracts International (University Microfilms International).

The bibliography includes scientific journal articles, scientific books, proceedings of symposia, conferences and workshops, local, regional and national reports and technical bulletins, and popular, special interest and trade press. Coverage of some of these latter categories may not be as complete as for journal articles and books because of variability in coverage of the abstracting services and variation in our knowledge of and access to titles from proceedings, reports, technical bulletins, and popular press sources from throughout the world. We have spelled out journal and other source names in full whenever possible; however, to conserve space we have used initials for first and middle names of authors even when full names may appear in the actual article.

Final literature searches for this bibliography were completed on May 20, 2002. Electronic copies of this bibliography and annual addenda may be downloaded free of charge from the World Wide Web at http://www.wcrl.ars.usda.gov/biblios/pbw/pbwbiblios.html.


———. 1960. The effect of pink bollworm infestation on cotton produced under high moisture conditions. Texas Agricultural Experiment Station Progress Report 2156.


———. 1964. Relative susceptibility of various geographical races of the pink bollworm to certain insecticides. Texas Agricultural Experiment Station Progress Report 2300.


Adkisson, P.L., and J.C. Gaines. 1960. Pink bollworm control as related to the total cotton insect control program of central Texas. Texas Agricultural Experiment Station Miscellaneous Publication 444.


Ambriz, P.J., and J.A. Sifuentes. 1969. Ensayo sobre combate quimico del gusano rosado del algodonero (Pectinophora gossypiella (Saund.)) con aplicaciones de insecticidas a ultra bajo volumen, con maquinaria terrestre [Chemical control of the pink bollworm Pectinophora gossypiella (Saund.) of cotton with ultra low volume insecticide applications by land machinery]. Agricultura Tecnica en Mexico 2:450–453.


Barral, J.M. 1961. Ecologia de la largarta rosale (Platyedra gossypiella (Saund.)) en la Region Centro-Chaqueña. [Ecology of the pink bollworm (Platyedra gossypiella (Saund.)) in the Central Chaco Region]. Presidencia Roque Saenz Peña Estacion Experimental Agro Pecuaria Boletin 14.
1961. Lucha contra la largarta rosada (*Platyedra gossypiella* (Saund.)) en la región Centro-Chaqueña. [Control of the pink bollworm (*Platyedra gossypiella* (Saund.)) in the Central Chaco Region]. Presidencia Roque Saenz Peña Estacion Experimental Agro Pecuaria Boletín 16.


Bartlett, K.A. 1937. Introduction and colonization in Puerto Rico of beneficial insect parasites on the pink bollworm in cotton. Puerto Rico Agricultural Experiment Station, Agricultural Notes 77.


Bleicher, E., F.M.M. de Jesus, and J.C. Toscano. 1983. Insecticides and spraying frequency to control the pink bollworm (*Pectinophora gossypiella* (Saund.)) (Lepidoptera: Gelechiidae) on cotton [in Portuguese; summary in English]. Campina Grande (Brazil).


Bot, H.E. 1929. As manicobs e diversas favouras no norte de Bahia. Correio Agricultura 6:133–137.


———. 1936. Note sur l’hibernation du ver rose au Congo Belge. [Note on hibernation of pink bollworm in


Busoli, A.C. 1993. Atratividade de feromonios e tipos de armadilhas para a captura de Pectinophora gossypiella (Saund.) (Lep.: Gelechiidae) em algodoeiro. [Efficiency of pheromones and trap types in the capture of Pectinophora gossypiella (Saund.) (Lepidoptera: Gelechiidae) in cotton; summary in English]. Anais Sociedad Entomological do Brasil 22:421–425.

———. 1993. Compatibilidade de uso simultaneo de feromonios em armadilhas para a captura de Pectinophora gossypiella (Saund.) e Heliothis virens (Fabr.) em algodoeiro. [Simultaneous use of pheromones in stick trap to capture Pectinophora gossypiella (Saund.) and Heliothis virens (Fabr.) in cotton; summary in English]. Anais Sociedad Entomological do Brasil 22:613–615.


C


California Department of Food and Agriculture. 1980. Pink bollworm program in the San Joaquin Valley of California: A position paper. California Department of Food and Agriculture.


Carle, G., and J. Gatetfossé. 1936. Parasite of the pink bollworm takes the offensive against it in Morocco [in French]. Association Cotonniere Coloniale 23:78–79.


Cotty, P.J. 1989. Effects of cultivar and boll age on aflatoxin in cottonseed after inoculation with Aspergillus


Department of Agriculture and Fisheries, Cotton Experiment Station, Klongton, Swankalore, Siam Annual report (1936–37). 1938. Bangkok, Department of Agriculture and Fisheries 1.


Duran, J.M., M. Alvarado, E. Ortiz, A. de la Rosa, A. Sanchez, and A. Serrano. 2000. Curvas de vuelo de *Pectinophora gossypiella* (Saunders, 1843) (Lepidoptera, Gelechiidae), gusano rosado del algodonero, en Andalucía occidental. [Flight curves of *Pectinophora gossypiella* (Saunders, 1843) (Lepidoptera, Gelechiidae), cotton pink bollworm, in Western Andalusia.]. Boletín De Sanidad Vegetal Plagas (Espana) 26:229-238. [in Spanish; summary in English]


Eguti, M. 1936. The lethal point of Gelechia gossypiella (Saund.) at high temperatures [in Korean]. Annals of the Agricultural Experiment Station Korea 8:157–161.


El-Abdallah, F., F.A. Khalil, and A. Shoeib. 1984. Influence of sowing date on rate of infestation by cotton leafworm, Spodoptera littoralis (Boisd), and pink bollworm, Pectinophora gossypiella (Saund) and cotton yield. Journal of Agricultural Research (Tanta University) 10:1063–1071.


———. 1993. Large scale use of pink bollworm [Pectinophora gossypiella] sex pheromone formulations integrated with conventional insecticides for the control


El-Guindy, M.A., M.M. Abdel-Sattar, and M.E. Keddis. 1983. The effects of three synergists on the toxicities of certain insecticides to a tolerant field strain of *Pectino-

phora gossypiella* (Saund.). International Pest Control 25:150–152.


———. 1937. The pink bollworm of cotton in Puerto Rico during 1936 and recommendations for its control. Puerto Rico Agricultural Experiment Station, Agricultural Notes 81.


———. 1939. Insects and a mite found on cotton in Puerto Rico, with notes on their economic importance and natural enemies. Puerto Rico Agricultural Experiment Station, Bulletin 39.


Giannotti, O., S. Ferreira, and J. Olivati. 1981. Observacoes sobre a fluctuacao das populacoes da lagarta rosada (Platyedra gossypiella (Saunders)) por meio do atraente sexual hexalure, em quatro regioes do estado de Sao Paulo: Efeito de alguns tratamentos insecticidas. [Studies on the fluctuation of the pink bollworm (Platyedra gossypiella (Saunders)) population by the use of hexalure, in the state of Sao Paulo, Brazil: The effects of some chemical treatments]. Biologico (Sao Paulo) 47:187–199.


Giret, M., and R. Couilloud. 1986. Substitution of agar-agar by a carragenate based gel to make nutrient mediums for the rearing of Lepidoptera larvae [in French; summary in English]. Coton et Fibres Tropicales 41:131–133.


———. 2000. Evaluacion de variedades transgenicas de algodonero (Gossypium hirsutum L.) resistentes a gusano rosado (Pectinophora gossypiella S.), 1: Rendimiento. [Evaluation of transgenic cotton varieties (Gossypium hirsutum L.) resistant to pinkworm (Pectinophora gossypiella S.)]. In Informacion Tecnica Economica Agraria, Produccion Vegetal (Espana) 96:157-164, [in Spanish; summary in English]


Henneberry, T.J., and M.P. Leal. 1979. Pink bollworm: Effects of temperature, photoperiod and light intensity,
moth age, and mating frequency on oviposition and egg viability. Journal of Economic Entomology 72:489–492.


Hinds, W.E. 1926. Informe sobre la produccion de algodon en el Valle de Canete. |Cotton production and


Hunter, R.C., and H. Benitez. 1964. La efectividad de algunos insecticidas en el control de los gusanos belloteros. [Effectivity of some insecticides on the control of cotton pests Sacadodes pyralis, Heliothis sp, Pectinophora gossypiella, Laphygma frugiperda and Prodenia sp.]. Técnico Instituto Fomento Algodonero [Columbia], Boletin 1.


———. 1918. The pink bollworm with special reference to the steps taken by the Department of Agriculture to prevent its establishment in the United States. U.S. Department of Agriculture, Bulletin No. 723.


———. 1926. The pink bollworm with special reference to the steps taken by the Department of Agriculture to prevent its establishment in the United States. U.S. Department of Agriculture, Bulletin No. 1397.


———. 1931. Annual report to the entomologist for the year ending 30th June 1930. Lahore: Punjab Department of Agriculture.


Husain, M.A., and M.H. Khan. 1940. Studies on Platyedra gossypiella (Saund.) in the Punjab. Part IV Relative


Ignoffo, C.M. 1962. The susceptibility of *Pectinophora gossypiella* (Saunders) to intrahemocoelic injections of *Bacillus thuringiensis* Berlinger. Journal of Insect Pathology 4:34–40.


Ignoffo, C.M., and H.M. Graham. 1967. Laboratory and field cage tests with *Bacillus thuringiensis* against pink bollworm larvae. Journal of Invertebrate Pathology 9:390–394.


Jimenez-Aragon, J.G., J.L. Carrillo-Sanchez, J. Vera-Graziano, and T. Saito. 1981. Infestacion y dano del gusano rosado Pectinophora gossypiella (Saunders) en relacion con el desarrollo vegetativo del algodonero en la Comarca Lagunera. [Infestation and injury by the pink


Johnson, A.C. 1931. Compression tests made with standard and high density cotton bales for studies in destroying the pink bollworm in infested seed by pressure. U.S. Department of Agriculture, Plant Quarantine Control Administration, Report No. 2.


——. 1955. New methods developed to control pests. Cotton Trade Journal 35 (Mechanical suppl.).


K


and Nuvacron on cotton plants, in relation to variations in
temperature and humidity. Bulletin of the Entomological

of various insecticidal schedules against cotton boll-

Karim, S., and F.A. Ali. 1995. Effect of chlorpyrifos on the
total body protein content of the 4th instar larvae of
Pectinophora gossypiella (Saunder). Science Interna-
tional (Lahore) 7:513–516.

———. 1997. Comparative carbohydrate profile studies
of Lorsban exposed cotton pink bollworm larvae. Science
International (Lahore) 9:327–328.

Karim, S., and D.H. Dean. 2000. Pesticidal and receptor
binding properties of Bacillus thuringiensis Cry1Ab and
Cry1Ac delta-endotoxins mutants in Pectinophora
gossypiella and Helicoverpa zea. Current Microbiology
41:430–440.

Karsholt, O. 1994. Some moths introduced into Denmark,
with remarks on this subject (Lepidoptera) [in Danish;
summary in English]. Entomologiske Meddelelser 62:1–6.

Trapping of the cotton pink boll worm Pectinophora
gossypiella with synthetic sex pheromone, gossyplure. In
Karnavar, eds., Proceedings, 3rd Oriental Entomology
Symposium 1984, pp. 55–63. Kariavattom, India:
University of Kerala.

———. 1990. Field evaluation of gossyplure the
synthetic sex pheromone of Pectinophora gossypiella in
Tamil Nadu India. Indian Journal of Entomology 52:170–
179.

ovasinda pamuklarda zararli Pectinophora gossypiella
(Saunders) (Lepidoptera: Gelechiidae) ’nin populasyon
degisimi ve zarar oraninin saptanmasi. [The determina-
tion of the population densities and injury ratio of
Pectinophora gossypiella (Saunders) (Lepidoptera: Gelechiidae) which is harmful on cotton in Soke (Aydin)

Efficacy of methomyl and its mixtures against the
Egyptian cotton leafworm and bollworms. Journal of

Kassem, S.M.I., and M.I. Zeid. 1987. Comparison of the
insecticidal efficiency of certain insecticides and their
mixtures with insect chitin inhibitors. Journal of Agricul-

Heterosis for biochemical contents in bollrinds of
Gossypium hirsutum hybrids. Journal of the Indian

for the control of major insect pests on Laxmi cotton in
Mysore State. Mysore Journal of Agricultural Science

vis-a-vis reproductive stages of cotton. Entomologist’s
Newsletter 7:8–9.

———. 1978. Impact of sequence of flowering on the
incidence of bollworms in some varieties of cotton.

———. 1982. Incidence of cotton bollworms vis-a-vis
ecological factors. Indian Journal of Entomology

———. 1982. Relationship between time of flowering
and bollworm infestation in cotton. Indian Journal of
Entomology 44:373–392.

insecticides for the control of some major pests of cotton.

Katiyar, K.N., and D.K. Butani. 1978. Incidence of
bollworms vis-a-vis development of cotton bolls. Indian

Katzenellenbogen, J.A. 1976. Insect pheromone synthe-
sis: New methodology. Multiple syntheses of two
attractants illustrate the evolution of new concepts and


Kaussari, M. 1946. Pectinophora gossypiella (Saund.) [in
Persian]. Iranian Department of General Plant Protection,
Laboratory of Applied Entomology and Phytopathology
2:9–12.

Kavut, N. 1972. An insecticidal trial against pink boll-
worm (Pectinophora gossypiella (Saund.)) on cotton in
the southern part of the Aegean region [in Turkish;
summary in English]. Plant Protection Research Annual
21:147.

Kavut, N. 1972. An insecticidal trial against pink boll-
worm (Pectinophora gossypiella (Saund.)) on cotton in
the southern part of the Aegean region [in Turkish;
summary in English]. Plant Protection Research Annual
21:147.

studies on the parasites and predators of cotton pests in


Leeward Islands Department of Agriculture 1947. An enemy in our midst. Leeward Islands Department of Agriculture, pamphlet 1.


McComb, C.W. 1967. A revision of the *Chelonus* subgenus *Microchelonus* in North America north of Mexico (Hymenoptera: Braconidae). University Maryland Agricultural Experiment Station Bulletin A–149.


———. 1958. La “lagarta rosada” del algodonero a las 35 años de su hallozgo en el país. [The cotton plant pest *Platyedra gossypiella*, 35 years after is discovery in the country (Argentina)]. Anales de la Sociedad Cientifico de Argentina 166(3/4):84–91.


Manrique Gomez, F., R.A.I. Galindo, and N.G. Gonzalez Hernandez. 1979. Fluctuation in the populations of some


Miller, E., E. Jones, and R. Staten. 1986. The use of moth scales to determine male pink bollworm (Lepidoptera: Gelechiidae) visitation to individual pheromone dispensers in a mating disruption system. The Southwestern Entomologist 11:42–44.


Miller, E., E. Jones, and R. Staten. 1986. The use of moth scales to determine male pink bollworm (Lepidoptera: Gelechiidae) visitation to individual pheromone dispensers in a mating disruption system. The Southwestern Entomologist 11:42–44.


Mississippi Agricultural Experiment Station (Delta Branch). 1951. The bollworm problem— how to discover and remedy the situation when found. Cotton Digest 23(46):12.


Morrill, A.W. 1918. Insect pests of interest to Arizona cotton growers. In Arizona Agricultural Experiment Station 87, pp. 173–205.


102


———. 1976. Gossypure—the synthetic pheromone of the pink bollworm frequency of its threshold and the
influence of the last on bollworm infestations and number of treatments [in Hebrew; summary in English]. Hassadeh 56:960–965.


Rao, B.R.S., and M. Hayat. 1986. The Chalcidoidea (Insecta: Hymenoptera) of India and the adjacent coun-


———. 1924. Safeguarding the entry of freight cars from Mexico to prevent the entry of the pink bollworm. Mississippi State Plant Board Quarantine Bulletin 3.


Seydel, C. 1929. The pink cotton bollworm (Gelechia gossypiella) in Belgian Congo. In Union South Africa Department of Agriculture, Pan-African Papers, Agricultural Section, pp. 257–258.


Sychev, A.M. 1976. So that the pink bollworm may not enter [in Russian], Zashchita Rastenii 2:48.


Taware, S.P., and V.P. Patil. 1994. Genetic analysis of pink bollworm resistance and other quantitative characters in


Thacker, G.W., L. Moore, P.C. Ellsworth, and J. Combs. 1994. Evaluation of trap crops as a component of a


Vanderzant, E.S., and R. Reiser. 1956. Asceptic rearing of
the pink bollworm on synthetic media. Journal of

———. 1956. Methods for the mass rearing of the pink
bollworm. Journal of Economic Entomology 49:559–
560.

———. 1956. Studies of the nutrition of the pink
bollworm using purified casein media. Journal of Eco-

Varma, G.C., and M. Shenhmar. 1988. Parasitoids of
Pectinophora gossypiella (Saunders) (Lep.: Gelechiidae)
and Earias spp. (Lep.: Noctuidae) in Punjab. Journal of
Research (Punjab Agricultural University) 25:592–594.

Varma, G.C., and L. Singh. 1983. Growth of the popula-
tion of Chelonus blackburni Cameron (Hymenoptera:
Braconidae). Journal of Research (Punjab Agricultural
University) 20:307–310.

Varma, G.C., Maninder [Surname only], and B. Singh.
1978. The growth of population of Trichogramma
brasiliensis Ashmead. Journal of Entomological Research
2:209–211.

Varma, G.C., O.S. Bindra, and S. Singh. 1976. A prelimi-
nary study on the control of the cotton bollworms with
Trichogramma brasiliensis Ashmead. Cotton Develop-
ment 6(2):17–18.

Vasilev, I.V. 1924. Pests of the cotton plant [in Russian].

from workshop groups—pest management. In C.R.
Vaughn, W. Wolf, and W. Klassen, eds., Radar, Insect
Wallops Island, Virginia: Wallops Flight Center, National
Aeronautics and Space Administration.

row coverage against bollworm damage and parasite

models for pink bollworm establishment in southeastern U.S. cotton. In P. Dugger and D.A. Richter, eds., Proceed-
ings, Beltwide Cotton Conferences, pp. 1226–1228.

———. 1999. Assessing the risk of establishment by
pink bollworm (Lepidoptera: Gelechiidae) in the south-
eastern United States. Environmental Entomology
28:445–455.

———. 1999. Risk assessment models to predict
dynamics of pink bollworm in the southeastern U.S. In P.
Dugger and D.A. Richter, eds., Proceedings, Beltwide
Cotton Conferences, pp. 983–985. Memphis, Tennessee:
National Cotton Council.

Venette, R.C. 2001. Climate analysis to predict range size
of introduced species. Phytopathology 91(6 Suppl.):S153-S154. [Abstract]

Establishment of pink bollworm in southeastern US
cotton: Laboratory experiments and model validation. In
P. Dugger and D.A. Richter, eds., Proceedings, Beltwide
Cotton Conferences, pp. 1247–1250. Memphis, Tennes-
see: National Cotton Council.

———. 2000. Implications of larval mortality at low
temperatures and high soil moistures for establishment of
pink bollworm (Lepidoptera: Gelechiidae) in southeast-
ern United States cotton. Environmental Entomology
29:1018–1026.

Preliminary trials in the propagation of Bracon (Micro-
bracon) greeni Ashmead on unnatural hosts. Proceed-
sings of the Indian Academy of Science, Section B 27:92–104.

toxicity of different insecticides to the last stage larvae of
pink bollworm, Pectinophora gossypiella (Saunders)
(Lepidoptera: Gelechiidae). Indian Journal of Entomology
35:74–76.

hydrogen-ion concentration and digestive enzymes in the
mature larva of Playtedra gossypiella (Saund.) (Lepi-
doptera: Gelechiidae). Indian Journal of Entomology
34:136–141.

Verme rosa del cotone (Playtedra gossypiella (Saund.)), Il
[The cotton red worm Playtedra gossypiella (Saunders)].
1958. Tecnica Agricultura (Italy) 10:793–800.

Vermalha, M.M. 1954. The pink bollworm [in Portuguese].

Vetter, R.S., and T.C. Baker. 1990. Sterile pink bollworm
moth (Lepidoptera: Gelechiidae) pheromone emission
and courtship success. Environmental Entomology

XXII. A new synthesis of propylure. Journal of the Indian

Genetic control. In E.G. King, J.R. Phillips, and R.J.
Coleman, eds., Cotton Insects and Mites: Characteriza-
tion and Management, pp. 539–562. Memphis, Tennes-
see: The Cotton Foundation Publisher.


Watson, W.M., M. Abbassy, and A.A. Zein. 1981. Control effects of some new pyrethroids against the cotton bollworms Pectinophora gossypiella (Saund) and Earias insulana (Boisd) (Lepidoptera: Noctuidae). Journal of Agricultural Research (Alexandria) 29:1511–1517.


———. 1959. Stalk shredder tests for pink bollworm control. Texas Agricultural Experiment Station Progress Report 2095.

———. 1961. Use of an air-carrier sprayer for cotton insect control. Texas Agricultural Experiment Station Progress Report 2205.


Wilson, C.E. 1923. Insect pests of cotton in St. Croix and means of combating them. Virgin Islands Agricultural Experiment Station Bulletin 3.


151


Wolcott, G.N., and F. Sein. 1931. La oruga rosada de la cápsula del algodón en Puerto Rico. Puerto Rico Insular Experiment Station Circular 95.


Z


Contributions of the Shanghai Institute of Entomology 7:35–43.


