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Constructed wetlands used to mitigate pesticide runoff

from agricultural fields into receiving systems (e.g., lakes,

rivers, streams) have been successful in reducing concen-

trations of non-point source pollutants such as agricultural

insecticides (Moore et al., 2002; Leistra et al., 2003;

Bouldin et al., 2005). Such wetlands also have important

functions in enhancing the water quality and ecological

values (Moore et al., 2002), and different phases (i.e.,

aqueous, sediment and detritus) have separate roles, as

either sinks or sources, in determining effectiveness of

wetlands in mitigating pesticide toxicity. For these reasons,

the importance of elucidating potential effectiveness of

wetlands in reducing pesticide toxicity to aquatic biota

exposed to these different phases needs to be addressed.

The pyrethroid insecticides, k-cyhalothrin and cyfluth-

rin, were used as model contaminants in a constructed

wetland located in Leflore County, Mississippi, USA, de-

signed to mitigate runoff from an agricultural field. Py-

rethroids are used on a variety of agricultural crops in

Mississippi, however most applications are primarily with

cotton (Gossypium sp.) (USDA, 2004). Approximately

3,150 kg of k-cyhalothrin and 10,350 kg of cyfluthrin were

applied in Mississippi in 2003 and, as a result, may con-

tribute to non-point source contamination of aquatic envi-

ronments (USDA, 2004).

This study examined the use of a constructed wetland to

mitigate ecological impacts of a simulated pyrethriod

mixture (k-cyhalothrin and cyfluthrin) in runoff from

agricultural fields to receiving aquatic systems by using

48 h aqueous, detrital and sediment bioassays with the

freshwater test organism, Hyalella azteca.

Materials and Methods

The constructed wetland used was designed for the miti-

gation of agricultural contaminant runoff (e.g., sediment,

pesticides, and nutrients).

Divided into three cells, the wetland system included a

sediment retention pond (SRP), a primary (1�) cell, and a

secondary (2�) cell located adjacent to Beasley Lake in

Sunflower County, Mississippi, USA. In August 2003, the

constructed wetland was amended with 9 ng/mL k-cyhal-

othrin (active ingredient (a.i.)) as Karate� and 39 ng/mL

cyfluthrin (a.i.) as Baythroid� with 403,000 lg/L sediment

(as a carrier) simulating a single 1.3 cm rainfall event and

runoff from a 14 ha agricultural field. One liter of water

and sediment each, and one leaf litter pack (20 g initial dry

weight; simulating detritus) were collected from each

wetland cell 1 d, 7 d, 13 d, 27 d, 42 d, and 61 d (water and

sediment only) after initial dosing. Samples were preserved

on ice and transported the USDA-ARS National Sedi-

mentation Laboratory, Oxford, Mississippi for biological

and chemical analysis.

Aqueous, sediment and leaf litter samples were analyzed

for k-cyhalothrin and cyfluthrin. Analytical chemistry was

conducted according to Bennett et al. (2000) using a

Hewlett-Packard 6890 gas chromatograph equipped with

dual HP 7683 ALS autoinjectors. Briefly, aqueous samples

were extracted by sonification with reagent-grade KCl and

100 ml pesticide-grade ethyl acetate, dried over anhydrous

sodium sulfate, subjected to cleanup by silica gel column

chromatography, and concentrated to 1 mL for analysis
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(Cooper et al., 2003). Sediment and leaf litter samples were

dried, ground, pre-wetted with ultra-pure water followed by

the addition of ethyl acetate. The mixture was sonicated

and centrifuged (2000–2500 rpm). Extract was concen-

trated to near dryness using a nitrogen evaporator, and

solvent exchanged into hexane. Level of quantification

for aqueous, sediment and leaf litter analyses were

0.01 ng/mL, 0.5 ng/g, and 0.5 ng/g, respectively.

Forty-eight hour static, non-renewal, aqueous, sediment

and leaf litter toxicity tests using 4–5 d old Hyalella azteca

were conducted according to modified USEPA (1994)

protocol for conducting aqueous reference toxicity tests

with a survival endpoint. Aqueous exposures consisted of

12 mL wetland sample water and one, 7 mm diameter,

Norway maple (Acer platanoides) leaf disc as a substrate

and food. One H. azteca was placed in each exposure

chamber. Similarly, sediment bioassays were conducted as

per aqueous tests with 2 g wet wetland sample sediment

and 10 mL overlying control water. Leaf litter bioassays

were conducted as per aqueous tests with one 7 mm

diameter wetland sample leaf disc and 12 mL overlying

control water. Overlying control water, free from priority

pollutants, was obtained from the University of Mississippi

Field Station, filtered to remove particulate matter using

MFS 0.45 lm polymembrane filters, and hardness and

alkalinity adjusted with NaHCO3 and CaCl to values be-

tween 60–80 mg/L as CaCO3 (Deaver and Rodgers, 1996).

Toxicity tests were conducted in a Powers Scientific, Inc.

Animal Growth Chamber with a 16:8 h photoperiod at

20±1�C. Mean measured physical and chemical water

characteristics for aqueous, sediment and leaf litter tests

were: temperature, 20.5, 20.5, 20.4�C; pH, 7.6, 6.9, 8;

dissolved oxygen, 7, 5.7, 7.3 mg/L; conductivity, 95, 305,

381 lmhos/cm; hardness, 41, 75, 105 mg/L as CaCO3; and

alkalinity, 37, 31, 57 mg/L as CaCO3 (APHA, 1998).

Sediment characteristics within the constructed wetland

were a silt loam (sand 2–45%, silt 52–92%, clay 5–8%)

with 1–5% total organic carbon.

H. azteca 48 h aqueous, sediment and leaf litter survival

data were analyzed using a Kruskal-Wallis one-way

ANOVA on ranks (survival x time within wetland cell)

with Dunn’s multiple range test versus controls (0 d pre-

dosing). Data analysis was conducted using SigmaStat�

v.2.03 statistical software (SPSS, 1997).

Results and Discussion

Chemical analysis revealed spatial and temporal variation

in k-cyhalothrin and cyfluthrin concentrations within

aqueous, sediment, and leaf litter samples among all three

wetland cells (Fig. 1). All wetland cells (SRP, 1� cell, 2�
cell) had measurable amounts of cyfluthrin within all three

phases 1 d after amendment, but k-cyhalothrin was only

sporadically detected in either 1� or 2� wetland cells.

Aqueous and leaf litter pyrethroid concentrations typically

decreased with increasing time periods due, in part, to

material degradation and desorption. By 61 d, there was

little to no measurable amounts of either k-cyhalothrin or

cyfluthrin in either aqueous or leaf litter phases. Spatially,

lowest aqueous and leaf litter pyrethroid concentrations

occurred within the wetland area furthest from the injection

point, the 2� wetland cell. Greatest aqueous and leaf litter

concentrations occurred within the sediment retention

pond. Spatial and temporal patterns of sediment pyrethroid

contamination were near inverse characteristics. Such a

pattern shows pooling of water and associated pesticide

within the sediment retention pond and continued slow

movement into the remaining two cells. Similar spatial and

temporal patterns of transfer/transformation were observed

by Leistra et al. (2003) for k-cyhalothrin in ditch systems

within aqueous, sediment and plant phases. However,

Bouldin et al. (2005) did not show similar patterns in

sediment k-cyhalothrin contamination due, in part, to lower

initial dosage and static aqueous conditions within their

microcosms.

Hyalella azteca 48 h survival in aqueous exposures

varied temporally in conjunction with measured pyrethroid

concentrations (Fig. 1). Limited pretreatment (time 0 h)

aqueous survival (< 80%) occurred due to the very soft

nature of the natural wetland water. Aqueous hardness and

alkalinity ranged from 17.1–51.3 mg/L as CaCO3 and

34.2–51.3 mg/L as CaCO3, respectively, resulting in less

than optimal survival rates. Grapentine and Rosenberg

(1992) observed H. azteca to be in low abundance or absent

from lakes with lower calcium concentrations (< 2 mg/L).

However, clear patterns of exposure effects were observed.

Aqueous survival decreased significantly, compared to

time 0 d, in all three wetland cells [SRP (P < 0.001, H =

17.7); 1o cell (P = 0.003, H = 11.6); 2o cell (P < 0.001, H =

46.0)] and throughout the sampling period after pyrethroid

dosing. No decrease in aqueous toxicity occurred during

the 61 d observation period despite significant decreases in

pyrethroid concentrations. Lowest observed effect con-

centration for the k-cyhalothrin and cyfluthrin mixture was

0.07 and 0.22 ng/mL. Cyfluthrin (only) lowest observed

effect concentration was 0.05 ng/mL. Reported aqueous k-

cyhalothrin and cyfluthrin effects concentrations for crus-

taceans are at < 0.2 ng/mL, which is approaching the

lowest observed aqueous pyrethroid concentration (0.05 ng

cyfluthrin/mL). Maund et al. (1998) reported H. azteca 48 h

aqueous k-cyhalothrin EC50 of 0.0023 ng/mL. Reported

cyfluthrin EC50s were 0.012, 0.14, and 0.17 ng/mL for

saltwater mysid shrimp (Americamysis bahia), freshwater

Daphnia magna, and Ceriodaphnia dubia, respectively

(Mokry and Hoagland, 1990; Solomon et al., 2001).
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Pyrethroid contaminated leaf litter elicited similar Hy-

alella azteca toxicity responses, however with greater ef-

fects concentrations (Fig. 1). Survival decreased

significantly, compared to time 0 d, in all three wetland

cells [SRP (P < 0.001, H = 59.0); 1o cell (P = 0.003, H =

59.0); 2o cell (P < 0.001, H = 47.9)] and throughout the

sampling period, after pyrethroid dosing. Lowest observed

effect concentration for the k-cyhalothrin and cyfluthrin

mixture was 25 and 114 ng/g. Cyfluthrin (only) lowest

observed effect concentration was 6 ng/g. Only limited

research has been done to assess insecticide toxicity within

detritus (Odum et al., 1969; Swift et al., 1988; Harrahy

et al., 1994). In this study, leaf litter remained toxic

throughout the 42 d sampling period, showing a significant

contribution to overall pyrethroid toxicity in the system.

H. azteca survival in pyrethroid contaminated sediment

also varied temporally in conjunction with measured

pyrethroid concentrations (Fig. 1), but to a lesser extent

than either aqueous or leaf litter exposures, which confirms

that sediment bound pyrethroids are less bioavailable than

aqueous or detritus pyrethroids. Maund et al. (1998) re-

ported Chironomus riparius 28 d sediment k-cyhalothrin

EC50 of 6.8 ng/g organic carbon (oc) whereas Weston

et al. (2004) reported estimated C. tentans 10 d EC50 of 1.3

ng/g oc. Our results showed the lowest observed effect

concentration for the k-cyhalothrin and cyfluthrin mixture

was 3 and 24 ng/g, and cyfluthrin (only) lowest observed

effect concentration was 16 ng/g. Patterns of animal sur-

vival were similar in SRP and the 1� wetland cell. The 2�
cell showed a significant (P < 0.001, H = 52.4) decrease in

survival 13 d after dosing; however, by 42 d, survival was

greater than 80%. Although the 1� cell had relatively high

measured sediment pyrethroid concentrations 1 d and 42 d

after dosing, relatively lower toxicity is associated with

greater total organic carbon (TOC) in these sediments.

Sediment from SRP had only 1–1.5% TOC, 1� cell had 2–

5% TOC and 2� cell had 1.9–2% TOC. The influence of

TOC on the bioavailability of insecticides with low water

solubility to Hyalella azteca has been previously docu-

mented (Nebeker et al., 1989; Amweg et al., 2005). Thus

the greater TOC in the 1� cell sediment mitigated the

greater pyrethroid concentrations. Again, spatial H. azteca

responses coincided with measured pyrethroid concentra-

tions, as seen temporally with exceptions associated with

differences in sediment TOC.

Based upon responses of Hyalella azteca to aqueous,

sediment, and leaf litter k-cyhalothrin and cyfluthrin con-

tamination, sediment and detrital bound pyrethroids can

move from contaminant sink during initial pesticide influx

to a source of pyrethroid contamination affecting non target

aquatic organisms for weeks to months after entering a

constructed wetland. Further studies are needed to eluci-

date the relationship between aqueous, sediment and

detrital phases in pesticide contamination within aquatic

systems, and the associated effects on non target aquatic

organisms.
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under FIFRA as amended. All programs and services of the USDA

are offered on a nondiscriminatory basis without regard to race, color,

national origin, religion, sex, marital status, or handicap.
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