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Abstract

Phytoremediation encompasses an array of plant-associated processes known to mitigate contaminants from soil, sediment, and
water. Modification of pesticides associated with agricultural runoff includes processes directly associated with aquatic macrophytes
in addition to changes in soil geochemistry and associated rhizospheric degradation. Remediation attributes of two vegetative species
common to agricultural drainages in the Mississippi Delta, USA, were assessed using atrazine and lambda-cyhalothrin. Concentrations
used in 8-d hydroponic exposures were calculated using recommended field applications and a 5% runoff model from a 0.65-cm rainfall
event on a 2.02-ha field. While greater atrazine uptake was measured in Juncus effusus, greater lambda-cyhalothrin uptake occurred in
Ludwigia peploides. Maximum pesticide uptake was reached within 48 h for each exposure and subsequent translocation of pesticides to
upper plant biomass occurred in macrophytes exposed to atrazine. Sequestration of 98.2% of lambda-cyhalothrin in roots of L. peploides
was measured after 8 d. Translocation of lambda-cyhalothrin in J. effusus resulted in 25.4% of pesticide uptake partitioned to upper plant
biomass. These individual macrophyte remediation studies measured species- and pesticide-specific uptake rates, indicating that season-
ality of pesticide applications and macrophyte emergence might interact strongly to enhance mitigation capabilities in edge-of-field con-

veyance structures.
© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Plant remediation of soils, sediments, and water is a cost-
effective and resource-conservative approach for clean-up
of contaminated sites (Susarla et al., 2002). Phytoremedia-
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tion is an accumulation of plant-associated processes which
include biotransformation, phytoaccumulation, phytoex-
traction, phytovolatilization, and rhizodegradation from
enhanced microbial activity in plant rhizospheres (Walton
and Anderson, 1990; Mirgain et al., 1993; Susarla et al.,
2002) and plant transformation, conjugation, and seques-
tration are vital tools in waste management (McCutcheon
and Schnoor, 2003). Utilization of plants for removal of
heavy metals has been investigated since the early 1970s
(Kadlec and Knight, 1996; Hawkins et al., 1997; Gillespie
et al., 2000), and various research has demonstrated species
mortality as well as tolerant vegetation following metal
hyperaccumulation (Susarla et al., 2002). In either case, har-
vest and disposal, followed by replanting were necessary for
complete metal removal. More recently, phytoremediation
research with heavy metals in aquatic systems has expanded
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to include binding capabilities of byproducts of resident
vegetative communities such as dissolved organic matter
and humic acids (Kim et al., 1999; De Schamphelaere
et al., 2004).

Phytoremediation of organic compounds initially
involves organic matter sorption determined by physi-
cochemical properties of the compound, surrounding
environmental soil conditions, and root morphological
characteristics (Cunningham et al., 1997). Due to their large
surface area of fibrous roots and intensive soil penetration,
terrestrial grasses are most often used in remediation of
organic compounds (Giinther et al., 1996; Chekol et al.,
2002). Successful remediation of polycyclic aromatic hydro-
carbons (PAHs) and trinitrotoluene (TNT) have been
shown with annual ryegrass (Lolium multiflorum), reed
(Phragmites australis), reed canarygrass (Phalaris arundina-
cea), and switchgrass (Panicum virgatum) (Chekol et al.,
2002; Lalande et al., 2003; Muratova et al., 2003). Concur-
rent with transport and detoxification processes of organic
compounds within the plant, interactions within soil rhizo-
spheres provide ideal conditions for co-metabolism with
symbiotic bacteria and fungi (Zablotowicz and Hoagland,
1999; Susarla et al., 2002; Godsy et al., 2003; Muratova
et al., 2003). Simultaneous interactions of the geochemical
environment as a result of plant root zones, such as pH
and oxidation, aid initial uptake of organics. Subsequent
detoxification begins with conjugation in the cytosol, trans-
fer to and temporary storage in vacuoles, followed by
slower detoxification and transport to apoplasts, rhizo-
spheres, or atmosphere (Trapp and Karlson, 2001; Schro-
der and Collins, 2002).

Perhaps due to the emphasis on investigations with grasses,
more is known about currently endorsed agricultural best
management practices (BMPs) such as vegetated filter strips
(VFS) and riparian zones. Investigations have demonstrated
herbicide degradation by wetland riparian soils (Stoeckel
et al., 1997) and prairie grasses (Belden et al., 2004), but less
consideration has been given to in-place aquatic macrophytes
and their phytoremediation capabilities.

Phytoremediation processes of aquatic vegetation within
wetland and ditch systems are essential components of pes-
ticide mitigation (Fairchild et al., 1994; Moore et al., 2001;
Bouldin et al., 2004b). Investigations contrasting unvege-
tated systems and those with plant communities (Schulz
et al., 2003b; Milam et al., 2004), as well as single plant spe-
cies (Jones and Estes, 1984; Karen et al., 1998; Hand et al.,
2001; Lunney et al., 2004; Bouldin et al., 2005), have
illustrated the importance of macrophytes in pesticide
mitigation. Although low nutrient accumulation and slow
biomass production is characteristic of the macrophyte,
Juncus effusus (Tanner, 1996), atrazine resilience and accu-
mulation in this species supports its use in phytoremedia-
tion (Lytle and Lytle, 2002). Conversely, high nitrogen
accumulation through rapid biomass production and toler-
ance to low herbicide concentrations supports Ludwigia
peploides in phytoremediation of agricultural wastewater
(Rejmankova, 1992).

Plant species with known remediation attributes and
presence in agricultural conveyance structures have been
proposed for further study (Bouldin et al., 2004a, 2005).
Systems with indigenous vegetation are being examined
for specific processes that contribute to mitigation of pesti-
cides commonly applied in the Mississippi Delta, USA, and
will further the understanding of mitigation capabilities in
these receiving systems. The selective herbicide, atrazine (2-
chloro-4-ethylamino-6-isopropylamino-S-triazine), and the
synthetic pyrethroid, lambda-cyhalothrin [(RS)-a-cyano-
3-phenoxybenzyl 3-(2-chloro-3,3,3-trifluoropropenyl)-2,2-
dimenthylcyclopropanecarboxylate], are commonly used
pesticides in the lower Mississippi Valley, USA (NASS,
2002). Atrazine was registered for use in the United States
in 1959 (US EPA, 1994), and its prevalence in surface water
is due to relatively high water solubility, moderate environ-
mental persistence (Table 1) and usage exceeding 28 million
kg/y (NASS, 2002). As well, concern for atrazine’s effect on
non-target organisms has required that subsequent risk
assessments in aquatic systems account for residence times
in static surface and ground water (Solomon et al., 1996;
Dodson et al., 1999).

Lambda-cyhalothrin is a frequently used synthetic pyre-
throid with an applied rate of 25000 kg in 2001 (NASS,
2002). Associated physical and chemical properties of syn-
thetic pyrethroids (Table 1) result in perceived low environ-
mental exposure potential due to relatively short residence
time in surface waters (Hand et al.,, 2001). Exceptional
hydrophobicity results in rapid partitioning from the water
column, low mammalian and avian toxicity, and relatively
short environmental half-lives. However, pyrethroid toxi-
city measured with aquatic invertebrates in laboratory con-
ditions (Maund et al., 2002; Orme and Kegley, 2003) has
led to a number of complex ecological risk assessments.

Sediment organic matter and microbial interactions
within plant rhizospheres enhance the degradation of pesti-
cides associated with agricultural runoff (Zhou et al., 1995;
Ronday et al., 1997; Zablotowicz and Hoagland, 1999;
Xia and Ma, 2006). Rice et al. (1997) suggested practical
applications of phytoremediation through the construction
of wetlands and macrophyte-cultured areas receiving agri-
cultural runoff, but also iterated the need for further
research to distinguish between macrophyte degradation

Table 1
Chemical properties of atrazine and lambda-cyhalothrin®®

Atrazine Lambda-cyhalothrin
Water solubility (mg/1) 32 0.005
Adsorption coefficient (logK,.) 1.97 3.37
Partition coefficient (log K,) 2.34 7.00
Hydrolysis half-life (d) 30 233
Aerobic soil half-life (d) 146 62
Anaerobic soil half-life (d) 159 128
Henry’s Law constant (M/atm) 4.086E4+05  5.629E+03
Vapor pressure (mPa) 4.0E-2 2.0E—4

# Orme and Kegley (2003).
® USDA ARS pesticide database (2005).
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and remediation through associated pathways. Elimination
of soil and rhizospheric interactions through hydroponic
exposures enables the quantification of direct macrophyte
uptake. Measurement of pesticide uptake and partitioning
in J. effusus and L. peploides were achieved in this study
through hydroponic laboratory exposures of atrazine and
lambda-cyhalothrin.

2. Methods and materials

J. effusus (L) subsp. solutus (Fernald & Wiegand)
Héamet-Ahti was obtained from a commercial aquatic sup-
plier with guaranteed absence of pesticide exposure. Upon
receipt, plants were placed into Rubbermaid™ tubs filled
with municipal dechlorinated tapwater (Jonesboro, AR)
in a greenhouse environment for 16 d prior to pesticide
exposure. Unavailability of L. peploides (H.B.K.) Raven.
subsp. glabrescens (Kuntze) Raven from commercial nurs-
eries necessitated excavation from a local wetland with no
history of pesticide applications. These macrophytes were
placed in Rubbermaid™ tubs with indigenous sediment
and municipal dechlorinated tapwater (Jonesboro, AR)
and transferred to a greenhouse environment for 23 d.
Equilibration time in a greenhouse environment insured
actively growing macrophytes prior to pesticide exposure.
Prior to placement into pesticide solution, plant roots
and lower stems were thoroughly rinsed with dionized
water to dislodge any solid material and insure maximum
hydroponic contact. Plant vouchers for each species are
available in Arkansas State University’s herbarium.

2.1. Treatment application

Pesticide treatments were calculated using the recom-
mended field dose of atrazine (2.23kg a.i./ha) and
lambda-cyhalothrin (0.028 kg a.i./ha) with 5% runoff from
a 0.65-cm rainfall event on a 2.02-ha field. Stock solutions
(100X) of atrazine as Aatrex® and lambda-cyhalothrin as
Karate® were prepared prior to dosing in 1-1 glass volumet-
ric flasks. Pre-marked 500-ml Erlenmeyer flasks received a
250-ml dilution of individual pesticide solution prior to
macrophyte introduction. Macrophyte roots and extremely
lower stem in each flask were exposed to pesticide solution
as to mimic contact in agricultural receiving systems.

2.2. Pesticide analyses

Chemical analyses were conducted on hydroponic solu-
tion, root washes, roots, and upper stem and leaf areas to
determine pesticide concentrations throughout the expo-
sures as described by Bennett et al. (2000) and Smith and
Cooper (2004). Atrazine and lambda-cyhalothrin were ana-
lyzed via HP 6890 gas chromatograph equipped with a 30-m
HP 5MS column. A multi-level calibration procedure was
utilized with standards and updated every ninth sample.
Limits of detection (LOD) for atrazine in water and plants
were 0.01 pg/l and 0.1 pg/kg wet weight, respectively; addi-

tionally, the limit of quantitation (LOQ) for atrazine in
water was 0.1 pg/l. LOD for lambda-cyhalothrin in water,
sediments, and plants were 0.001 pg/l and 0.01 pg/kg wet
weight, respectively; additionally, LOQ for lambda-cyha-
lothrin in water was 0.01 pg/l. Mean extraction efficiencies
based on fortified samples, were >90% for water and plants.

2.3. Exposure and sample collection

Aqueous samples were collected prior to macrophyte
exposure for background pesticide concentrations. Hydro-
ponic exposure occurred in a Conviron® growth chamber
(Model 8507); as to mimic early growing season of May—
June, diurnal temperature and light ranged from 18.0—
29.8 °C and 7800-32900 Ix, respectively, and relative humid-
ity was maintained at 60-70%. Sample collection included
three replicates of J. effusus and L. peploides exposed to each
pesticide solution for 8 h, 24 h, 48 h, 5 d and 8 d. Sample col-
lection included remaining pesticide solution, loosely bound
pesticide from exposed roots (adsorbed), macrophyte roots
(roots), and remaining stem and leaves (upper biomass).
Collection method followed as such: (1) following deionized
(DI) water rinse of pesticide-exposed area, adsorbed (loosely
bound) pesticide was dislodged with gentle agitation in
100% ethyl acetate (EtOAc), (2) combined rinse water and
remaining hydroponic solution were measured and
extracted immediately in amber glass jars with the addition
of 0.5 mg KCIl and 50 ml EtOAc, (3) plant roots were cut
with EtOAc-cleaned scissors, weighed, placed in individual
airtight plastic containers, and stored at —80 °C prior to
extraction, (4) plant stem and leaves were cut into 2-3 cm
sections, weighed, and stored as described above. Additional
replicates of J. effusus and L. peploides exposed to DI water
lacking pesticide dosages were incubated and collected at 8 d
as described above.

Plant extractions were performed with modifications of
the method described by Dayan et al. (1997) with mortar
and pestle maceration following exposure to liquid nitro-
gen. Following retrieval from the —80 °C freezer, extrac-
tion method followed as such: (1) addition of liquid
nitrogen facilitated crushing to a powder, (2) subsequent
addition of 100% EtOAc and further crushing to dislodge
plant-bound pesticides, (3) transfer of macerated plant/
EtOAc mixture to glass centrifuge tubes, (4) 15-20 s vortex
followed by 10-15 min extraction at room temperature, (5)
centrifugation for 10 min at 2500 rpm, and (6) transfer of
EtOAc supernatant into pre-labeled amber glass jars until
analyzed. Results were calculated as measured concentra-
tions/kg wet weight.

3. Results
3.1. AtrazinelJ. effusus
Atrazine concentrations in hydroponic solutions were

below detectable limits throughout the 8-d exposure;
however, most atrazine sorbed by the macrophyte was
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Fig. 1. Atrazine concentrations in J. effusus following pesticide exposure. Concentrations are reported as pg/kg wet weight. Means & 1 SD provided.
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Fig. 2. Total atrazine and lambda-cyhalothrin concentrations in J. effusus
and L. peploides following pesticide exposure. Concentrations are reported
as pg/kg wet weight.

concentrated in the roots of J. effusus either by adsorption
to roots or absorption into root biomass after 8 h and 24 h
(75.4% and 86.8%, respectively) (Fig. 1). Pesticide adsorp-
tion to roots was highest after 48 h (8093.6 & 3755.4 ng/
kg) and most was absorbed into root biomass after 5d
(6206.2 + 1559.5 pg/kg). Total atrazine uptake extracted
from the hydroponic solution by this macrophyte was high-
est after 8 d (14697.1 4= 9832.3 ug/kg) with pesticide dis-
tributed throughout the plant (adsorbed—37%, roots—
32%, upper biomass—32%) (Fig. 2).

3.2. Atrazinel L. peploides

Atrazine uptake by L. peploides was distributed through-
out the plant after 8 h (adsorbed—30.2%, roots—40.4%,
upper biomass—29.4%) (Fig. 3). After 48 h, 50.7% of mea-
surable atrazine had been translocated into the upper bio-
mass (4980.2 4= 1352.6 ug/kg). Atrazine uptake by this
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Fig. 3. Atrazine concentrations in L. peploides following pesticide exposure. Concentrations are reported as pg/kg wet weight. Means 4= 1 SD provided.
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macrophyte was greatest at 48 h (9817.1 & 4423.8 ng/kg)
and root uptake at 5d was followed by translocation to
the upper plant biomass after 8 d.

3.3. Lambda-cyhalothrinlJ. effusus

Most lambda-cyhalothrin (72.1%) adsorbed to J. effusus
roots within 8 h of exposure with 58.8% remaining adsorbed
after 48 h (Fig. 4). Pesticide moved into root tissue by 5d
(548.30 & 480.79 ng/kg) and remained in this compartment
throughout the 8-d exposure (634.33 4= 324.36 ug/kg). Only
25.4% of pesticide translocated to upper plant tissue after
8d.
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Pesticide concentrations from roots of L. peploides
included 52.5% absorbed and 45.0% bound in root biomass
after 8 h (Fig. 5). After 24 h, 85.5% of pesticide uptake was
partitioned in the root biomass and remained there for the
8-d exposure (1913.36 + 2238.24 ug/kg).

4. Discussion

More rapid atrazine uptake was observed after § h in L.
peploides resulting most likely from reported high macro-
phyte biomass production (Rejmankova, 1992). Following
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this initial uptake, a second partitioning to root biomass
was measured after 5 d. Since translocation into upper bio-
mass preceded these measurements, and mass balance was
maintained within the macrophyte, metabolized atrazine
may have been atmospherically released or partitioned to
apoplastic tissue, allowing for additional uptake. Notice-
able stress in L. peploides after 5d did not result in com-
plete senescence of this macrophyte, but may have caused
basipetal atrazine translocation at this time.

Although no observable stress was noted in J. effusus,
lack of new root tissue emergence as observed in control
exposures was recorded after 8 d. Such root inhibition
may precede observed effects in shoot count and length
measurements upon exposure to atrazine (Lytle and Lytle,
2005). Even with less rapid initial atrazine uptake and
decreased root growth, herbicide tolerance of J. effusus
(Lytle and Lytle, 2002) may allow for continued accumula-
tion. In previous microcosm studies rapid atrazine uptake
in L. peploides was followed with greater accumulation
after 7d (Bouldin et al., 2005), while in the present study,
greater atrazine accumulation was measured in J. effusus
during the 8-d exposure. Measured differences in atrazine
accumulation between the two studies may be due to plant
material in the previous study retrieved only from the
water/plant interphase and may have failed to account
for root partitioning or acropetal translocation.

Physicochemical properties of organic compounds dic-
tate absorption and transportation within the macrophyte
and compounds with log K, 1-3.5 allow mobility and sub-
sequent leaf and stem metabolism (Ashton and Crafts,
1981; Schréder and Collins, 2002). Similar acropetal trans-
location and observed equilibrium within 6 h of exposure
was reported in Hydrilla verticillata from atrazine-spiked
sediment (Hinman and Klaine, 1992). In the current hydro-
ponic study, equilibrium was accomplished within 48 h,
with translocation continuing throughout the 8-d exposure.
Observed differences in these studies may have been due to
dissimilarity of sediment and hydroponic exposures, sub-
merged and emergent vegetation, or contrasts of 2-3-cm
segments of shoot beyond the roots in H. verticillata with
the entire upper stem and leaves measured in the present
hydroponic exposure. Due to slow metabolism of atrazine
followed by eventual metabolic release, extended studies
may be necessary to demonstrate further uptake by the
macrophytes in these studies.

Hinman and Klaine (1992) also reported 96-h equilib-
rium in H. verticillata exposed to chlordane-amended sed-
iment. Uptake and transfer within macrophytes with
similar physicochemical properties should allow compari-
sons of plant accumulation. Variances in plant partitioning
were measured as chlordane’s (solubility = 0.06 mg/1; log-
K, = 5.58) significant translocation into the lower 2-—
3 cm of the stem (Hinman and Klaine, 1992) contrasted
with 74.6% and 98.2% lambda-cyhalothrin partitioning in
roots of J. effusus and L. peploides, respectively. Hydropho-
bic chemicals tend to be retained in the lipids of the root
epidermis and surrounding mucilage (Schréder and Col-

lins, 2002), and significant translocation into stem tissue
would not be expected. Variances in uptake and transloca-
tion as measured in our study would be expected to be spe-
cies-specific. This was demonstrated by rapid transfer into
root biomass of L. peploides which most likely allowed for
greater pesticide uptake throughout the 8-d exposure.
Translocation of lambda-chyalothrin within macrophytes
did not result in greater pesticide uptake. Although J. effu-
sus uptake into root biomass was slower and 25.4%
was translocated into upper plant biomass, as in previous
microcosm studies (Bouldin et al., 2005), greater lambda-
cyhalothrin uptake was accomplished in L. peploides.
Research utilizing submerged aquatic plants in pesticide
phytoremediation exposures (Jones and Estes, 1984; Hin-
man and Klaine, 1992; Rice et al., 1997; Karen et al.,
1998) does not account for nutrient runoff and sediment
accretion in agricultural drainage systems shifting macro-
phyte communities from submerged to emergent vegetation
(Phillips et al., 1978; Chambers, 1987; Bhowmik and
Adams, 1989; Hough et al., 1989; Janse, 1998). Addition-
ally, recent studies have reported that resident vegetative
communities in agricultural drainages of the Mississippi
Delta, USA, are composed primarily of emergent species
(Bouldin et al., 2004a). Pesticide remediation is enhanced
in emergent and floating vegetation by high transpiration
rates and lipids associated with plant cuticles (Hutchison,
1975; Williams, 2002; Chefetz, 2003) while greater exposed
surface areas enhance remediation in submerged macro-
phytes (Rice et al., 1997). Increased adsorption onto
exposed surface area of submerged macrophytes could be
expected, with acropetal translocation of absorbed pesti-
cides impeded by low transpiration rates. In contrast,
potential uptake of organic contamination is influenced
by evapotranspiration (Cunningham et al., 1997), therefore
higher transpiration rates of emergent vegetation could be
expected to increase volatilization of pesticide metabolites
resulting in greater remediation capabilities.
Investigations of mitigation capabilities within agricul-
tural drainages (Moore et al., 2002; Schulz et al., 2003a;
Cooper et al., 2004) fail to distinguish between macro-
phyte-specific degradation and remediation through associ-
ated pathways. In these ecosystems, sediment, organic
matter, microbial action, and resident vegetation com-
bine to form a complex dynamic of pesticide remediation
(Anderson et al., 1994; Chung et al., 1996; Tanner, 1996;
Novak, 1999; Runes et al., 2001). Understanding macro-
phyte-specific remediation as a component of the dynamic
interaction of pesticide mitigation may help further estab-
lish optimum vegetative communities within these systems.
Remediation studies of pesticides commonly used in the
Mississippi Delta could greatly benefit from encompassing
resident vegetation of agricultural receiving systems. Direct
macrophyte mitigation of pre-emergent herbicides, such as
atrazine, may only be possible through early-season emer-
gent vegetation, such as J. effusus, while mid-season appli-
cations of pesticides may enter receiving systems with
established vegetative communities and maximized mitiga-
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tion capabilities. Seasonality of pesticide applications and
macrophyte emergence in these systems should be jointly
considered in remediation studies. Direct macrophyte con-
tact and phytoremediation processes such as water uptake
and volatilization may be determined by seasonality, but
indirect mitigation through associated activities such as
rhizospheric action continues during plant dormancy (Wil-
liams, 2002). Seasonal succession of vegetated communities
within agricultural conveyance structures results from
varying species emergence and changing hydraulic regime.
Such dynamic regimes not only interact to furnish
movement through macrophyte systems, but in addition,
activate seasonal succession such that ephemeral drainage
systems take on specific attributes with regard to plant
succession, hydraulic retention, and increasing surface
exchange.

As laboratory findings of macrophyte remediation
advance into field studies, vegetated wetlands should be
quantified for their phytoremediation and natural attenua-
tion capacity (Williams, 2002). It should be noted that field
exposures of pesticide runoff into wetlands and ditch struc-
tures can be found in recent literature with pesticide reme-
diation quantified through biomonitoring endpoints and
chemical analyses (Moore et al., 2002; Schulz et al.,
2003a,b; Bouldin et al., 2004a; Cooper et al., 2004). Specific
remediation pathways such as rhizo-microbial degradation
(Walton and Anderson, 1990; Anderson et al., 1994; Zablo-
towicz and Hoagland, 1999), soil and sediment interactions
(Chung et al., 1996; Maund et al., 2002; Chefetz, 2003;
Lalande et al., 2003), and macrophyte-specific pesticide
uptake (Jones and Estes, 1984; Hinman and Klaine,
1992; Karen et al., 1998; Lytle and Lytle, 2002) have been
investigated as single components of the dynamic processes
occurring within these ecosystems. Investigations of these
individual pathways enable a better understanding of the
phytoremediation capabilities of constructed wetlands
and agricultural ditches. It should also be noted that agri-
cultural BMPs such as conservation tillage, cover crops,
VES and riparian zones also incorporate phytoremediation
processes. Such techniques are used to minimize pesticide
loss from production fields and could be combined with
recognized remediation potential of vegetated ditches for
a comprehensive phytoremediation strategy within the
agricultural landscape.
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