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Abstract

In the present study, remote sensing of soil mmsisi carried out using the Passive and
Active L- and S-band airborne sensor (PALS). Thia dla this paper were taken from 5
days of overflights near Chickasha, Oklahoma dutimg 1999 Southern Great Plains
(SGP) experiment. Presently, we analyze the celiectlata to understand the
relationships between the observed signals (rademieightness temperature and radar
backscatter) and surface parameters (surface sasitume, temperature, vegetation water
content, and roughness). In addition, a radiati@esfer model and two radar backscatter
models are used to simulate the PALS observatidnsintegration of observations,
regression retrievals and forward modeling is usederive the best estimates of soil

moisture under varying surface conditions.



1.0. Introduction

The principal variables in land-surface hydrologg aoil moisture, surface temperature,
vegetation, precipitation and streamflow. Of thes@face temperature, vegetation and
precipitation are currently observed using sagd|iand streamflow is routinely observed
at in-situ watershed locations. Soil moisture reraghe only variable not observed (or

observed very sparsely) either in-situ or via resTs®nsing.

Numerous studies have shown the influence of soiktare on the feedbacks between
land-surface and climate, which in turn affect dy@amics of the atmospheric boundary
layer and have a direct relationship to weathergdablal climate [1]-[4]. Chang et al. [5]
have shown the influence of spatial variations @f moisture and vegetation on the
development and intensity of severe storms, whd@&agemonstrated the ability of soil
moisture to influence surface moisture gradientd #m partition incoming radiative
energy into sensible and latent heat. Better wtaeding of the processes involved in the
forcing of, and responses to, Earth’s changing renment is needed in order to
accurately assess, predict and evaluate the methiilo between the global hydrologic
cycle, weather and climate change. For this to teoraplished, it is necessary to
intimately understand the relationship of soil nais to these phenomena on small and
large-spatial scales. Unfortunately, complicatihgse overall goals is our inability to
completely observe large-scale hydrologic landamef interactions. Remote sensing
enables us to estimate large-scale soil moisturéhtopurpose of modeling the two-way

interaction between land and atmosphere, makipgssible to understand the nature of



global climate. This paper examines multiple teghes used to retrieve land-surface
parameters using microwave remote sensing. Givemdar linear relationship between
soil moisture and microwave emission, many priards&s [7-10] have focused on
regressions between remotely sensed observatiahst@erved surface soil moisture or
comparisons between aircraft/satellite retrievated an-situ observations. Another
common method of soil moisture estimation analyslves modeling the microwave
emission of vegetated and bare soil surfaces basethe physical parameters of the
media [11-13]. In this paper we attempt to combimese methods using observations
from PALS, statistical regressions (between reédiewand observations of soil moisture),
and physically based forward modeling of the sefi@othe purpose of near surface (0-
5cm) soil moisture retrieval. In order to investegdhese relationships, the data were
stratified into three vegetation water content megg: low (<0.25 kg ifi), medium (0.25-
3.0 kg m¥), high (>3.0 kg rif), observed during the Southern Great Plains 1S@5P0Q9)
experiment. The fairly wide range of land-surfaanditions encountered in SGP99
permits study of the advantages and drawbacks sdiyE and active remote sensing

under varying vegetation, soil moisture and rougkrenditions.

Previous investigations have shown that passiveowi&ve remote sensing is effective in
the study of soil moisture [14-20] and precipitatif21-24]. These efforts have
gualitatively demonstrated the theoretical sensgjtief microwave brightness temperature
to soil moisture variations in varying media [22B]. Overlying vegetation and
atmospheric moisture have been shown to have lésst ®n soil emission at longer

microwave wavelengths [27]. In addition, lower fueqcies within the 1-6 GHz range



have an increased soil sensing depth and providega contrast between wet and dry
soil. This frequency range has therefore in effeetome the main focus of remote
sensing of soil moisture. Aside from previous SGiMmpaigns [28], the majority of
research done using low frequency microwave radigntes been focused on smaller
catchments over uniform ground conditions [29]-[3Dhere is still a need for validating

and comparing models and algorithms in large-doelié experiments.

2.0. Background

Microwave radars observing the land-surface meatheebackscattering coefficient, a
dimensionless quantity representing the scatterdiragmm the soil and vegetation

components of the surface. Scattering from the depends on both the dielectric
constant (which is affected by soil moisture) ahd surface roughness. An increase in
soil moisture results in an increase in surface&kse@atter, giving a positive relationship

whose slope depends on the roughness and vegetdtamacteristics. The transmit-

receive polarization combination associated withliackscattering coefficient is denoted
by 0;°, where i,j = H or V (horizontal or vertical polaations). Backscatter is expressed
as decibels (dB). Depending on roughness and pedvizhre to low vegetation cover,

these values can change roughly between -5 anddBLGJor both VV- and HH-

polarizations over the dynamic moisture range fdvgnto saturation.

As the moisture content in a soil increases, s@ dsesurface reflectivity, r. This results
in a decrease in the emissivity, 1-r, of the shile resulting emissivity changes from the

surface are used in the interpretation of data fneicrowave radiometers measuring the



emission from the surface. The emissivity has anstrinfluence on the radiated
brightness temperature of the surface in the mia@w region. The brightness
temperature, d, is proportional to the product of the physicamperature and the
emissivity of the surface [18, 31]. Brightness temgpure has been shown to have a linear
relationship with surface soil moisture [32]. Besawf the large difference in emissivity
of dry and wet soil, a comparison of the relativiglitness temperatures of the soils can

be used to detect soil moisture [27].

In the present study, data from the PALS instrumeste used to retrieve soil moisture in
the Southern Great Plains Little Washita, Oklahaegion. PALS was developed to
study the utilization of dual-frequency, dual-pitation, passive and active
measurements for remote sensing of ocean salinily s®il moisture. The instrument
operates at 1.4 and 2.69 GHz in the radiometermgiarand 1.26 and 3.15 GHz in the
radar channels. PALS utilizes a multi-frequencyltivpolarized design, and is capable
of acquiring simultaneous radar and radiometrioaigres of land and ocean surfaces.
The radiometer receives coincidental vertical amdizontal emission and the radar
transmits vertical or horizontal polarization areteives these two linearly polarized
radar echoes simultaneously. A more thorough detgmni of the PALS specifications and
applications can be found in [33]. An analysis 818 soil moisture observations during
SGP99 has been performed; the approach and resaltdetailed by Njoku et al. [34].
Data collected during the study were calibrated gedmetrically corrected for aircraft
navigational and attitude variations and organifmdeach flight line overpass of the

individual agricultural fields. The instrument prded simultaneous collection of



horizontally and vertically polarized L- and S- darbrightness temperature and
backscatter coefficients, nadir-looking thermalranéd surface temperature, footprint
latitude and longitude position and aircraft alleu The unique active/passive design
provides valuable information on the correspondiffgcts of varying vegetation, surface

types and soil moisture on the radar and radionmeggronses.

PALS was flown during the Southern Great PlainddFEexperiment, July 8 to 20",
1999, on a C-130 aircraft. The experiment includedhriety of airborne C-, S-, and L-
band microwave instruments to provide large-scalkmoisture mapping in the Little
Washita Basin (603 kfjy near Chickasha, Oklahoma. The present studystss the
PALS instrument exclusively; a description of adhghal instruments used during SGP99
and experiment details can be found on the expatimeeb site (http://
daac.gsfc.nasa.gov/ICAMPAIGN_DOCS/SGP99/index.shtPALS flew over the Little
Washita Watershed at a nominal altitude of 3,0@® ¥ath an approximate footprint size
of 300 x 400 m for a total of 6 days. Flight linesre selected over a range of field sites
to provide a comprehensive analysis of varying gdoaover. The land conditions and
time of study of the Little Washita Basin are id&al evaluating new sensor systems and
algorithms. Forest cover within the watershed iy @parse and typically follows streams
constituting a small portion of the watershed [3@he basin consists mostly of rolling
hills (maximum relief is less than 200m), rangelaml pasture. For purposes of this
paper, the representative texture for the surfagerlsoil is taken to be 30% sand and
20% clay. Within the watershed, the ground trutbad=ollection included eleven field

sites (0.8 Km x 0.8 Km), chosen in five types afidecover: rangeland, wheat, corn,



alfalfa and fallow, ranging in vegetation water tnt from 0-7.18 kg/fh (Table I).

Collected ground data applicable to this papemuhel gravimetric soil moisture (0 — 2.5
and 0 - 5 cm), surface roughness, soil bulk densityg vegetation water content as
described in [34]. It should be noted that in thisdy, the 0 — 5 cm gravimetric soll
moisture is used exclusively (instead of volumesd moisture) due to possible bulk
density in-situ measurement error. When applietthénfollowing analysis, a bulk density

value of 1.28 g cilhas been used.

Weather conditions were ideal during the studyludiog a major rain event on the third
day (July 18, 1999). This allowed a subsequent drydown periodbé observed
throughout the basin (a change in gravimetric salsture content from about 24.3% to
3.4% over a period of 8 days). The precipitatiors wan-uniform throughout the basin
(varying from 31.0 mm in the western part of theewshed to approximately 9.6 mm in
the eastern regions), causing a heterogeneouss@ture pattern across the watershed
[36]. Although the weather and vegetation condgipnesented a sufficient range of soill
moisture and vegetation water content, the hetemes nature of the moisture patterns
within the watershed do not allow for the analysfisreas with both high vegetation and
moisture. This presents problems in the followirggression analysis and must be

considered upon interpretation of the results.



3.0. Soil Moisture Estimation Techniques

Three techniques are examined in this paper foilewig soil moisture from the PALS
microwave emission and backscatter observationsthef soil-canopy system; (a)
Regression analysis, (b) Passive physical model(e@ndctive physical model. In this
initial study an attempt has not been made to eraatombined passive/active algorithm,

rather the analyses (for radiometer and radar) baee carried out separately.

In applying physical models it is important to ckeosoil surface and vegetation
parameters with as much realism as possible whilsureng representative
characterization of the field sites, and it is dasle that the parameterizations used be
consistent between the passive and active mode¢ésniodels in this study assume a soil
type (sandy loam) representative of the SGP reguith, sand and clay fractions of 30%
and 20%, respectively. Dielectric constant valuesendetermined using the equations of
Dobson et al., 1985. This dielectric model usesisard clay mass fractions along with
bulk density (average of in-situ) to describe saiture. The PALS incidence angle®f

39° was used in the model calculations. We havesed the modeling results on the low

vegetated fields due to the fact that the radaretscgimulate these conditions best.

4.0. Regression Analysis

It has been shown that radiometric and radar soikture sensitivities to soil moisture
vary differently depending on vegetation charasters, frequency and polarization. By
analyzing multiple channels over a varied vegetatange we expect to improve our soil

moisture prediction potential. This was investghby comparing results of multiple
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regressions performed on the collocated radionsetgiterometer measurements and in-

situ gravimetric soil moisture measurements.

For the multiple linear regression analyses an tsquaf the form
N
mi=a,*2 ad,, (1)
was used, wherey; ; are the radiometer or radar data (brightness teafyress or

backscattering coefficients) in channel i and dadant j, corresponding to a collocated

field site. N is the number of channels includedthe regressiong, and g are the

derived regression coefficients, amﬂ are the regression fit estimates of soil moisture.

Assuming a uniform temperature in the top 0 -5 oihlayer, the microwave brightness

temperaturd (6) can be expressed as
Toq(8) = €, 6T, )
where &, is the incidence or view angle of the sensor,{g,=h} refers to the horizontal

and vertical polarizations of the emitted radiatéond T is the surface temperature. Here,

for a given T, the emissivity,e, (6), of the surface is proportional to the brightness

temperature. Given the near-linearity of thg wersus E relationship, we are able to
effectively evaluate interactions between soil &adgetation parameters and the retrieved
brightness temperatures using multiple linear =gjoms. Radar backscatter has been
shown to have a less linear relationship to soiistnoe than radiometric brightness
temperature [31]-[39]. Nevertheless, the backscattefficients are included in the
regression analysis to further examine these fggland also to determine to what extent

multiple channels, both active and passive, mayawgsoil moisture retrieval.
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A series of regression models were generated wsibgst subset regression technique.
The models use the maximum coefficient of multigégermination, & criterion by first
examining all one-band regression models and $efptiie model giving the largestR
value. Based on the’Ra group of best subsets is then selected fohdunegression
analysis. The benefits of using multiple chanmas be investigated by comparing the

predictive capabilities of the sensors using B,nd 4 channels.

Tables lla and IIb list the results of the bestsailregression analyses applied to all
vegetation types. It is observed for the passivee dhat combining multiple channels
provides only a slight increase in soil moistureuaiacy (an increase in“Rf 0.02). This

is a result of the high correlation provided by wéehe single LH channel. However
combining multiple active channels gives a sigaific increase in the proportion of
explained variation (an increase irf & 0.36), a consequence of the radar having a
greater sensitivity towards roughness and vegetatiwaracteristics. The inclusion of
multiple channels helps in characterization of #Heattering due to roughness and

vegetation, and hence increases the soil moistim@ation accuracy.

Using the five days of available collocated dateg (or three) days were regressed and
predictions were performed on the remaining thoegwo) days of data. Figure 1 shows
the regression results over all the fields usirg fbur passive channels noted in Table
IVa. The plot shows the predicted and in-situ smilisture values for July 213" and

14" (based on the regression fit derived using dataJfily 9" and July 11). The
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regression estimate has ah Rilue of 0.96, with predictions accurate withi83. % of
observed gravimetric soil moisture. Table Il shaWws passive regression results for all
vegetation types using different days as the cobgmaup. The regression estimates have

standard error of gless than 2.0% for most cases.

The same approach was applied using the active P#ig@nels. Figure 2 shows the
results for the radar channel regressions usingahnge regression/prediction scheme as
in Figure 1. The four channel combination (LHH, LYVSVV and SHHVV) results in a
standard error of 2.63% gravimetric soil moistunel an B value of 0.67. A summary of
the remaining regression/prediction models is foundable Ill. As expected from the
best subset analysis, the active channels did adbonn as well as the radiometer
channels but demonstrate the radar capability titeve soil moisture with reasonable

accuracy over the varied vegetation conditions entsed in the SGP region.

Caution must be used when interpreting the regrassesults; the limited number of
flight lines and sampled field sites allow for ord@ co-located (within 300m of aircraft
footprint) data points to be used in the study. Therelation of the predicted points
weigh heavily on those used for the initial regi@ssAn ideal data set should include the
full range of soil moisture and vegetation conditoencountered during the study,
enabling regressions and predictions to be perfdrfoe the full spectrum of possible
environments. Unfortunately, this data set did sjmn a full range since there were no

fields with simultaneous high soil moisture andiggetation water content.
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Deviations between the predicted and observed oreistan also be attributed to
sampling and measurement error during SGP99. Oueemf sampling error is the
collocation error (location uncertainty of the PAHi&otprint positions and field data
collection sites). With large distances (300 m usedssign collocation), the PALS
footprints may view different field conditions frothe assumed conditions of each field.
In addition, the collection of gravimetric soil nsture is not exact and will also introduce
error into the estimates. The time of the PALSHhigyover the individual field sites and
the field data collection in those sites must &dleaonsidered, as differences in time will

cause PALS and in situ soil moisture and tempegatalues to be different.

5.0. Forward Model for Passive Radiation Transfer

A physically based microwave emission model wasl usdurther investigate the relative
sensitivities of L- and S- band passive measuresnémtsurface soil moisture. The
approach was based on a model of microwave emi$oom a layered soil-vegetation-
atmosphere medium for frequencies in the range GB@ [13]. The radiative transfer
model assumes that the vegetation canopy condisssumiform layer above the soil
(introduced in the model by optical thicknegs,vegetation water contem;, and single
scattering albedag). The optical thickness parameter is dependem/oand has been

shown to follow an approximately linear relationshas described in [13]:
T, =bw,/cosf 3)
where the co# factor accounts for the slant observation patbubh vegetation and the

b parameter is a coefficient that depends weaklyemetation type and is approximately
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proportional to frequency [40]. A summary of modgbuts is shown in Table IV. All
parameters were fixed in the model with the exceptf those collected during the
SGP99 study: gravimetric soil moisture, vegetatisrater content and surface
temperature. A constant surface roughness valu€ha@s been assumed for the fields,
based on observed roughness data values. Alsoexagavbulk density value of 1.28 g
cm* was used for all fields. The polarization mixingaraeter Q was assigned a value of
0.2 for all simulations. Wigneron et al., [41] hasleown this value to be valid for similar
land-cover conditions at 1.4 GHz. An opacity caaéint value of 0.1 and 0.19 was
assumed for all vegetated surfaces at L and S-, lvasgectively. Jackson and Schmugge
[41] have estimated these values from experimelat at 1.41 GHz by parameterization

of the transmissivity of the vegetation layer based/iegetation water content.

Surface parameters collected during the study wgret into the model collocated by
field type and day of study. All the variables weadlected daily except for vegetation
water content, bulk density and surface roughngksse values were assumed to remain
constant for the duration of the study. The modstuanes homogeneous surface
conditions giving averaged effective values ovee tladiometer footprint. The soil
dielectric constant was computed for given bulksilgnfrequency, gravimetric moisture
content, sand and clay fractions, and temperatameguempirical relations taken from

[42].

Figure 3 shows a comparison between the averaigeagést! brightness temperatymg -

(Tewth + Tew)/2) and the PALS observations over all fields dgriSGP99. Ther,
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calculation has been shown by [43] to summarize dffects of both vertical and
horizontal polarization and is used here for sifigation. The scatterplot indicates that
the radiative transfer model agrees well with t#.® observations, giving a standard

error between estimated and measured brightnegsetatare ¢, ), of less than 12 K.

This agreement is representative of estimated tmagls temperatures for SH- and SV-
bands. The model underestimates the PALS brightteeaperature collected over all
three vegetation types, with best agreemeAtR.9) in the low vegetated fields. This is
due to the fact that the model underestimates ffecte of the vegetation cover.
Calculations show that these discrepancies caedigced if the parameters Q, b are also

allowed to vary. These results are not presentssl he

A combination forward model-statistical regressioverse model technique was used to
retrieve soil moisture over all the fields. Usimgstmethod, two (or three) days of surface
parameter data were input to the model and thdtiregubrightness temperatures were
regressed against the corresponding PALS brightieesperatures (to calibrate or train
the model to the observations). The resulting =sgo& coefficients could then be applied
to the remaining three (or two) days of surfaceapaater observations to derive a set of
modeled brightness temperatures consistent withPtieS data. The rationale is that
although linear regression alone is capable of ighog reasonably accurate moisture
estimates, a more robust approach should be obtainay combining regression
estimates with forward models. Using this methodcese ‘train’ the model for the region
by regressing a portion of the forward model owpuith observations from PALS and

apply through model inversion the resulting coéfints to the remaining PALS data.
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An iterative least-squares minimization algorithnaswapplied to the modeled and
computed brightness temperatures, with soil masadjusted (spanning the dynamic
range: g = 3 to 35%) until the difference between the medeind computed brightness
temperatures, (H- and V- pol) was minimized. Resaftthe predicted low vegetation, L-
band model are shown in Figure 4. The model givesatively good prediction of soll

moisture for July 12, 13" and 14" over the low vegetated fields (standard error23%

Myg).

Multiple models were run using different combinasoof days for the regression scheme
for both the L and S-band radiometer wavelengtihe Joil moisture retrieval estimates
from the models over all vegetation ranges are samzed in TableV. Both the L- and S-
band outputs of the models give relatively consisteesults, however, there is one
instance (using July ¥1 12" and 14" for the regression in the L-band model) that gives
an extraordinarily low standard error of 0.6%. mhis is a result of the low number of
prediction values available, 3, which happen tovers close to the observed moisture
values and is not considered representative ofiiee dataset. The models have shown
that both the 1.4 and 2.7 GHz channels of the maelier are successful in predicting soll
moisture through low vegetation conditions. Thd swisture predictions obtained at S-
band are reasonably close to those obtained fremh-tand analysis, however they result
in slightly higher standard error (0.48%,mn average). The brightness temperature
dependence on the 0- to 5-cm gravimetric soil mogsis found to be stronger for the 1.4

GHz channel as confirmed in the regression analysis
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6.0. Forward Modelsfor Active Backscatter

Prior investigations utilizing microwave scatterders for retrieval of surface variables
have shown the benefits of long wavelength, co#nmdd backscatter measurements
when applied to surface roughness and land-covmarakility [44]-[46]. These studies

have demonstrated the strong degree to whithis a function of surface roughness,
vegetation and near surface soil moisture. Thevaathannels were also examined for

soil moisture sensitivity.

We utilize here two simplified scattering models/eleped by Dobson et al. [20], and
Dubois et al [37]. Whereas the Dobson scatteringlehavas developed from truck-
mounted scatterometer data (LHH) over varying \eggmt types, the Dubois empirical
model was derived to describe truck-mounted copdr backscatter measurements
(LVV, LHH) of bare surfaces as a function of sudamughness, dielectric constant,
incidence angle and frequency. The range of surfam&litions encountered during
SGP99 is close to that used to train both the albovéels and are assumed applicable
when applied to the PALS frequency at L-band (fee Dobson model) and L- and S-

band (for the Dubois model).

The Dobson scattering model uses the small petiarbapproach to compute total LHH

backscatter as a sum of surface scatter from tiieodn , volume scatter from the

canopy,o., , and scatter from surface/volume interactinh,
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0 _ 0 0 0
Otot =O0sut + Oyol + Ot (4)
The model computex,, and g, using empirically derived expressions as described

[20], involving wavelength, RMS roughness, surfacerrelation length, dielectric

constant, and canopy albedo. A summary of the mpaelmeters required is shown in
table VI. Since the Dobson model is based on a rdetailed parameterization than the
Dubois model, it is more susceptible to error irmparing modeled backscatter with

PALS observations if these parameters are not atyurknown.

The Dubois model was developed using a varietyoafces of training data: incidence
angle, dielectric constant, RMS height, and wawglerio empirically derive equations
for the HH- and VV- polarized backscattering cresstionsr?, and ¢, for varying soil

moisture and surface roughness within the 1.5 GHZL-GHz range. The vegetation
effects are excluded in this version of the Dubudel, optimizing it for bare surfaces
and is used here as a comparative tool for the SG&@ vegetated fields. The model

computes the copolarized backscattering crossesecir}, and o0, as functions of

incidence angleg, real part of the dielectric constaat, and RMS height of the surface,
s, [37]. Caution must be used when applying empiricaldels to datasets other than
those used for their development. In our case tbdeinwas determined to be sufficient
based on the range of surfaces that it was dewlfmpeand the scatterometer data that it

has been applied to: AIRSAR, SIR-C, POLARSCAT, RKEAM.
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Figure 5 shows a comparison of the Dobson modePaXid5 backscatter (LHH) over the
low vegetated fields. The scattering model was ldgesl for calculating surface scatter
at 1.28 GHz, and therefore a comparison with th&$A.15 GHz frequency cannot be
performed. The model displays a similar variatidrbackscatter with gravimetric soil
moisture to that observed with PALS. Within the eved ranges of surface and canopy
cover conditions the active model bounds the mgjarfi observed data but shows more
variance than the passive model. These deviatiansbe attributed to heterogeneity
effects and model parameterization errors. Thenpater values used in Table VI, to
which the radar is more sensitive than the radiemetn at best be considered first order

approximations to the actual variability across $it&P region.

Figure 6 shows the soil moisture estimation foy &I, 12" and 14 over bare and low
vegetated (biomass < 0.25 kg?)fields using the Dobson model. The model-based
estimates underpredict all but one of the obsemedture values. Surprisingly, better
model-based estimates are obtained for the higbtaggd fields (not shown). This could
be a result of the model having been developed mithe applicability to corn canopies,
as encountered in the high-vegetated fields rdtiaar to pasture and bare conditions as

encountered in the low vegetated fields.

Figure 7 presents both the}, and o2 responses of the Dubois model compared to the

measurements from the PALS data collected ovetaivevegetated fields. This model
has a better correlation 180.6) with the PALS backscatter compared with theb&n

model, (over low vegetated fields). It should beedothat the low-vegetated fields
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include bare fields and low vegetated fields (<kgBrf), but still give a good response

when applied to the bare-surface empirical model.

The forward-regression-inverse technique was agppiethe Dubois model using the
LHH channel for comparison to the Dobson model. &ies of regressions and
predictions were performed for a combination of fike days of collocated SGP99 data.
The observed in-situ versus predicted gravimetitcrsoisture for July 12 and 14" over

the low vegetated fields is shown in Figure 8. €n@r in predicting soil moisture over
these low vegetated fields giving a standard dmrnadf 2.79% g and an R value of

0.64 represents the cumulative error of the algorit(in-situ data, regressions,

inversions).

Both active models provide reasonable estimatessaf moisture under similar
conditions. The comparison with in-situ data showst the Dobson model
underestimates moisture more than the Dubois mimlethe SGP99 field conditions.
However, this underestimation is not a result of model calibration. As stated earlier,
deviations of estimated from in-situ soil moisturalues for the Dobson model are
possibly a result of differences between the patanzations used to derive the original
model and values assumed for the SGP99 experinteist.also noted that given the
relationship between the dielectric constant of @od backscatter coefficient, as well as
the correlation with surface roughness and vegetathe presence of vegetation could

result in overestimated surface roughness and/aterestimated soil moisture. A
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summary of the L-band performance of both activele®is provided in Table VIl for

the low vegetated fields.

8.0. Conclusionsand Discussion

A combination of multiple regression analyses armhtmasting evaluations with

microwave physical models have been used in thidystor evaluation of the L-band

passive and active sensitivity to near surfaceraoikture. A distinct soil moisture signal
was observed for the highly vegetated fields ad aslfor the bare and low-vegetated
fields. In studying the capabilities of PALS, tlesults have:

1) lllustrated the sensitivity of remote sensing measents (active and passive) to
soil moisture in the presence of variable vegetatiover and heterogeneity.

2) Improved our knowledge of the emission (passiaed scattering (active)
characteristics of microwave interactions with sak different frequencies and
polarizations, and the effects of ancillary vargsblsuch as vegetation water
content, surface roughness and temperature.

The prediction techniques investigated exhibiteying soil moisture retrieval potential.

Most of the estimates using passive channels pedvizetween 2% and 3% accuracy in
comparisons with the in-situ gravimetric soil margt Estimates using the active
channels provided accuracies mostly in the 2-5%gean Part of the error in these

estimates is contributed by in situ sampling eamd collocation error.

This paper has provided a framework for studyintvacand passive observations of the

land-surface under diverse conditions. Statistycathsed regressions were developed
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although these are of limited scope consideringsthall size of the observational SGP99
data set. The estimation of soil moisture basephysical forward models was motivated
by a desire to apply understanding of the radiatisasfer and backscatter processes to
more generally applicable retrieval methods. It baen shown that physically based
methods coupled with regression analyses can seveseful tools for this and other

studies.

The physically based emission model is found toetate well with the PALS data
collected over bare and low vegetated (biomas5§ Kg m?), medium (0.25-3.0 kg m
%), and high (>3.0 kg i) vegetated fields, with LH-band brightness tempegastandard
error of 6.6K, 9.9K, and 6.17K respectively. Theckscatter models were found to
provide additional information, but with more var@@ due to vegetation and
heterogeneity effects. We have not attempted sghidy to merge the active and passive
components into a single retrieval technique. A lood active/passive technique could
serve as a method to retrieve multiple surfaceabées: viz., soil moisture, surface
temperature, surface roughness, and vegetatiorr watgent. Given the rather limited
scope of the SGP99 in situ sampling and range gétation and soil moisture conditions
observed, additional more detailed study (curreintigrogress) will be needed to develop
such a combined approach. Future field experimémtacquire a larger quantity of
collocated field data covering a wider dynamic &g environmental conditions will
facilitate these efforts.
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Field Site |[Flight Line| Vegetation Cover \éec?nettear:lto(nkg\llvnf;l_tze)r

2 10 Range 0.16

3 10 Range 2.38

4 10 Range 0.48

5 10 Range 0.34

21 9 Wheat (harvested) 0.12

22 9 Wheat (harvested) 0.02

23 9 Wheat (harvested) 0.36

24 12 Bare 0.00

25 12 Corn 7.18

26 12 Corn 5.19

27 12 Alfalfa 1.01
Table I. Field Characteristics within the Little Washita

Watershed during SGP99.
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R? Channels

904 |h
908 [h,Iv
92 Ih, v, sh

92 Ih, lv, sh, sv

Table Ila. Passive channels providing the highest
correlation with in-situ soil moisture in the 0-G
range (in all fields) using 1, 2, 3 and 4 channels.



R’ Channels
341 |sw

582 [|lhh, sw

664 [hh, lv, svv

699 [lhh, v, svv, shhvv

Tablellb. Active channels providing the highest correlatrath in-
situ soil moisture in the 0-0.5 cm range (in aldis) using 1, 2, 3 and 4

channels.



Using Passive Channels| Using Active Channels
Regressed days
- Standard Error Standard Error
(Predicted)

(% GSM) (% GSM)
9,12,14 (11, 13 1.39 3.62
9,11,13(12, 14 2.01 2.56
11, 12,14 (9, 13 2.22 3.52
12 13, 14 (9,11) 1.94 53
9,11 (12, 13, 14 1.83 2.63
11,14 (9, 12,13 1.90 3.39
11,13 (9, 12,14 2.19 3.15

Table Ill. Standard error (% gravimetric soil moisture) ok thtatistically

predicted soil moisture and the in-situ soil maistwver all vegetation types,
using the passive and active PALS channels.



(a) Media & Sensor Parameters

\Vegetation:

Single scattering albeda 0
Opacity coefficient, b 0.1, 0.19
Soil:

Roughness coefficients, h (cm)andiQ 0.2, 0.2
Bulk density (g cr) 1.28
Sand and clay mass fractions, s and c 0.3,/0.2
Sensor :

Viewing anglef (deg) 39
Frequency, f (GHz) 14,27
Polarization H,V

(b) Media Variables

Land Surface:

Surface soil moisture, ym (%) in-situ
Vegetation water content,.w (kg m?)| in-situ
Surface temperature, T (K) in-situ

TablelV. Microwave Radiative Transfer Model

inputs.
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L-band S-band

Regressed days Standard Standard
(Predicted) Error Error

(%GSM) (%GSM)
9,12, 14 (11, 13) 2.89 1.90
9,11, 13 (12, 14) 2.01 3.04
11, 12,14 (9, 13) 0.60 2.03
12 13, 14 (9,112) 2.49 241
9,11 (12, 13, 14) 2.23 3.00
11, 14 (9, 12, 13) 2.48 2.87
11, 13 (9, 12, 14) 2.40 3.69

TableV. The passive model (L- and S-band) was run with
inputs of surface parameters from the fields witthe
Little Washita Watershed. Regressions were perfdrime
the forward scheme on either two or three daysaté.d
The table shows the standard error (% gravimewit s
moisture) of thepredicted soil moisture. Notice the
increase in error when using the S-band.



a) Media & Sensor Parameters

V egetation:

Opacity coefficient, b 0.1
Stalk reflectivity, R; 0.6
Single scattering albedo, 0
Soil:

Roughness coefficiens, 0.2
Bulk density (g cri) 1.28
Sand and clay mass fractions, s and c 0.3,0.
Sensor:

Viewing anglep (deg) 39
Frequency, f (GHz) 1.26
Polarization HH
(b) Media Variables

Land Surface:

Surface soil moisture, §1{%) in-situ
Vegetation water content,w(kg ni?) in-situ

TableVI. Parameter inputs for the Dobson

scattering model.
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Regressed days
(Predicted)

Standard Error
(%GSM-Low Veg)

Standard Error
(%GSM-Low Veg)

Dobson Model Dubois Model
9,12, 14 (11, 13) 4.72 5.28
9,11, 13 (12, 14) 3.13 3.39
11, 12,14 (9, 13) 1.41 1.84
12, 13,14 (9,11) 3.90 4.15
9,11 (12, 13, 14) 3.00 3.35
11,14 (9,12, 13) 2.90 3.37
11,13 (9, 12, 14) 2.95 3.40

Table VII. The active models (L-band) were run with inputsofface
parameters from the low vegetated fields within thtle Washita
Watershed. Regressions were performed in the faraeineme on either
two or three days of data. The table shows thedstanerror (%

gravimetric soil moisture) of the predicted soilistare.
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Figure 1. Predicted vs. In-Situ soil moisture using the pass
channel statistical regression technique (on dajs 9" and
11" to predict soil moisture for July 213" and 14 over
all fields.
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Figure 2. Predicted vs. In-Situ soil moisture using
the statistical regression technique (on days Jlily
and 11" to predict soil moisture for July 12 13"
and 14 over all fields using the active channels.
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Estimated vs. PALS Tb (All Fields)
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Figure 3. Simulated average brightness
temperatures(Te =Tg,,, + Tey /2) COmMputed
at frequency 1.4 GHz plotted against

observed PALS average  brightness
temperatures.
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Figure 4. Passive model (L-band) retrieval
of soil moisture for low vegetated fields

(July 12", 13", and 14).
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Figure 5. Comparison of modeled®and PALSG® (LHH)
over low vegetated fields with 0 - 5.0cm gravimetsolil
moisture using the Dobson model.



Predicted vs in—situ GSM {Low Veq)—Dobkaon
I | LR T L SR A TG T A S L AT

[T T T TR T
o
[ s
r 0
[ s
: standard error = 39 e
- -~
o : ’/
830—_ L -
‘3 F s
X -
L oA
L P
3 -
B I , ]
&
2 20 K ]
2 p
- ,/
& .
5 a -
& 10f L -
s
it
- A
¥ FaRrat
//
ks
- - 4
obll. . ... .. [ [
0 10 20 30 40

In—=Situ Soil Moiature (% Grav)

Figure 6. Active model inversion (LHH) (Dobson et
al. model) over low vegetated fields. Regressiols wa
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Figure 7. Comparison of modeled®and PALS
0° (LHH, LVV) over low vegetated fields with O-

5.0 cm gravimetric soil moisture using the Dubois
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Figure 8. Active model inversion (LHH) (Dubois
et al. model) over low vegetated fields. Regressed
JuI%/ g" 11" and 18, predicted for July 2and
14",
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