Social parasitism in fire ants (*Solenopsis* spp.): a potential mechanism for interspecies transfer of *Wolbachia*

FRANCK DEDEINE,* MICHAEL AHRENS,* LUIS CALCATERRA† and D. DEWAYNE SHOEMAKER*
*Department of Entomology, 643 Russell Laboratories, 1630 Linden Drive, University of Wisconsin, Madison, WI 53706, USA,
†USDA-ARS, South American Biological Control Laboratory, Bolivar 1559 (1686) Hurlingham, Buenos Aires Province, Argentina

Abstract

One possible mechanism for interspecific transfer of *Wolbachia* is through the intimate contact between parasites and their hosts. We surveyed 10 species of fly parasitoids (*Pseudacteon* spp.) and one inquiline social parasite, *Solenopsis daguerrei*, for the presence and sequence identity (*wsp* gene) of *Wolbachia*. Two *Wolbachia* variants infecting *S. daguerrei* were identical to known variants infecting the two common ant host species, *Solenopsis invicta* and *Solenopsis richteri*, suggesting possible transfers of *Wolbachia* between this parasite and their hosts have occurred. Our data also revealed an unexpectedly high diversity of *Wolbachia* variants within *S. daguerrei*: up to eight variants were found within each individual, which, to our knowledge, is the highest reported number of *Wolbachia* variants infecting a single individual of any host species.

Keywords: horizontal transmission, *Pseudacteon*, social parasitism, *Solenopsis* ants, *Wolbachia*, *wsp*

Received 16 October 2004; revision accepted 20 January 2005

Introduction

Wolbachia are a genus of intracellular bacteria infecting numerous arthropods and filarial nematodes. In arthropods, these bacteria often manipulate the reproduction of their hosts to increase their own transmission by distorting the host-sex ratio or by inducing cytoplasmic incompatibility (for recent reviews see Werren 1997; Stouthamer et al. 1999). Recent surveys have suggested that *Wolbachia* infect a substantial proportion of insect species, with estimates ranging from 17% (Werren et al. 1995a; West et al. 1998; Werren & Windsor 2000) to 76% (Jeyaprakash & Hoy 2000). Extrapolation of these estimates indicates that *Wolbachia* are certainly one of the most widespread parasites on earth.

Although *Wolbachia* predominantly are maternally transmitted, it is clear from phylogenetic and experimental data as well as their widespread distribution among numerous taxa that they are also transmitted horizontally among arthropod species (O’Neill et al. 1992; Werren et al. 1995b; Schilthuizen & Stouthamer 1997; Heath et al. 1999; Van Meer et al. 1999; Vavre et al. 1999; Noda et al. 2001), the findings of several other studies do not (Schilthuizen & Stouthamer 1998; West et al. 1998; Shoemaker et al. 2002). These conflicting results underscore the need for additional studies examining the relative importance of parasitoids in transferring *Wolbachia* as well as attempting to identify other possible mechanisms of horizontal transmission of *Wolbachia*.

Ants potentially represent an appealing insect group for studying horizontal transmission of *Wolbachia* for three main reasons. First, recent studies have revealed a high incidence of *Wolbachia* infections in many ant species from a number of genera (Wenseleers et al. 1998; Jeyaprakash & Hoy 2000; Shoemaker et al. 2000; Shoemaker et al. 2003a; Tsutsui et al. 2003; Van Borm et al. 2003). Second, many ant species are major predators of a diversity of invertebrate species (Hölldobler & Wilson 1990) from which they potentially may acquire *Wolbachia*. Third, many ant species commonly share natural enemies, including parasitoids and other parasites (Schmid-Hempel 1998), that could serve as vectors for *Wolbachia* transfer.
In this study, we surveyed for the presence and identity of Wolbachia infections in parasites that attack the two fire ant species, *Solenopsis invicta* and *Solenopsis richteri*. These parasites comprise 10 fly parasitoid species of the genus *Pseudacteon* (Diptera: Phoridae) and the inquiline ant social parasite *Solenopsis daguerrei* (Hymenoptera: Formicidae). We hypothesized that if one or more of these parasite species has played a role in Wolbachia transfer, then one might expect that both the parasite and the host ant species harbour identical or nearly identical Wolbachia variants. To test this hypothesis, we sequenced a portion of the Wolbachia genome (*wsp* gene) from individuals representing each Wolbachia-infected parasite species, and subsequently compared these sequence data to existing sequences representing the same gene region of Wolbachia infecting *S. invicta* and *S. richteri*.

Materials and methods

Samples and molecular analyses

Pseudacteon flies were collected from the surface of mounds of various *Solenopsis* species, including *S. invicta*. Individuals of the inquiline social parasite *S. daguerrei* were collected from within three nests of *S. invicta* (see Table 1). Total DNA was extracted from each individual using the Puregene DNA Isolation Kit (Gentra Systems). A 575–625 bp portion of a highly variable gene encoding a bacterial surface protein, *wsp* (Zhou et al. 1998). PCR-amplified products were then purified and sequenced. For a detailed description of PCR reaction mixes, thermal cycling profiles, and sequencing reaction protocol, see Shoemaker et al. (2003b). In cases where our sequencing results revealed the presence of more than one Wolbachia variant, as evident in multiple peaks or frameshifts in electropherogram profiles, the *wsp* PCR amplicons were cloned into a vector (TOPO TA Cloning Kit, Invitrogen Corp.). Colonies were screened for the presence of the desired *wsp*-PCR insert using the primers previously discussed. PCR-amplified products from nine to 21 colonies were sequenced and subsequently compared to existing databases to determine the identity of each Wolbachia variant.

Phylogenetic analyses

Only nonredundant Wolbachia (*wsp*) sequences from each species were used for tree-based phylogenetic methods. We also included in our analyses a subset of published sequences from other insects obtained from GenBank, including a representative of each unique *wsp* sequence found previously in *S. invicta* and *S. richteri* (see Fig. 1). For all analyses, the third hypervariable region of *wsp* was removed (Zhou et al. 1998; Shoemaker et al. 2002).

Table 1 Collecting locality and Wolbachia infection status of each parasite species attacking fire ants (*Solenopsis* spp.).

<table>
<thead>
<tr>
<th>Species</th>
<th>Population</th>
<th>Population</th>
<th>N(^{a})</th>
<th>n(^{b})</th>
<th>n(^{c})</th>
<th>Wolbachia (wsp) Strains</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pseudacteon spp. (parasitoid flies)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. borgmeieri</td>
<td>Collected from the surface of nests in the field in Argentina</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>P. cattellatus</td>
<td>(Buenos Aires, Corrientes, Formosa, and Tucuman)</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>P. curvatus</td>
<td>(Buenos Aires, Corrientes, Formosa, and Tucuman)</td>
<td>5</td>
<td>5</td>
<td>14 (3)</td>
<td>wPcurA1 (2); wPcurA1 + wPcurA2 + wPtriA (1)</td>
<td></td>
</tr>
<tr>
<td>P. litoralis</td>
<td>Bolivia (Tarija), or from field</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>P. sp. near disneyi</td>
<td>collected nests (Corrientes, Formosa, and Buenos Aires)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>wPcurA2 (1)</td>
<td></td>
</tr>
<tr>
<td>P. nocens</td>
<td>that were returned to the laboratory.</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>wPcurA2 (3)</td>
<td></td>
</tr>
<tr>
<td>P. micricrus</td>
<td></td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>wPnudB (1)</td>
<td></td>
</tr>
<tr>
<td>P. obtusus</td>
<td></td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>wPcurA2 (1)</td>
<td></td>
</tr>
<tr>
<td>P. obtusus (B)</td>
<td></td>
<td>2</td>
<td>1</td>
<td>9 (1)</td>
<td>wPcurA2 (1)</td>
<td></td>
</tr>
<tr>
<td>P. tricuspis</td>
<td></td>
<td>5</td>
<td>5</td>
<td>17 (4)</td>
<td>wPtriA (4)</td>
<td></td>
</tr>
<tr>
<td>S. daguerrei (inquiline social parasite)</td>
<td>Resistencia, Argentina</td>
<td>1</td>
<td>1</td>
<td>15</td>
<td>wSdagA1 + wSdagA3 + wSdagA5 + wSdagB1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Guaira, Brazil</td>
<td>1</td>
<td>1</td>
<td>21</td>
<td>wSdagA1 + wSdagA2 + wSdagA3 + wSdagA4 + wSdagB1 + wSdagB2 + wSdagB3 + wSdagB4 (= wSinvictaB)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Planalto, Brazil</td>
<td>1</td>
<td>1</td>
<td>21</td>
<td>wSdagA1 + wSdagA3 + wSdagA5 + wSdagB1 + wSdagB2 + wSdagB4 (= wSinvictaB)</td>
<td></td>
</tr>
</tbody>
</table>

\(^{a}\)N equals number of individuals surveyed for Wolbachia infection.

\(^{b}\)n\(^{id}\) equals the number of individuals infected with Wolbachia.

\(^{c}\)n\(^{wsp}\) equals the total number of *wsp* sequences (number of individuals in parentheses).

\(^{d}\)Values in parentheses represent the number of individuals with a particular Wolbachia strain or combination of strains.
Fig. 1 Neighbour-joining (NJ) tree of *wsp* sequences from *Solenopsis daguerrei* and various *Wolbachia*-infected *Pseudacteon* spp. (this study, in bold) as well as representative *wsp* sequences from other insects including the New World ants obtained from GenBank. Numbers along branches represent posterior probability values from Bayesian analyses followed by bootstrap support values from NJ analyses. Only values greater than 60% for both analyses are shown. Asterisks (*) indicate additional nodes with bootstrap and posterior probability values greater than 60%. The values at the nodes of the two clades containing the two subgroups of *Wolbachia* previously discussed to be specific to the New World ants (*InvA* and *InvB*, indicated by brackets) are encircled. All *wsp* sequences obtained from the New World ants are underlined. The vertical black and grey bars represent the A and B groups of *Wolbachia*, respectively. The two instances where *S. daguerrei* and one of its ant hosts harbour identical *wsp* sequences (presumed cases of horizontal transfer) are indicated by shaded boxes (see text).

program MODEST (Posada & Crandall 1998) was used to find the best-fit model of sequence evolution and genetic distance values, which were then calculated between pairs of sequences using this model (GTR + \(\Gamma \), with \(\Gamma = 0.51 \)). The resulting distance data matrix was used to infer relationships among the \textit{wsp} sequences using neighbour-joining (NJ) methods as implemented in the program PAUP* version 4.0b10 (Swofford 1999) while Bayesian methods were implemented using MRBAYES version 2.0 (Huelsenbeck & Ronquist 2001). For NJ analyses, ties were broken randomly and the support for particular nodes within the NJ tree was assessed using bootstrap analyses performed with 50 000 data resamplings. Bayesian analyses were used to generate posterior probability distribution values for clades (Huelsenbeck & Ronquist 2001; Ronquist & Huelsenbeck 2003). No a priori assumptions about the tree topology were made and all metropolis coupled Markov chain Monte Carlo (MCMC) searches were provided with a uniform prior based upon the values obtained from MODEST. We performed four independent searches, each of which was started from a random tree, run with four chains and for 4 million generations with every 100th tree sampled to obtain 40 001 sample points. Posterior probabilities (or the percentage of samples that recover any particular clade) were calculated using the trees visited by the Markov chains after the burn-in samples (i.e. the number of generations required for samples to reach stationarity as determined by visual inspection of the log-likelihood values) were discarded.

Results

\textbf{Wolbachia variants in Pseudacteon flies}

Our survey revealed that individuals representing seven of the 10 \textit{Pseudacteon} species were infected with \textit{Wolbachia} (Table 1). Out of 46 \textit{wsp} sequences from these seven species, only four unique sequences were detected indicating that different \textit{Pseudacteon} species harbour identical \textit{Wolbachia} variants [deposited in European Molecular Biology Laboratory (EMBL) and GenBank data libraries under Accession nos AY878108–AY878111]. Multiple infections were detected only in \textit{Pseudacteon curvatus}. Crucially, none of the 46 \textit{wsp} sequences from the infected \textit{Pseudacteon} flies was identical or even closely related to the \textit{wsp} sequences obtained from infected \textit{Solenopsis invicta} and \textit{Solenopsis richteri}.

\textbf{Wolbachia variants in Solenopsis daguerrei}

All three \textit{Solenopsis daguerrei} individuals surveyed were \textit{Wolbachia}-infected and our preliminary sequence analyses revealed that each individual contained more than one \textit{wsp} variant. Subsequent analyses of 57 \textit{wsp} sequences revealed nine unique sequences, presumably representing nine different \textit{Wolbachia} variants (deposited in EMBL and GenBank data libraries under Accession nos AY787999–AY788107; Table 1). The percentage of \textit{wsp} nucleotide sequence dissimilarity among these nine variants ranged from 3.8 to 21.8%. The number of different \textit{Wolbachia} variants found within each \textit{S. daguerrei} individual ranged from four to eight. Furthermore, six of these nine variants were common to more than one individual. Two of the \textit{wsp} sequences found in \textit{S. daguerrei} were identical to the \textit{wsp} sequences obtained from their ant hosts \textit{S. invicta} and \textit{S. richteri}: wSdagA1 is identical to wSricA2 obtained from nine individuals of \textit{S. richteri}, and wSdagB4 to wSinvictaB commonly found in \textit{S. invicta} (Shoemaker et al. 2000, 2003b).

\textbf{Phylogenetic analyses}

The neighbour-joining (NJ) and Bayesian analyses recovered trees virtually identical in topology (Fig. 1). Consistent with earlier studies, the sequences representing the A and B groups of \textit{Wolbachia} cluster together. Further, our results are also consistent with those of Van Borm et al. (2003) showing that the \textit{wsp} sequences from free-living species of the New World ants fall into one of two well-supported clades (i.e. subgroups \textit{InvA} and \textit{InvB}) at the exclusion of \textit{wsp} sequences from all other insects, with two exceptions: \textit{S. invicta} from the United States (Jayaprakash & Hoy 2000) and \textit{S. richteri} from Arroio dos Ratos, Brazil (D.D.S., unpublished).

None of the four unique \textit{wsp} sequences obtained from \textit{Wolbachia}-infected \textit{Pseudacteon} flies falls within either well-supported subgroup containing the New World ant \textit{Wolbachia} variants, although one variant (wPcurA1) is a sister group to the \textit{InvA} subgroup (Fig. 1). The nine \textit{wsp} sequences we obtained from the social parasite \textit{S. daguerrei} are distributed across the A and B \textit{Wolbachia} groups. Furthermore, only three of the nine \textit{wsp} sequences fall within the subgroup \textit{InvB}, and none falls within subgroup \textit{InvA}.

\textbf{Discussion}

Numerous lines of evidence indicate that \textit{Wolbachia} are transmitted horizontally between arthropod species. Although the mechanisms of such interspecies transmission in nature are poorly understood, one suggested mechanism is that \textit{Wolbachia} are transferred between hosts and their parasitoids (O’Neill et al. 1992; Werren et al. 1995b; Schilthuizen & Stouthamer 1997; Heath \textit{et al}. 1999; Van Meer \textit{et al}. 1999; Vavre \textit{et al}. 1999; Huigens \textit{et al}. 2000; Noda \textit{et al}. 2001; Huigens \textit{et al}. 2004). In this study, we found no evidence for horizontal transmission of \textit{Wolbachia} between the two fire ant species \textit{Solenopsis invicta} and \textit{Solenopsis richteri} and their associated parasitoid flies of the genus \textit{Pseudacteon}. Indeed, although many \textit{Pseudacteon} species are \textit{Wolbachia}-infected (at least seven out of 10 species), our analyses
revealed that none of the Wolbachia variants infecting these flies is identical or even closely related to Wolbachia variants known to infect S. invicta and S. richteri. Thus, despite the intimate interactions among them, these fly parasitoids do not appear to be candidates for transferring Wolbachia infections among Solenopsis ant species, lending further support to the idea that host-parasitoid associations are certainly not the only mechanism of horizontal transmission of Wolbachia (Schilthuizen & Stouthamer 1998; West et al. 1998; Shoemaker et al. 2002).

In contrast, our results do suggest horizontal transmission between the inquiline social parasite Solenopsis daguerrei and its hosts. Indeed, two of the nine Wolbachia variants infecting S. daguerrei are identical to the variants present in S. invicta and S. richteri. The possibility that the sharing of identical Wolbachia variants is because of the contamination of host tissues resulting from the intimate association between the ant host and its social parasite [a possibility recently raised by Hughes et al. (2004) for certain host-parasitoid systems] can be ruled out because all S. daguerrei individuals harbouring Wolbachia variants identical to S. richteri (wSricA2) were collected from nests of another species, S. invicta. The alternative hypothesis that the sharing of Wolbachia variants between S. daguerrei and its hosts as a result of shared ancestry also seems very unlikely. First, S. daguerrei is not closely related to S. invicta and S. richteri within the Solenopsis saecissima species-group (Pitts 2002), and more important, several species more closely related to S. daguerrei are not infected with Wolbachia (Shoemaker et al. 2000). Also, our phylogenetic analyses show that the shared Wolbachia variant infecting S. daguerrei and S. richteri (wSdagA1) is unique to these two species and differs from all other Wolbachia variants infecting the New World ants (including other Solenopsis spp.), ruling out the possibility that this variant has been co-inherited in S. daguerrei and S. richteri from a common ancestor. Thus, the most parsimonious explanation for the sharing of identical Wolbachia variants between S. daguerrei and the host ants S. invicta and S. richteri is that it results from horizontal transmission of Wolbachia. Given the intimate interactions between inquiline social parasites and their hosts (i.e. feeding by trophallaxis, caring of eggs by workers; Hölldobler & Wilson 1990), one can easily envision sufficient opportunities for Wolbachia to be transferred from the host to the social parasite and, possibly, from the social parasite to the host.

Another intriguing finding of our study is the high number of Wolbachia variants that each individual of S. daguerrei harbours compared with individuals of free-living fire ant species, which rarely harbour more than one Wolbachia variant (Shoemaker et al. 2000, 2003b). Indeed, we found eight Wolbachia variants within a single individual of S. daguerrei, which to our knowledge, is the highest number of coinfecting variants reported in a single host individual of any species. Furthermore, in contrast to most of the Wolbachia variants infecting the New World ants, phylogenetic analyses revealed that many Wolbachia variants in S. daguerrei do not belong to the InvA and InvB subgroups but rather are quite divergent and scattered across the Wolbachia A and B groups (Fig. 1). The coexistence of multiple and unrelated Wolbachia infections suggests that the biology of S. daguerrei allows individuals to frequently acquire new Wolbachia variants by horizontal transmission, and that the new Wolbachia can persist within host populations. While multiple Wolbachia variants may also be the result of recombination, which has been demonstrated to occur in Wolbachia (Jiggins et al. 2001; Werren & Bartos 2001; Reuter & Keller 2003), our analyses of the nine wsp sequences from S. daguerrei did not reveal any obvious patterns consistent with recombination. In any case, regardless of the roles of recombination and horizontal transmission in the origin of multiple Wolbachia infections in S. daguerrei, an interesting question that remains is why do individuals of this parasitic ant species harbour such a diversity of Wolbachia variants in contrast to their free-living ant host species. One speculative hypothesis is that the lifestyle of ants (free-living vs. parasite) may influence the spread and the persistence of Wolbachia within host populations.

In conclusion, our data suggest that social parasitism in ants may represent an additional mechanism of interspecies transfer of Wolbachia. Further, because social parasitism is relatively common in ants, which are widespread and play key roles in many ecosystems, this mechanism of Wolbachia transmission may be significant in arthropod communities. Nonetheless, because social parasites are often rather host-specific and generally parasitize only closely related ant species or groups of ant species (Hölldobler & Wilson 1990), the mechanisms leading to the occurrence of similar or identical Wolbachia strains infecting the New World ants (InvA and InvB) from divergent genera remain to be explained.

Acknowledgements

We wish to thank Juan Briano, Laurent Keller, Mark Mescher, and Ken Ross for their assistance in the collecting of ants. We also thank Juan Briano, Antonis Rokas, David P. Hughes and an anonymous reviewer for their invaluable comments on the manuscript. This study was supported by grants from the College of Agriculture and Life Sciences at the University of Wisconsin, the United States Department of Agriculture NRICGP, and the US National Science Foundation to DDS.

References

© 2005 Blackwell Publishing Ltd, Molecular Ecology. 10.1111/j.1365-294X.2005.02499.x