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Validation of Arthropod Sampling Plans Using a Resampling

Approach: Software and Analysis

Steven E. Naranjo and William D. Hutchison

ABSTRACT Many sampling plans have been developed for a wide variety of arthropods of economic importance. However, relatively few
plans have been tested adequately to gauge their utility in the field. The software presented here should facilitate a validation approach in
which actnal field data sets are resampled nimerous times to arrive at average performance values and associated variances. The major
strength of this resampling approach is that analyses are based on actual sampling distributions of arthropod populations, not those
specified by a theoretical model. A limitation is that this approach does require additional planning and effort to collect an adequate number
of independent data sets. The software (Resampling for Validation of Sample Plans [RVSP]) can be used to test 2 fixed-precision sequential
sampling plans based on enumerative counts and 2 {1 sequential and 1 fixed) sampling plans based on binomial counts. The software is
user friendly and permits easy entry of sample plan parameters and data sets. We present details of the required input data and output
generated by RVSP. We further provide example analyses for 3 pest insect species to demonstrate the use of RVSP for evaluating several

different sampling plans.

ELIABLE AND COST-EFFECTIVE SAMPLING METHODS ARE CRITICAL TO THE

development of monitoring systems for pest management

and can enhance research activities that address issues in
population ecology and population dynamics. The specifics of de-
veloping sampling protocols for particular arthropods depend ona
number of considerations, including whether absolute or relative
population estimates are needed, the spatial scale over which the
protocols are intended to operate, and whether one wishes to esti-
mate or merely classify population density. Many excellent referenc-
es are available detailing the rationales and techniques for
developing sampling plans for insects and mites {e.g., Morris 1960,
Southwood 1978, Nyrop and Binns 1991, Shelton and Trumble
1991, Pedigo and Buntin 1994). Ideally, sampling plans should be
developed from robust data sets covering the geographic area of the
taxa and encompassing the range of environmental conditions like-
ly to be encountered for patticular species in specific environments.
In practice, sampling plans often are developed from a fairly restrict-
ed range of observations from a small area but then are used over a
wide area representing a novel array of environmental and agro-
nomic conditions. Given this practical limitation, it isimportant that
the sample plan be evaluated in terms of expected performance in
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the field so that the limits of its utility can be better defined. This
verification of utility, or validation, may be particularly crucial for
sampling plans developed for pest management application in
which a decision rule {e.g., economic threshold level) has been inte-
grated into the sampling protocol. An incorrect decision regarding
pest control may have important economic and environmental con-
sequences. Likewise, sample plans developed for estimation of pop-
ulation density that provide estimates of uncertain precision may
compromise the efficiency and productivity of field research efforts.

Several approaches have been proposed for analyzing and vali-
dating arthropods sampling plans. Here we present a resampling
technique that uses actual field counts to evaluate and test the per-
formance of commonly used sample plans. First, we briefly discuss
the different approaches that are available for testing sample plans.
We then discuss our resampling approach and provide a detailed
description of computer software that we have developed for per-
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Fig. 2. Parameter input windows for the 4 sample plans that can be
tested with RVSP. Each highlighted itern can be entered by the user.
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forming these analyses. Finally, we demonstrate the resampling ap-
proach by evaluating sample plans developed for three pest insect
species and discuss its general utility.

Analysis and Validation of Sampling Plans

Recently, a fairly extensive set of Monte Carlo-based tools have
been developed for constructing and analyzing arthropod sampling
plans. For example, Trumble et al. (1989) presented an approach
for testing fixed-precision sampling plans based on Green’s (1370)
method, which uses the Taylor (1961) power law to predict sample
variance from the sample mean. They used a computer to randomly
select sample units from a negative binomial distribution until sam-
pling was terminated by the specified sequential stop lines. They fur-
ther incorporated variability in the power law relationship by
assuming a normal error distribution about the regression line. Af-
ter many iterations (500), the average precision, as well as the vari-
ability in precision, could be estimated as a function of mean density.
A similar approach was used by Nyrop and Binns (1991), Binns
(1994, and Nyrop and van der Werf (1994) to evaluate the perfor-
mance characteristics of Iwao's (1975) and Wald’s (1947) sequential
sampling plans and fixed-sample-size plans for classifying popula-
tion density relative to a critical density. Their goals were to examine
the accuracy of decision-making and estimate the associated sample
size required to reach a decision. These tools have been used relative-
ly widely by entomologists (see Nyrop and Binns 1991, Binns
1594}.

Monte Carlo tools are valuable because they can be used to eval-
uate and fine-tune various sampling plans during their construction
phase. They also are easy to use (FORTRAN programs are avail-
able, see Nyrop and Binns [1991]) and provide smooth analytical
output. However, they are of limited value in validating the perfor-
mance of sampling plans under field conditions. First, they assume a
specific underlying statistical distribution (e.g., negative binomial,
poisson) that may not mimic the actual sampling distributions of

(A) (B)
Field Data Set File: Input Data File:
Columns 1-13 Columns 14-26

3 SPWI1.DAT SPwW1.0UT
0 SPW2DAT SPW2.0UT
5 SPW3.DAT SPW3.0UT
3 SPWA.DAT SpPwW4.0UT
4 SPW5.DAT SPW5.0UT
2 SPW6.DAT SPWe.0UT
2 SPW7.DAT SPW7.0UT
0 SPWR.DAT SPWS.0UT
3 SPW9.DAT SPWI.0UT

10 \ SPWIO.DAT SPW10.0UT
2 SPWG3.DAT SPWe63.0UT
5 SPWO4A.DAT SPW64.0UT
6 SPWES.DAT SPW65.0UT

19 SPW66.DAT SPW66.0UT
1 SPWG67.DAT SPW67.0UT
0 SPWGS.DAT SPW68.0UT
8 SPWGI.DAT SPW69.0UT
7 SPW70.DAT SPW70.0UT

24 SPWT71.DAT SPW71.0UT
1 SPWT72.DAT SPW72.0UT
2 SPW73.DAT SPW73.0UT

Fig. 3. Example of (A) field data file and {B) input data fils necessary to
run analyses with RVSP. SPW, swestpotato whitefly.
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individuals in all instances. Further, it is assumed implicitly that the
underlying sampling relationships (e.g., Taylor power law, Iwao’s
patchiness regression, empirical mean density-proportion infested
regression) describe adequately the sampling distribution of popu-
lations in novel situations.

An alternative approach, which circumvents these limitations, is
to resample field data, independent of that used in plan construc-
tion, to evaluate sample plan performance. This approach was first
proposed by Hutchison et al. (1988a) to validate the behavior of 2
fixed-precision sequential sampling plans for estimating population
density of the pea aphid, Acyrthosiphon pisum (Harris), in alfalfa.
The approach is appealing intuitively because it makes no a priori
assumptions about the sampling distribution of individuals in the
field, and resampling directly mimics the process of data collection in
the field with the advantage that the results of many different sam-
pling outcomes from that field can be generated and quantified.
Recently, this approach was used to validate fixed-precision sequen-
tia] sampling plans for sweetpotato whitefly, Bemisia tabaci (Genna-
dius), in cotton (Naranjo and Flint 1995) and Frankliniella spp. in
staked tomatoes {Cho et al. 1995).

Resampling for Sample Plan Analysis and Validation

Resampling techniques, including randomization, Monte Carlo,
the jackknife, and the bootstrap have found wide use in the analysis
of biological and ecological data (e.g., Fisher 1936, Efron and Tib-
shirani 1991, Manly 1991, Crowley 1992}, and it is anticipated that
their use will continue to expand, particularly with the growing

RESAMPLING VALIDATION OF GREEN'S SEQUENTIAL PLAN
DATA SETS RESAMPLED WITHOUT REPLACEMENT

SEQUENTIAL PLAN PARAMETERS

Taylor's a: 2.079 Dresired Precision: 025
Taylor'sb: 1675 Minimum Sample Size: 10
Observed Stats Average Stals Over 500 Simulations
datafile Mean 8D N {Mean D Dmax Dmin D-SD N Nmx
SPW2DAT 003 021 431 003 068 100 039 0131 113 204
SPW3IDAT 003 017 4817 003 061 100 044 0103 113 183
SPW4DAT 0.05 023 480 006 048 074 031 0074 90 159
SPWSDAT  0.09 033 481 | 009 044 079 029 0065 76 116
SPWGE.DAT 027 057 481 ] 027 030 049 019 0042 52 !
SPW7DAT 121 130 481{ 124 019 028 012 0026 32 39
SPWSDAT 035 062 80 035 026 033 019 0020 48 59
SPWO.DAT 105 117 80| 105 0I% 026 014 0020 33 38
SPWIO.DAT 1.09 138 320| 112 021 032 013 0033 33 41
SPWIL.DAT 266 194 80| 268 015 019 009 0019 25 28
SPWI2DAT 23¢ 214 80| 233 018 026 011 0028 26 30
SPWI3.DAT 932 9.2 320 941 021 0490 010 0071 17 21
SPWI4DAT 050 075 80| 051 023 031 015 0025 42 49
SPWIS.DAT 111 119 80| 113 019 027 012 0022 33 37
SPWI6DAT 1210 9.01 801208 019 028 010 0032 15 18
SPW64.DAT 60.4] 3841 7516042 019 032 008 0039 10 11
SPW65.DAT 2725 23.54  75]2807 024 035 011 0047 12 15
SPWG6.DAT 82.75 58.83 758319 022 034 €09 0043 10 10
SPW67.DAT 5970 50,15  75(60.19 026 042 0CI11 0052 10 12
SPW6R.DAT 6339 4891 756338 023 038 @11 0048 10 11
SPWGO.DAT 36.67 25.74 7513659 021 040 G111 0044 11 13
SPW70.DAT 863 778 75| 85% 021 035 010 0054 17 21
SPW71.DAT 324 284 75| 323 020 029 013 0028 19 21
SPW72.DAT 3.23 420 75| 328 025 042 015 0057 23 2%
SPW73.DAT 227 230 75' 223 020 028 013 0022 26 31

Fig. 4. Example of a portion of a summary output file for Green's sequen-
tial sampling plan showing sample plan paramsters and observed and
resampled statistics for each fisld data file.
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availability of inexpensive computing resources (Noreen 1989). In
Monte Carlo, repeated samples are drawn from z theoretical distri-
bution or some defined stochastic process such as a simulation
model. In contrast, the jackknife and bootstrap methods are based
on resampling from sets of real observations. The jackknife consists
of drawing a finite number of repeated samples, each one consisting
of all but =1 observation(s) omitted in turn. The bootstrap consists
of drawing repeated samples, all with a sample size equal to the orig-
inal number of observations. All these techniques conceptually are
easy to comprehend and often can provide high levels of statistical
power, particularly in instances where the assumptions of paramet-
ric methods cannot be met (Efron and Tibshirani 1986, Crowley
1992). , ;

The resampling approach we describe here is a hybrid between
the bootstrap and Monte Carlo techniques. It deviates from the
bootstrap because the sample size drawn from a data set during any
resampling bout is not equal necessarily to the total number of ob-
servations in that data set. More significantly, our resampling ap-
proach differs from Monte Carlo because the underlying sampling
distribution of the arthropod population is defined by actual field
data rather than a theoretical model. Thus, it is possible to test sam-
ple plans on a more realistic and unbiased basis, By using indepen-
dent field data, it is possible to test simultancously the accuracy of
the basic statistical model underlying the sampling plan {e.g., Taylor
power law, Iwao’s patchiness regression, various proportion infest-
ed-mean density models) and the sampling error associated with the
selection (sequential or otherwise) of sample units from the field.

The major limitation of this resampling approach is that addi-
tional field data, independent of that used to develop the sampling

RESAMPLING VALIDATION OF WALD'S SEQUENTIAL BINOMIAL PLAN
DATA SETS RESAMPLED WITHOUT REPLACEMENT

SEQUENTIAL PLAN PARAMETERS

Action Threshold (Prop Inf}: 0.570
Lower Bound : 0.470 Slope 0,572
Upper Bound : C.670 Upper Intercept ; 2,653
Alpha Error (1) 0,100 Lower Intercept : -2.653
Beta Errer (II) 0,100

Tally Threshold : 3 Min Sample Size: 10

Observed Stals Average Stats Over 500 Simulations

datafile Pl Mean N Pl PImx PImn PI-SD N Nmx Nmn N-SD OC

SPW2.DAT  0.002 0.03 481 | 0.002 €100 G000 0013 10 1o 10 0.0 Loo0
SPW3IDAT  0.000 0.03 481| 0.000 €000 C.000 C.000 1C 1¢ 10 0.0 1.000
SPW4.DAT 0000 0.05 481 0.000 £.000 £.000 0.000 10 10 10 60 1.000
SPWS.DAT 0002 0.9 481 |0.003 0.100 0.000 0.Cle 10 15 10 G0 L00D
SPWG.DAT 0002 0.27 4810002 0.100 0.000 0.015 10 19 10 60 1,000
SPW7ZDAT 0120 121 4810131 0375 0000 0.102 10 15 10 0.5  1.000
SPWR.DAT 0000 035 80) 0000 0.000 0000 0000 10 10 10 0.0 1.000
SPW9.DAT 0.125 105 B80!0122 0375 0000 0093 10 16 10 04 1.000
SPWI0.DAT 0.112 109 320| 0112 @357 0000 0093 10 14 10 04  L000
SPWI1L.DAT 0512 2.66 80| 0465 0900 0100 0129 30 T o 177 0902
SPWI2.DAT 0.350 230 800308 0722 0000 0101 13 38 19 51 0.998
SPW1I3.DAT 0503 9.32 320 0508 1.000 0.714 0.07% 11 21 10 1.6 0000
SPWI4.DAT 0025 €50 B0( 0.023 0.200 0.000 0.045 10 10 10 0.0 1000
SPWIS.DAT 0.025 L1l 80| 0125 0375 0000 0.091 10 16 19 05 1.000
SPWI16.DAT Q912 1210 80| 0816 L1000 0.722 0073 10 18 10 1.2 0060

SPW64.DAT  1.00G 60.41 75| LODO 1000 1.600 0.000 10 10 10 G0 0.000
SPW6S.DAT  1.00¢ 2725 75| 1.000 1000 1.000 0.000 10 1 10 G0 0.000
SPW6E.DAT 1000 8275 73] 1000 1.000 1.000 0.000 10 19 10 8.0 0.000
SPW&.DAT  LOOS 5979 75] 1.000 1.000 1.000 0.000 10 10 10 6.0 0.000
SPW6R.DAT 1000 63.39 75] 1.000 1.000 1,000 0.000 10 10 10 0.0 0.000
SPW69.DAT 1.006 36467 75| 1000 1.000 1.000 0.000 10 10 10 0.0 0000
SPW70.DAT 0.880 863 75 0.887 1000 0.680 0.085 1! 25 10 24 0,000
SPW71L.DAT 0480 324 75 0422 1000 0.100 Q.119 23 46 10 122 0936
SPW72DAT 0427 323 75 0375 0500 0000 0.129 19 73 10 121 0964
SPW73DAT 0387 227 75 0338 0818 0000 0114 16 65 10 95 05%

Fig. 5. Example of a portion of a summary output file for Wald's
sequential probability ratio test sampling plan showing sample plan
parameters and cbserved and resampled statistics for each field data
file.

&0

plan, must be collected. Ideally, these independent data need to cover
the range of population densities under which the sample plan likely
will be used. Often, this task can be accomplished by withholding a
certain amount of data during the developmental phase, We cur-
rently are evaluating the amount of data (both the number of data
sets and the number of sample units per data set) necessary to per-
form a robust analysis of sample plan performance. Also, because
real data are being used, the output generated by resampling rarely
resembles the smooth analytical output generated by resampling
from a theoretical distribution. This tends to complicate analyses
and may sometimes make it difficult to interpret general patterns,
This limitation can be overcome somewhat by fitting smooth func-
tions (see example analyses below). Finally, in addition to the effort
needed to collect the independent data, extra time and effort are
needed to conduct the actual analyses, To ameliorate this latter con-
straint, and to encourage and facilitate the wider use of resampling
as a tool for sample plan evaluation, we have developed easy-to-use
public-domain software. Below we describe the software and
present example analyses.

General Description. Resampling for Validation of Sample Plans
{RVSP) is a user friendly computer program designed specifically for
the analysis and validation of 4 sample plans that are commonly
used for estimating or classifying arthropod density. The current
version of RVSP can be used to evaluate 2 fixed-precision sampling
plans based on enumerative counts and 2 sample plans based on
binomial counts {Fig. 1). Presently, RVSP can be used only to test
sampling models with simple variance structures. However, the pro-

(&)

GREEN’S SAMPLING PLAN - STATISTICS FOR EACH PASS
Data Sets Resampled Without Replacement

PASS MEAN VAR STD SE D N
1 4.18 1177 343 0.73 0.17 22
2 4.24 22.59 4.75 1.04 0.24 21
3 4.67 31.53 5.62 1.23 0.26 21
4 5.1% 32.66 572 1.25 0.24 21
5 6.16 54.47 7.38 1.69 0.27 19
496 4,19 22.56 4.75 1.04 0.25 21
497 330 6.04 246 0.51 0.16 23
498 4.52 16.26 4.03 (.88 0.19 21
499 4,75 30.93 5.56 1.24 0.26 20
300 4.80 31.54 5.62 1.20 0.26 20
(B)

WALD'S SAMPLING PLAN - STATISTICS FOR EACH PASS
Data Sets Resampled Without Replacement

PASS MEAN VAR STD SE PROP ocC

1 4.57 19.67 4.43 0.68 0.595 0.000
2 5.41 32.38 5.69 1.38 0.647 0.000
3 5.60 22.27 4.72 1.49 1.000 0.000
4 10.10 61.88 7.87 2.49 0.900 0.000
5 6.08 22.08 4.70 1.30 0.692 0.000
496 8.82 70.76 841 2,54 0.727 0.000
497 7.30 63.12 7.94 251 0.800 0.000
498 3.36 11.05 332 1.00 0,364 1.000
499 10.50 53.17 7.29 231 1.000 0.000
500 4.31 18.72 4.33 0.80 0.483 1.000

Flg. 6. Example of a portion of optional iteration by iteration output
tables for (A) Green's plan and (B) Wald's sequential probability ratio
test that can be generated by RVSP for each field data sst,
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gram is modular and virtually any sample plan or models based on
more complex, nested variance structure could be included. Further-
more, RVSP does not keep track of the actual spatial arrangement of
sample units from the field; each sample unit has an equal probabil-
ity of being selected. This deviates from the systematic pattern of
sample unit collection common to many field sampling protocols.
RVSP assumes that the overall sample is representative, and this as-
sumption would only be violated if there were strong gradients in
population density within the field. The program is menu-based and
permits the easy entry of sample plan parameters and data files us-
ing the cursor keys (Fig.'2). RVSP also contains help screens to ad-
vise the user on program operation. RVSP is a DOS program that
will run on any PC; it also ¢an be executed in a DOS-shell from the
Windows environment.

Basically, RVSP uses a uniform random number generator to se-
lect sample units from an actual data set until either the sequential
rule is satisfied or a fixed sample size has been drawn, depending on
the sample plan tested. This process is repeated numerous times (de-
fault = 500) for each data set. Based on these iterations, RVSP then
calculates averages and variances for precision and sample size, as
well as operating characteristics for the binomial plans that classify
population densities as either above or below a critical level (e.g., an
action or economic threshold). Details on these calculations are giv-
en below, RVSP automatically provides a summary table and also
can provide a detailed iteration by iteration output table. Data from
both tables can be imported easily into spreadsheet and graphical
ptograms for further examination and analysis.

Sample Plans Covered-Enumerative. RVSP can be used to ana-
lyze Green’s (1970) and Kuno’s (1969) fixed-precision sequential
sampling plans based on enumerative counts. Green’s plan is based
on the Taylor {1961) power law, s2 = amb, which models the relation-
ship between the sample mean {m) and variance {s2). The sequential
sampling model stop line is given as:

T, > (an' -H/D2)v-# (1)

where T, is the cumulative count from » sample units, D s precision

0B T T 0.8

T T
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Flg. 7. Analyses of Green's sequential sampling plan using independent
field data for (A and B} sweetpotato whitefly eggs on cotton, {C and D)
swaetpotato whitefly nymphs on cotton, and (E and F) striped
cucumber beetle adults on squash. The dashed horizontal lines in A, C,
and E represent the desired level of precision (0.25). Symbols denots
mean values; dotted and solid lines denote extreme values for each
data set and are not intended to represent a continuous function.
Different symbols in A-D represent field samples from Maricopa, AZ, in
1993 (open boxes) and 1995 (closed circles).
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(ratio of standard error to mean), and 4 and b are parameters of the
Taylor power law. Kuno’s plan uses Iwao’s (1968) patchiness re-
gression, # = & + P, to model the mean—variance relationship,
where 1 is Lloyd’s {1967) mean crowding index and the variance is
given as s2 = (& + 1}m + (B — 1)m2. The sequential sampling model
stop line is given as:

T, 2 (o+ 1Y(D2=[B - 1]/n) (2}

where Tr and D are as described above and ¢ and p are parameters
of the patchiness regression.

Sample Plans Covered-Binomial. RVSP also can be used to ana-
lyze Wald’s (1947) sequential probability ratio test and fixed-sam-
ple-size plans based on binomial counts. The program does not
explicitly require the parameters of the relationship relating the pro-
portion of infested sample units to mean density. The only input
required by RVSP is the specification of the action or economic
threshold and upper and lower decision boundaries (sequential
model only) in terms of proportion infested. Because these values
are derived from the underlying proportion infested-mean density
model of the sample plan, any of a number of models (e.g., Kono
and Sugino 1958, Gerrard and Chiang 1970, Wilson and Room
1983, Binns and Bostanian 1990) can be used. By generating oper-
ating characteristic and average sample number curves as functions
of mean density (described below), RVSP automatically tests the
validity of the underlying model. This test of validity accounts for
and quantifies the impact of variability and/or systematic deviations
of field observations from the model in terms of the accuracy and
efficiency of management decisions.

Wald’s (1947) sequential plan allows population density to be
classified as either above or below a critical density. For binomial
count data, upper (u) and lower (I} sampling stop lines are defined
as:

Tn(”) z2Bn+ A (3a)

Ty < Bn—C

where  is the number of sample units examined; T,,, is the cumula-
tive number of sample units infested; and A, B, and C are parame-
ters derived as standard functions of specified type I () and IT (B)
error rates, and of upper (¢,)and lower (p,} boundaries bracketing
the critical density, given in terms of proportion infested:

B= inl[l ’po/l -Pd}”n{[m(l —P(,).’Pn(l - Pl)]] {3b)
A = In{[1 - Ble}In{[p,(1 - po)ips(1 - p))]} {3c)
C=In{f/1 - a]V/In{[p,(1 = py)po{1 - )1} (3d)

The o error rate defines the probability that some control tactic
would be implemented when actual pest density is just below the
action threshold and f defines the probability that no control tactic
would be implemented when density is just above the action thresh-
old.

The fixed-sample-size plan is based on a user-specified sample
size to determine the proportion of sample units infested, This value
then can be compared to an action or economic threshold level, also
specified as a proportion infested.

Data Requirements, The number of independent field data sets
needed to run RVSP will depend on the particular sampling model
being tested and how rigorously one wishes to test the model. At a
minimum, the data sets should cover the range of population densi-
ties likely to be encountered by users of the sample plan. Likewise,
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the required number of observations in each data set will depend on
the sample model being tested, the sample unit size, the specified pre-
cision or error rates, the width of decision boundaries, and whether
resampling is run with or without replacement. Qur experience indi-
cates that =50 observations per data set should provide a represen-
tative sample and will satisfy most testing requirements. Our
experience also suggests that as few as 10 independent data sets may
adequately define sample plan performance, so long as these data
sets uniformly cover the range of densities of interest {(see example
analyses below). Although the quality of testing will undoubtedly
increase with more data sets, we recommend, as a genieral guideline,
that at least 10-20 independent data sets be used. As previously
noted, the development of more definitive guidelines is the subject of
ongoing research. '

When running in “resample without replacement” mode (each
sample unit can be selected only once per sample iteration), RVSP
will test the adequacy of each data set before executing. A warning
message is given if the anticipated sample size is >75% but <90% of
the observations available in a given data set and the user will be
given the option of continuing or not. The data set will not be exe-
cuted if the sample size exceeds 90% of the observations available,
and execution will terminate for a given data set if the actual sample
size exceeds the number of observations during any resampling iter-
ation. Estimates for the anticipated sample size n, are calculated as:

Green'splan 1, = geltb-2iwml/ D2 (4)
Kuno's plan  n, = {[a + 1)/m + [f - 1]}/D? (5}
Wald's SPRT  #, = ~{In{(1 - B¥alln[B/(1 - a)l}/{In[p /p,]in

[{1 - p)/(1=-py]} (6)
Fixed plan 7, = minimum sample size (7)

whete parameters are as defined above for equations 1-3. The an-
ticipated sample size for Wald’s sequential probability ratio test is
somewhat conservative in that equation & estimates the average
sample size when mean density equals the action threshold. The
90% limit ensures that there will be enough sample units to com-
plete all iterations given that the actual number of sample units need-
ed is only an estimate based on original sample plan parameters. It
also permits RVSP to adequately estimate the between-iteration
variability. RVSP alsc checks to see that at least one sample unit in
the field data set is >0 before executing that data set. None of the
anticipated sample size safeguards operate when the user specifies
the “resample with replacement” mode. Inthis mode, the same sam-
ple unit could be selected more than once for each sampling itera-
tion.

RVSP Input Requirements. In this section we describe the specific
data that need to be entered to run a resampling analysis for any of
the 4 sample plans.

Data Files. RVSP requires 2 types of data files. One type of data
file, referred to from here forward as field data files, are ASCII text
files that contain observations from a particular sampling bout. For
example, these would be the counts recorded from a specific field on
a particular date. These data should be the actual enumerative
counts, not binomial counts, and they need to be input so that there
is 1 observation per line of the file (see Fig. 3A). The 2nd type of data
file, referred to from here on as the input data file, is an ASCII text
file that contains the names of one or more field data set files and the
associated output file(s) that RVSP can optionally generate if the
user wants an iteration by iteration summary for each field data set.
This enables a batch execution of the analysis when the user has a
number of independent field data sets to test. The format of the in-
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put data file is rigid, requiring the name of the field data set to oceu-
py columns 1-13 and the output file name to occupy columns 14-
26 (Fig. 3B). Only 1 field data and output file can be specified per line
and the user must enter output file names even if iteration by itera-
tion summaries are not desired. Both types of data files can be made
easily using DOS-Edit, or a wordprocessor, or spreadsheet capable
of writing or saving ASCII text files.

General Inputs. Beside field and input data files, there are several
other input requirements that are common to all 4 sample plans that
are entered in RSVP through input windows (see Fig. 2). The num-
ber of times to resample each field data set can be specified by the
user. The default is 500 and probably is adequate for most purpos-
es; however, this number can be changed as needed to improve pre-
cision or decrease execution time. The user also is given the choice of
sampling with or without replacement. Each sample unit can be se-
lected only once during each iteration when sampling without re-
placement (default setting). This mode duplicates most closely the
selection of sample unitsin the field, where any given sample unit can
only occur once (although the same number of organisms may be
observed on other sample units in the same field). The option to
sample with replacement is provided so that analyses can be per-
formed using field data sets that may not be adequate for the high
levels of precision or low error rates specified by the user. Overall,
our experience suggests that there is little difference between the 2
modes in program output when there are enough observations to
sample without replacement. We currently are looking at this issue
in more depth in terms of the minimum sample size that would be
necessary for a robust analysis. Another general input is the mini-
mum sample size, which is the number of sample units that need to
be drawn before terminating a single sampling bout. Most sample
plans that are implemented in the field include this parameter so that
a minimum sample size is taken regardless of population density.
This parameter is equal to sample size in the fixed-sample-size plan
and is modified for Kuno’s plan in relation to the constraint that n >
{B — 1)/D2 {(Kuno 1969). Finally, the user must specify the name for
the summary output file. This ASCII text file is generated by RVSP
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Flg. 8. Comparative analyses of (A and B) Green's and (C and D)
Kuno’s sequential sampling plan using independent field data for
sweelpotato whitefly adults on cofton. The dashed horizontal lines in A
and C represent the desired level of precision {0.25). Symbols denote
mean values; dotted and solid linas denots extreme values for each
data set and are not intended to represent a continuous function.
Different symbols represent field samples from Maricopa, AZ, in 1994
{open boxes) and Phoenix, AZ, in 1993 (closed circles) and 1994
(shaded circles). :

AMerICANENTOMOLOGIST *  Spring 1997




and contains summary statistics for each field data file executed
(Figs. 4 and 5). At execution, the program also provides an option
to print this summary table directly.

Plan-Specific Inputs. Beyond the common general inputs, each
plan requires its own set of parameters {see Fig. 2). Testing of Kuno’s
plan requires input of the desired level of fixed-precision (SE/mean)
and the slope {§) and intercept (&) of Iwao’s patchiness regression.
Green’s plan also requires input of the desired leve] of precision and
a and b of the Taylor power law. Note that if Ina is determined as the
y-intercept of the regression of Ins? on Inm it must be exponentiated.
To test Wald’s sequential probability ratio test, the user must enter &
and P error rates (default & = B = 0.1}, the tally threshold (¢} for de-
termining whether a sample unit is infested. The user also must enter
upper and lower decision boundaries and the action threshold, all
given in terms of proportion infested with at least t individuals.

Other Options. For each sample plan, RVSP gives the user the
option of saving the parameters entered in the input window and of
retrieving previously saved parameter files (see Fig. 1B). This simpli-
fies data entry if multiple runs of each input data file are planned
with only 1 or 2 changes in plan parameters. Individual help screens
also are provided to explain required inputs for each sample plan.

RVSP Output. RVSP automatically creates a summary file under
the name of the output data file. This file contains sample plan pa-
rameters and summary statistics for each field data set {Figs. 4 and
5). The user also can request that this summary table be printed di-
rectly. RVSP checks for a connected printer and informs the user of
any other problems before printing. Optionally, RVSP also can cre-
ate an output file of results for each individual iteration of a field
data set if the user wishes to perform further analyses (Fig. 6). These
individual files are saved under file names specified in the input data
file (see Fig. 3B). For 500 iterations, these files occupy =30 K of disk
space each, Output from both types of tables can be imported into
spreadsheet and graphics programs for further examination and
analysis.

For Green’s and Kuno’s plan, the output file tabulates the mean,
standard deviation, and # of the original data set; and the mean,
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Flg. 9. Analyses of Wald's sequential probability ratio test sampling
plan using independent field data for (A and B} sweetpotato whitefly
adults on catton, (C and D} pink bollworm eggs on cotton, and (E and
F) striped cucumber beetle adults on squash. The dashed vertical lines
denote the action threshold for each insect. The operating characteris-
tic {OC) curves in A, C, and E were fitted to the resampling results
using a 4-paramster logistic model, OC = d + (a— /(1 + [x/c]?), where
x is mean density and a—d ara fitted parameters . Dotted and solid lines
in the avaerage sample number graphs denote extreme values for each
data set and are not intended to represent a continuous function.
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standard deviation, maximum and minimum of precision, and re-
quired sample size over all resampling iterations (e.g., Fig. 4). For
Wald’s sequential probability ratio test, the output file tabulates the
proportion infested, mean, and # of the original data set; and the
mean, standard deviation, maximum and minimum of proportion
infested, and required sample size over all resampling iterations (see
Fig. 5). The operating characteristic, which is the probability of not
intervening relative to true pest density, is calculated after the se-
quential decision rule is satisfied (equation 3). It is estimated directly
as the proportion of iterations in which the proportion infested
does not exceed the lower sequential stop line. The operating char-
acteristic function can be generated by plotting these probabilities
against the true mean of the sample. Likewise, the average sample
number function can be generated by plotting average sample size
against mean density. Similar to Wald’s, the fixed-sample-size plan
output tabulates the proportion infested, mean, standard deviation,
and # of the original data set; and the mean, standard deviation,
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Fig. 10. Comparative analyses of fixed-sample-size sampling plans
using independent field data for (A) swestpotato whitefly adulis on
cotton, (B) pink bollworm eggs on cotton, and {C) striped cucumber
bestle adults on squash. The dashed vertical lines denote the action
threshold for each insect. The operating characteristic (OC} curves
were fitted to the resampling results using a 4 parameter logistic model,
OC = d + {a - d)/(1 + [x/c]r), where x is mean density and a—d are fitted
paramseters,
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maximum and minimum of proportion infested over all resampling
iterations. The operating characteristic is estimated directly as the
proportion of iterations in which the proportion infested did not
exceed the action threshold. RVSP provides only an estimate of the
operating characteristic for Walds’s and the fixed-sample-size plan
because mean density is estimated with error from field data sets.
Confidence intervals about the operating characteristic could be
constructed by using the standard deviation provided in the output
table under observed statistics. The operating characteristic and av-
erage sample number also can be plotted as functions of the propor-
tion of infested sample units if validity of the proportion
infested-mean density model is not of interest.

Example Analyses of Sample Plans

To demonstrate the use of RVSP, we present here a series of anal-
yses for 3 pest insect species for which we have developed sample
plans and for which we have independent field data sets available for
testing sample plan performance (Table 1). Species include the sweet-
potato whitefly and the pink bollworm, Pectinopbora gossypiella
{Saunders), in cotton; and the striped cucumber beetle, Acalymma
virtatum (F)., on cucurbits (primarily squash). Independent field
data sets for sweetpotato whitefly were collected as part of several
ongoing efforts to study population dynamics and develop pest
management strategies in cotton (Naranjo et al, 1995, Flint et al.
1996). Field data sets for eggs and nymphs were collected in cotton
fields in Maricopa, AZ, in 1993 and 1995, with the sample size of
each data set ranging from 60 to 120. The sample unit for eggs and
nymphs was a 4-cm? leaf disk extracted near the petiole of 5th main-
stem node leaves. Field data sets for adults were collected at Phoenix,
AZ,1in 1993 and at Maricopa and Phoenix, AZ, in 1994, with sam-
ple sizes ranging from 60 to 320. The sample unit for adults was a
whole 5th mainstem node leaf of cotton. Data sets for pink boll-
worm eggs also were collected over several years in conjunction with
various studies of populations dynamics and biological control
(Hutchison et al. 1988b, 1991; Naranjo et al. 1992; Naranjo and
Martin 1993). Here the sample unit was an individual cotton boll,
=14-21 d old. Data sets were collected from fields in the Palo Verde
Valley, CA, in 1986-1987; Maricopa and Gilbert, AZ, in 1990; and
Maricopa and Phoenix, AZ, in 1991-1992. Pink bollworm data
sets had sample sizes of 50-250. Data sets for striped cucumber

beetle adults were collected from southern Minnesota (Anoka, Da-
kota, Dodge, Mower, Steele, and Wright counties) cucurbit fields
{squash, pumpkin, cucumber) during 1994-1995 (Burkness
1996). For this analysis, the sample unit was 4 whole consecutive
plants, ranging from the cotyledon to the 4 true-leaf stage. Each data
set had a sample size of 48.

Green’s and Kuno's Plans, We demonstrated the use of RVSP for
testing fixed-precision plans by examining the performance of exist-
ing sample plans for egg, nymphs, and adults of sweetpotato white-
fly; and adults of striped cucumber beetle (see Table 1), We set the
desired precision to 0.25, set the minimum sample size to 10, and
resampled field data sets without replacement 500 times. We sum-
marized the output of RVSP by plotting mean, maximum and min-
imum values for actual precision, and sample size as a function of
mean density; and calculated means for precision and sample size
over all populations densities.

Results highlight the stochastic nature of fixed-precision sam-
pling in the field (Figs. 7 and 8} that has been observed previously
(Hutchison et al. 1988a, Cho et al. 1995, Naranjo and Flint 1995).
The mean value of actual precision (denoted by symbols) may be
near that desired, but extreme values of actual precision {denoted by
dotted and solid lines} may be >> or << 0.25 during any one sam-
pling bout. Because precision is a measure of variability, values
>0.25 indicate that the sample plan performed poocrer than expect-
ed, whereas values <0.25 indicate the sample plan performed better
than expected. In general, all the fixed-precision sample plans per-
formed poorly at low densities (<().2 insects per sample unit}, partic-
ularly for sweetpotato whitefly where the mean values of actual
precision exceeded (.25 in all cases and minimum values of preci-
sion for any one sampling bout exceeding 0.25 in many cases {Figs.
7 A and C, 8 A and C}. At higher mean densities, the actual mean
value of precision was better than desired in more cases than not for
eggs and adults but roughly better than or worse than the desired
precision with equal frequency for nymphs of sweetpotato whitefly.
These patterns were fairly consistent for field data sets collected over
different years or from different sites {denoted by different symbols
in Figs. 7 and 8). For striped cucumber beetle adults, Green’s plan
resulted in better than desired mean precision in all but 2 instances.
Still, there was considerable variability in actual precision from one
sample bout to the next. As expected, sample size requirements de-
clined rapidly with increases in mean density; however, there was less

Table 1. Sample plan parameters and number of independent field data sets used in example analyses with RVSP

Taylor’s Iwao’s Wald’s Wald’s and Fixed
Field Sample plan

Plan Insect/stage a b [ p M 1 Threshold Tally data setss reference

Green's  SPW eggs 2.986 1.766 — — — — — — 124 Naranjo and Flint 1994
SPW nymphs 2.537 1.688 — — — — — — 100 Naranjo and Flint 1994
SPW adults 2.079 1.675 - —_ — — — — 72 Naranjo and Flint 1995
SCB aduls 0.800 1.286 — — _ - — — 9 Burkness 1996

Kuno's  SPW adults — — -0.530 2.030 — - — —_ 72 Naranjo and Flint 1995

Wald’s  SPW adults — — — — 0.47 0.67 0.57 3 72 Naranjo et al. 19%6
PBW eggs — — — — 0.02 0.22 0.12 1 85 Hutchison et al. 1986
SCB aduits — — — — 0.15 0.35 0.25 2 20 Burkness 1996

Fixed SPW adults — — — — — — 0.57 3 72 Naranjo et al. 1996
PBW eggs - - - - - —_ 0.12 1 85 Hutchison et al. 1986
SCB adults — — — — — — 0.25 2 20 Burkness 1996

SPW, sweetpotato whitefly; SCB, striped cucumber beetle; PBW, pink bollworm.
4 The number of independent field data sets available to test a specific sample plan. See text for descriptions of data sets.
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variability among sampling bouts for any one field data set, partic-
ularly at mean densities greater than 0.5 insects per sample unit
(Figs. 7 B, D, and F; 8 B and D).

Differences in the performance of Green’s and Kuno’s plans for
sampling adult sweetpotato whitefly were relatively minor (Fig. 8).
Kuno’s plan required a greater sample size at low densities (<0.2
adults per leaf) and, as a result, permitted mean density estimates
with levels of precision closer to those specified in comparison with
Green’s plan. However, because of the minimum sample size require-
ment (see above), Kuno’s plan also required, on average, a great
sample size than necessary to achieve the desired precision at moder-
ate to high mean densities.

Overall, fixed-precision sequential sampling plans for these 2 in-
sect species performed adequately. Averaging results across all field
data sets, actual mean precision was close to that specified in the
sample plans, and extreme values were reasonable {Table 2). For
example, over a range of densities from 0.03 to 83 sweetpotato
whitefly adults per leaf, mean precision averaged 0.22-0.25 and, on
average, was never worse than 0.40.

RVSP alse can be used to evaluate optimum sample unit size by
combining actual estimates of precision with sampling cost data.
For example, Burkness (1996) used RVSP and Green’s plan to esti-
mate the actual relative net precision for 7 different sample units (1-
7 whole plants) for striped cucumber beetle and then compared
these results with conventional relative net precision calculations
(e.g., Pedigo et al. 1972). The conventional estimates, based on all
observations (# = 48), indicated that a 1-plant sample unit was most
cost-effective whereas the resampling analysis showed that 2-and 3-
plant sample units were best. The latter analysis is based on the re-
peated sequential selection of observations (# generally < 48) and
likely is more indicative of performance in the field if a sequential
sampling plan is used. This outcome suggests that selection of an
optimal sample unit should be done in tandem with sample size val-
idation to maximize the probability of selecting the most efficient
sample unit.

Wald’s Plan. Next we demonstrate the use of RVSP for testing
Wald’s plan for classifying population densities of sweetpotato

Table 2. Summary of performance for Green’s plan for sweetpotato
whitefly on cotton and striped cucumber beetle on squash

Averaged over all densities

Precision Sample size

Field data sets
(sitelyr)

Range of

Mean Max Min. Mean Max Min.  densities

Sweetpotato whitefly eggs

0.24 0.35 0.15 31.9 360 28.8 0.06-809.35
0.25 0.43 0.13 316 389 26.3 0.09-293.72

Maricopa 1993
Maricopa 1995

Sweetpotato whitefly nymphs

0.25 0.37 0.17 32.3 37.9 280 0.09-47.98
0.26 0.44 013 27.3 358 218 0.17-131.75

Maricopa 1993
Maricopa 1995

Sweetpotato whitefly adults

Phoenix 1993 0.25 0.40 0.14 20.7 260 17.1 0.13-50.29
Maricopa 1994 0.25 0.3% 0.15 33.4 453 263 0.03-20.94
Phoenix 1994 0.22 0.34 011 17.1 20.3 149 0.69-8275
Striped cucumber beetle adults
Minnesota 0.22 0.36 0.12 244 386 150 0.10-2.43
1994-1995
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whitefly adults, pink bollworm eggs and striped cucumber beetle
adults relative to defined action thresholds for these pests. We set p,
and p, at + 0.10 of the action threshold and set nominal error rates
at & = p = 0.10, For the classification of population density two im-
portant factors are the operating characteristic function, which is
defined as the probability of taking no action relative to true mean
density, and the associated average sample size function, which is the
mean sample size required to reach a decision. These functions are
shown for the 3 species in Fig. 9. We used a 4-parameter logistic
model (SigmaPlot, Jandel Scientific 1994) to fit a smooth curve for
the operating characteristic function. When o = B, the operating
characteristic should ideally equal 0.5 at the action thresheld densi-
ty. The deviations from this ideal for sweetpotato whitefly (Fig. 9A)
indicate errors in the sampling model for predicting mean density
from the proportion of infested sample units. Fortunately, this error
is conservative, resulting in a higher probability of applying a con-
trol tactic at densities slightly lower than the action threshold.

We can estimate the actual & and B error rates (type I and Il er-
rors, respectively) by solving the operating characteristic function at
mean densities associated with p, and p,, respectively. For sweetpo-
tato whitefly, actual ¢ and p error rates were 0.164 and 0.063; for
pink bollworm, 0.003 and 0.103; and for striped cucumber beetle,
0.047 and 0.080, respectively. Recall that nominal rates for these
error terms were specified at 0.10. It is not unusual for actual error
rates to deviate from nominal rates, and it has been suggested that o
and B be considered variables of Wald’s sequential probability ratio
test that can be adjusted to achieve desired operating characteristic
and average sample number functions (Nyrop and Binns 1591).
Changes in @, B, p,, and p, can be made easily in RVSP to explore
sensitivities in the operating characteristic and average sample num-
ber functions.

On average, relatively few sample units were needed before the
sequential stop lines terminated sampling; however, there was con-
siderable variability in sample size, particularly at densities near the
action threshold (Fig. 9 B, D, and F). For all 3 insect species, the spec-
ified minimum sample size of 10 truncated the lower boundary of
the sample size function. Thus, even at densities near the action
threshold, there were sampling bouts in which a decision to treat or
not could have been made with fewer than 10 binomial sample
units.

Fixed-Sample-Size Plan. Finally, we demonstrate the use of RVSP
for testing fixed-sample-size plans based on binomial count data.
We examined sample plans based on different sample sizes for
sweetpotato whitefly adults, pink bollworm eggs, and striper cu-
cumber beetle adults. As expected, increasing the sample size in-
creased the steepness of the operating characteristic functions and,
thus, improved the probabilities of making a correct decision rela-
tive to implementing control (Fig. 10). Doubling the sample size
from 25 to 50 for sweetpotato whitefly improved the operating
characteristic function (Fig. 10 A). The « error rate dropped from
0.201 to 0.158 and the $ error rate declined from 0.099 to 0.046.
Likewise, the operating characteristic function improved for pink
bollworm when the sample size was doubled (Fig. 10 B). Here, the ot
errot rate remained unchanged at 0.004 and the § error rate de-
clined from (.084 to 0.033. In contrast, the operating characteristic
function for striped cucumber beetle was very good for a fixed sam-
ple size of 30 (Fig. 10 C) and did not change perceptibly with 7 > 30
(not shown). The operating characteristic function was still good
with a sample size as low as 10. The & error rates steadily declined
from 0.081 to 0.023 to 0.005 with 1 = 10, 20, and 30, respectively.
The corresponding f error rates were 0.17, 0.018, and 0.003.

Direct comparisons of the sequential and fixed-sample-size plans
suggest tradeoffs in efficiency. For instance, the average sample size
needed to classifying the density of sweetpotato whitefly rarely ex-
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ceeded 30 even at densities near the action threshold; however, dur-
ing some sample bouts, the sample size could exceed 100. The fixed-
sample-size plan with # = 25 had an operating characteristic
function similar to that of Wald’s plan and would be more efficient
at densities near the action threshold. However, the fixed plan
would be less efficient at low and high densities where Wald’s plan
could classify density with fewer samples, even during extreme sam-
pling bouts, Similar contrasts can be drawn from the other 2 species
examined in our analyses. For sweetpotato whitefly, we ultimately
decided to implement a fixed sample size model to ensure adequate
coverage of a cotton field before making a control decision (Naranjo
etal. 1996).

General Utility of the Resampling Approach

The desired precision specified in a sequential sample plan is not
the precision that will result from any one sample from a field but,
instead, is the average precision that would be expected over a large
number of individual sampling bouts. Likewise, error rates associat-
ed with making the proper decision to control a pest population are
those that would be expected, on average, over a large number of
trials. There are at least 3 sources of error that cause deviation from
this expected performance: (1) statistical variation associated with
fitting the model on which the sampling plan is based (e.g., the Tay-
lor power law or the empirical proportion infested-mean density re-
gression), (2} deviations in the actual sampling distribution of
populations from that used to construct the sample plan, and (3)
sampling error, including variability in the sequential selection of
samples in the field. _

A Monte Carlo method that uses a theoretical distribution may
be satisfactory to account for errors 1 and 3 as long as deviations
from the actual sampling distributions are minimal but can only
adequately account for the first type of error if distributional devia-
tions are greater. In contrast, resampling from actual field data si-
multaneously accounts for all these sources of error and their
consequences in terms of sample plan performance, Several analyses
that have contrasted the 2 approaches suggest that a Monte Carlo
approach may provide misleading resuits. Using the resampling ap-
proach, Hutchison (1994) found that Green’s plan required a great-
er sample size than necessary (better than expected precision was
achieved) over a range of pea aphid densities. In contrast, a Monte
Carlo approach assuming a negative binomial distribution and in-
corporating variability in the mean-variance relationship suggested
that the sample plan was fairly accurate at achieving the prescribed
precision over these same densities. A similar contrast between the 2
approaches for testing Green’s plan for adult sweetpotato whitefly
also yielded discrepancies (Naranjo and Flint 1995). Here, resam-
pling of field data suggested that precision was better than desired at
densities <15 adults per leaf and worse than expected at higher den-
sities. The Monte Carlo analysis indicated essentially the opposite.
Finally, the Monte Carlo program of Nyrop and Binns (1991) for
estimating expected operating characteristic functions based on
Wald’s sequential probability ratio test indicated expected o and
error rates of 0.148 and 0.158, respectively, when classifying the
density of sweetpotato whitefly adults relative to an action thresh-
old of 5 per leaf with a tally count of 3 {Naranjo et al. 1996). These
same error rates were 0.164 and 0.063, respectively, in our analyses
above. Thus, the sample plan is much better at protecting against the
possibility of taking no action when pest density is above the action
threshold than Monte Carlo results indicated.

It is difficult to generalize about the respective robustness of these
2 approaches on the basis of a few contrasting examples. As noted
eatlier, the Monte Carlo technique can be valuable in sample plan

development and even may be useful in field validation if assump-
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tions about sampling distributions are carefully considered and ap-
propriate selection of theoretical models is made. Perhaps, it would
be most prudent to use both approaches early on in the develop-
ment and implementation of a sampling program. If both ap-
proaches yield similar results, it might be more efficient to use Monte
Carlo to adjust plan parameters because of the analytical and more
easily interpretable output. Nonetheless, the resampling technique
presented here represents the most robust method for verifying ac-
tual field performance and has the added advantage of requiring no
restrictive assumptions. We hope that the software described here
will facilitate routine resampling of real data sets as one of the prima-
ry methods for sample plan analysis and validation.

Software Availability

The RVSP software is public domain and can be downloaded
from the Internet at World-Wide Web pages maintained at our re-
spective institutions. The Western Cotton Laboratory URL is http:/
gears.tucson.ars.ag.gov/wcrl/ and the University of Minnesota URL
is http:/fwww.mes.umn.eduw/~vegipm/hiab/research/hlab.htm. The
downloadable version is provided as a self-extracting .ZIP file and
includes the software, a user’s manual (a condensed version of this
article), and a set of example field data sets that can be used to famil-
iarize the user with operation of the software. Software and docu-
mentation also can be obtained directly from the authors.
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