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Abstract 
 
In the present study, remote sensing of soil moisture is carried out using the Passive and 

Active L- and S-band airborne sensor (PALS). The data in this paper were taken from 5 

days of overflights near Chickasha, Oklahoma during the 1999 Southern Great Plains 

(SGP) experiment. Presently, we analyze the collected data to understand the 

relationships between the observed signals (radiometer brightness temperature and radar 

backscatter) and surface parameters (surface soil moisture, temperature, vegetation water 

content, and roughness). In addition, a radiative transfer model and two radar backscatter 

models are used to simulate the PALS observations. An integration of observations, 

regression retrievals and forward modeling is used to derive the best estimates of soil 

moisture under varying surface conditions.  
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1.0. Introduction 

The principal variables in land-surface hydrology are soil moisture, surface temperature, 

vegetation, precipitation and streamflow. Of these, surface temperature, vegetation and 

precipitation are currently observed using satellites, and streamflow is routinely observed 

at in-situ watershed locations. Soil moisture remains the only variable not observed (or 

observed very sparsely) either in-situ or via remote sensing.  

 

Numerous studies have shown the influence of soil moisture on the feedbacks between 

land-surface and climate, which in turn affect the dynamics of the atmospheric boundary 

layer and have a direct relationship to weather and global climate [1]-[4].  Chang et al. [5] 

have shown the influence of spatial variations of soil moisture and vegetation on the 

development and intensity of severe storms, whereas [6] demonstrated the ability of soil 

moisture to influence surface moisture gradients and to partition incoming radiative 

energy into sensible and latent heat.  Better understanding of the processes involved in the 

forcing of, and responses to, Earth’s changing environment is needed in order to 

accurately assess, predict and evaluate the relationship between the global hydrologic 

cycle, weather and climate change. For this to be accomplished, it is necessary to 

intimately understand the relationship of soil moisture to these phenomena on small and 

large-spatial scales. Unfortunately, complicating these overall goals is our inability to 

completely observe large-scale hydrologic land-surface interactions. Remote sensing 

enables us to estimate large-scale soil moisture for the purpose of modeling the two-way 

interaction between land and atmosphere, making it possible to understand the nature of 
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global climate. This paper examines multiple techniques used to retrieve land-surface 

parameters using microwave remote sensing. Given the near linear relationship between 

soil moisture and microwave emission, many prior studies [7-10] have focused on 

regressions between remotely sensed observations and observed surface soil moisture or 

comparisons between aircraft/satellite retrievals and in-situ observations. Another 

common method of soil moisture estimation analysis involves modeling the microwave 

emission of vegetated and bare soil surfaces based on the physical parameters of the 

media [11-13]. In this paper we attempt to combine these methods using observations 

from PALS, statistical regressions (between retrievals and observations of soil moisture), 

and physically based forward modeling of the sensor for the purpose of near surface (0-

5cm) soil moisture retrieval. In order to investigate these relationships, the data were 

stratified into three vegetation water content regimes: low (<0.25 kg m-2), medium (0.25-

3.0 kg m-2), high (>3.0 kg m-2), observed during the Southern Great Plains 1999 (SGP99) 

experiment. The fairly wide range of land-surface conditions encountered in SGP99 

permits study of the advantages and drawbacks of passive and active remote sensing 

under varying vegetation, soil moisture and roughness conditions. 

 

Previous investigations have shown that passive microwave remote sensing is effective in 

the study of soil moisture [14-20] and precipitation [21-24].  These efforts have 

qualitatively demonstrated the theoretical sensitivity of microwave brightness temperature 

to soil moisture variations in varying media [25]-[26]. Overlying vegetation and 

atmospheric moisture have been shown to have less effect on soil emission at longer 

microwave wavelengths [27]. In addition, lower frequencies within the 1-6 GHz range 
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have an increased soil sensing depth and provide a large contrast between wet and dry 

soil. This frequency range has therefore in effect become the main focus of remote 

sensing of soil moisture. Aside from previous SGP campaigns [28], the majority of 

research done using low frequency microwave radiometry has been focused on smaller 

catchments over uniform ground conditions [29]-[30]. There is still a need for validating 

and comparing models and algorithms in large-scale field experiments.   

 

2.0. Background 

Microwave radars observing the land-surface measure the backscattering coefficient, a 

dimensionless quantity representing the scattering from the soil and vegetation 

components of the surface. Scattering from the soil depends on both the dielectric 

constant (which is affected by soil moisture) and the surface roughness. An increase in 

soil moisture results in an increase in surface backscatter, giving a positive relationship 

whose slope depends on the roughness and vegetation characteristics. The transmit-

receive polarization combination associated with the backscattering coefficient is denoted 

by σij
o, where i,j = H or V (horizontal or vertical polarizations). Backscatter is expressed 

as decibels (dB). Depending on roughness and provided bare to low vegetation cover, 

these values can change roughly between -5 and -10 dB for both VV- and HH- 

polarizations over the dynamic moisture range from dry to saturation.   

 

As the moisture content in a soil increases, so does its surface reflectivity, r. This results 

in a decrease in the emissivity, 1-r, of the soil. The resulting emissivity changes from the 

surface are used in the interpretation of data from microwave radiometers measuring the 
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emission from the surface. The emissivity has a strong influence on the radiated 

brightness temperature of the surface in the microwave region. The brightness 

temperature, TB, is proportional to the product of the physical temperature and the 

emissivity of the surface [18, 31]. Brightness temperature has been shown to have a linear 

relationship with surface soil moisture [32]. Because of the large difference in emissivity 

of dry and wet soil, a comparison of the relative brightness temperatures of the soils can 

be used to detect soil moisture [27]. 

 
 
In the present study, data from the PALS instrument were used to retrieve soil moisture in 

the Southern Great Plains Little Washita, Oklahoma region. PALS was developed to 

study the utilization of dual-frequency, dual-polarization, passive and active 

measurements for remote sensing of ocean salinity and soil moisture. The instrument 

operates at 1.4 and 2.69 GHz in the radiometer channels and 1.26 and 3.15 GHz in the 

radar channels.  PALS utilizes a multi-frequency, multi-polarized design, and is capable 

of acquiring simultaneous radar and radiometric signatures of land and ocean surfaces. 

The radiometer receives coincidental vertical and horizontal emission and the radar 

transmits vertical or horizontal polarization and receives these two linearly polarized 

radar echoes simultaneously. A more thorough description of the PALS specifications and 

applications can be found in [33]. An analysis of PALS soil moisture observations during 

SGP99 has been performed; the approach and results are detailed by Njoku et al. [34]. 

Data collected during the study were calibrated and geometrically corrected for aircraft 

navigational and attitude variations and organized for each flight line overpass of the 

individual agricultural fields. The instrument provided simultaneous collection of 
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horizontally and vertically polarized L- and S- band brightness temperature and 

backscatter coefficients, nadir-looking thermal infrared surface temperature, footprint 

latitude and longitude position and aircraft altitude. The unique active/passive design 

provides valuable information on the corresponding effects of varying vegetation, surface 

types and soil moisture on the radar and radiometer responses. 

 

PALS was flown during the Southern Great Plains Field Experiment, July 8th to 20th, 

1999, on a C-130 aircraft. The experiment included a variety of airborne C-, S-, and L- 

band microwave instruments to provide large-scale soil moisture mapping in the Little 

Washita Basin (603 km2), near Chickasha, Oklahoma. The present study discusses the 

PALS instrument exclusively; a description of additional instruments used during SGP99 

and experiment details can be found on the experiment web site (http:// 

daac.gsfc.nasa.gov/CAMPAIGN_DOCS/SGP99/index.shtml). PALS flew over the Little 

Washita Watershed at a nominal altitude of 3,000 feet with an approximate footprint size 

of 300 x 400 m for a total of 6 days. Flight lines were selected over a range of field sites 

to provide a comprehensive analysis of varying ground cover. The land conditions and 

time of study of the Little Washita Basin are ideal for evaluating new sensor systems and 

algorithms. Forest cover within the watershed is very sparse and typically follows streams 

constituting a small portion of the watershed [34]. The basin consists mostly of rolling 

hills (maximum relief is less than 200m), rangeland and pasture. For purposes of this 

paper, the representative texture for the surface layer soil is taken to be 30% sand and 

20% clay. Within the watershed, the ground truth data collection included eleven field 

sites (0.8 Km x 0.8 Km), chosen in five types of land-cover: rangeland, wheat, corn, 
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alfalfa and fallow, ranging in vegetation water content from 0-7.18 kg/m2 (Table I). 

Collected ground data applicable to this paper include: gravimetric soil moisture (0 – 2.5 

and 0 - 5 cm), surface roughness, soil bulk density, and vegetation water content as 

described in [34]. It should be noted that in this study, the 0 – 5 cm gravimetric soil 

moisture is used exclusively (instead of volumetric soil moisture) due to possible bulk 

density in-situ measurement error. When applied in the following analysis, a bulk density 

value of 1.28 g cm-3 has been used. 

 

Weather conditions were ideal during the study, including a major rain event on the third 

day (July 10th, 1999). This allowed a subsequent drydown period to be observed 

throughout the basin (a change in gravimetric soil moisture content from about 24.3% to 

3.4% over a period of 8 days). The precipitation was non-uniform throughout the basin 

(varying from 31.0 mm in the western part of the watershed to approximately 9.6 mm in 

the eastern regions), causing a heterogeneous soil moisture pattern across the watershed 

[36]. Although the weather and vegetation conditions presented a sufficient range of soil 

moisture and vegetation water content, the heterogeneous nature of the moisture patterns 

within the watershed do not allow for the analysis of areas with both high vegetation and 

moisture. This presents problems in the following regression analysis and must be 

considered upon interpretation of the results. 
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3.0. Soil Moisture Estimation Techniques 

Three techniques are examined in this paper for retrieving soil moisture from the PALS 

microwave emission and backscatter observations of the soil-canopy system; (a) 

Regression analysis, (b) Passive physical model and (c) Active physical model. In this 

initial study an attempt has not been made to create a combined passive/active algorithm, 

rather the analyses (for radiometer and radar) have been carried out separately. 

 

In applying physical models it is important to choose soil surface and vegetation 

parameters with as much realism as possible while ensuring representative 

characterization of the field sites, and it is desirable that the parameterizations used be 

consistent between the passive and active models. The models in this study assume a soil 

type (sandy loam) representative of the SGP region, with sand and clay fractions of 30% 

and 20%, respectively. Dielectric constant values were determined using the equations of 

Dobson et al., 1985. This dielectric model uses sand and clay mass fractions along with 

bulk density (average of in-situ) to describe soil texture. The PALS incidence angle of θ = 

39˚ was used in the model calculations. We have focused the modeling results on the low 

vegetated fields due to the fact that the radar models simulate these conditions best.  

 

4.0. Regression Analysis 

It has been shown that radiometric and radar soil-moisture sensitivities to soil moisture 

vary differently depending on vegetation characteristics, frequency and polarization. By 

analyzing multiple channels over a varied vegetation range we expect to improve our soil 

moisture prediction potential.  This was investigated by comparing results of multiple 
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regressions performed on the collocated radiometer/scatterometer measurements and in-

situ gravimetric soil moisture measurements.  

 
For the multiple linear regression analyses an equation of the form 

daa ji

N

i
ijm

,
1

0

*
∑

=

+=                                                    (1) 

was used, where d ji,  are the radiometer or radar data (brightness temperatures or 

backscattering coefficients) in channel i and data point j, corresponding to a collocated 

field site. N is the number of channels included in the regression, a0
 and ai

are the 

derived regression coefficients, and *jm  are the regression fit estimates of soil moisture.  

Assuming a uniform temperature in the top 0 –5 cm soil layer, the microwave brightness 

temperature TB )( iθ  can be expressed as 

Tbq )( iθ = qe si T)(θ                                                    (2) 

where iθ  is the incidence or view angle of the sensor, q = {v, h} refers to the horizontal 

and vertical polarizations of the emitted radiation and Ts is the surface temperature. Here, 

for a given Ts, the emissivity, qe )( iθ , of the surface is proportional to the brightness 

temperature. Given the near-linearity of the mg versus TB relationship, we are able to 

effectively evaluate interactions between soil and vegetation parameters and the retrieved 

brightness temperatures using multiple linear regressions. Radar backscatter has been 

shown to have a less linear relationship to soil moisture than radiometric brightness 

temperature [31]-[39]. Nevertheless, the backscatter coefficients are included in the 

regression analysis to further examine these findings and also to determine to what extent 

multiple channels, both active and passive, may improve soil moisture retrieval. 
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A series of regression models were generated using a best subset regression technique. 

The models use the maximum coefficient of multiple determination, R2, criterion by first 

examining all one-band regression models and selecting the model giving the largest R2 

value. Based on the R2, a group of best subsets is then selected for further regression 

analysis.  The benefits of using multiple channels can be investigated by comparing the 

predictive capabilities of the sensors using 1, 2, 3, and 4 channels. 

 

Tables IIa and IIb list the results of the best subset regression analyses applied to all 

vegetation types. It is observed for the passive case that combining multiple channels 

provides only a slight increase in soil moisture accuracy (an increase in R2 of 0.02). This 

is a result of the high correlation provided by use of the single LH channel. However 

combining multiple active channels gives a significant increase in the proportion of 

explained variation (an increase in R2 of 0.36), a consequence of the radar having a 

greater sensitivity towards roughness and vegetation characteristics. The inclusion of 

multiple channels helps in characterization of the scattering due to roughness and 

vegetation, and hence increases the soil moisture estimation accuracy. 

 

Using the five days of available collocated data, two (or three) days were regressed and 

predictions were performed on the remaining three (or two) days of data. Figure 1 shows 

the regression results over all the fields using the four passive channels noted in Table 

IVa. The plot shows the predicted and in-situ soil moisture values for July 12th, 13th, and 

14th, (based on the regression fit derived using data for July 9th and July 11th). The 
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regression estimate has an R2 value of 0.96, with predictions accurate within 1.83 % of 

observed gravimetric soil moisture. Table III shows the passive regression results for all 

vegetation types using different days as the control group. The regression estimates have 

standard error of mg less than 2.0% for most cases.  

 

The same approach was applied using the active PALS channels. Figure 2 shows the 

results for the radar channel regressions using the same regression/prediction scheme as 

in Figure 1. The four channel combination (LHH, LVV, SVV and SHHVV) results in a 

standard error of 2.63% gravimetric soil moisture and an R2 value of 0.67. A summary of 

the remaining regression/prediction models is found in Table III. As expected from the 

best subset analysis, the active channels did not perform as well as the radiometer 

channels but demonstrate the radar capability to retrieve soil moisture with reasonable 

accuracy over the varied vegetation conditions encountered in the SGP region. 

 

Caution must be used when interpreting the regression results; the limited number of 

flight lines and sampled field sites allow for only 36 co-located (within 300m of aircraft 

footprint) data points to be used in the study. The correlation of the predicted points 

weigh heavily on those used for the initial regression. An ideal data set should include the 

full range of soil moisture and vegetation conditions encountered during the study, 

enabling regressions and predictions to be performed for the full spectrum of possible 

environments. Unfortunately, this data set did not span a full range since there were no 

fields with simultaneous high soil moisture and high vegetation water content.  
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Deviations between the predicted and observed moisture can also be attributed to 

sampling and measurement error during SGP99. One source of sampling error is the 

collocation error (location uncertainty of the PALS footprint positions and field data 

collection sites). With large distances (300 m used to assign collocation), the PALS 

footprints may view different field conditions from the assumed conditions of each field. 

In addition, the collection of gravimetric soil moisture is not exact and will also introduce 

error into the estimates. The time of the PALS flights over the individual field sites and 

the field data collection in those sites must also be considered, as differences in time will 

cause PALS and in situ soil moisture and temperature values to be different. 

 

 

 5.0. Forward Model for Passive Radiation Transfer 

A physically based microwave emission model was used to further investigate the relative 

sensitivities of L- and S- band passive measurements to surface soil moisture. The 

approach was based on a model of microwave emission from a layered soil-vegetation-

atmosphere medium for frequencies in the range 1-20 GHz [13]. The radiative transfer 

model assumes that the vegetation canopy consists of a uniform layer above the soil 

(introduced in the model by optical thickness, τc, vegetation water content, wc, and single 

scattering albedo, ω).  The optical thickness parameter is dependent on wc and has been 

shown to follow an approximately linear relationship, as described in [13]: 

                                    θτ cos/cc bw=                                              (3) 

where the cos θ factor accounts for the slant observation path through vegetation and the 

b parameter is a coefficient that depends weakly on vegetation type and is approximately 
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proportional to frequency [40]. A summary of model inputs is shown in Table IV. All 

parameters were fixed in the model with the exception of those collected during the 

SGP99 study: gravimetric soil moisture, vegetation water content and surface 

temperature. A constant surface roughness value h=0.2 was been assumed for the fields, 

based on observed roughness data values. Also an average bulk density value of 1.28 g 

cm-3  was used for all fields. The polarization mixing parameter Q was assigned a value of 

0.2 for all simulations. Wigneron et al., [41] have shown this value to be valid for similar 

land-cover conditions at 1.4 GHz. An opacity coefficient value of 0.1 and 0.19 was 

assumed for all vegetated surfaces at L and S- band, respectively. Jackson and Schmugge 

[41] have estimated these values from experimental data at 1.41 GHz by parameterization 

of the transmissivity of the vegetation layer based on vegetation water content.  

 

Surface parameters collected during the study were input into the model collocated by 

field type and day of study. All the variables were collected daily except for vegetation 

water content, bulk density and surface roughness, whose values were assumed to remain 

constant for the duration of the study. The model assumes homogeneous surface 

conditions giving averaged effective values over the radiometer footprint. The soil 

dielectric constant was computed for given bulk density, frequency, gravimetric moisture 

content, sand and clay fractions, and temperature using empirical relations taken from 

[42].  

 

Figure 3 shows a comparison between the average estimated brightness temperature ( BT  = 

(TBLH + TBLV)/2) and the PALS observations over all fields during SGP99.  The BT  
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calculation has been shown by [43] to summarize the effects of both vertical and 

horizontal polarization and is used here for simplification. The scatterplot indicates that 

the radiative transfer model agrees well with the PALS observations, giving a standard 

error between estimated and measured brightness temperature (BT ), of less than 12 K. 

This agreement is representative of estimated brightness temperatures for SH- and SV- 

bands. The model underestimates the PALS brightness temperature collected over all 

three vegetation types, with best agreement (R2 = 0.9) in the low vegetated fields. This is 

due to the fact that the model underestimates the effects of the vegetation cover. 

Calculations show that these discrepancies can be reduced if the parameters Q, b are also 

allowed to vary. These results are not presented here. 

 

A combination forward model-statistical regression-inverse model technique was used to 

retrieve soil moisture over all the fields. Using this method, two (or three) days of surface 

parameter data were input to the model and the resulting brightness temperatures were 

regressed against the corresponding PALS brightness temperatures (to calibrate or train 

the model to the observations). The resulting regression coefficients could then be applied 

to the remaining three (or two) days of surface parameter observations to derive a set of 

modeled brightness temperatures consistent with the PALS data.  The rationale is that 

although linear regression alone is capable of providing reasonably accurate moisture 

estimates, a more robust approach should be obtainable by combining regression 

estimates with forward models. Using this method we can ‘train’ the model for the region 

by regressing a portion of the forward model outputs with observations from PALS and 

apply through model inversion the resulting coefficients to the remaining PALS data.  
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An iterative least-squares minimization algorithm was applied to the modeled and 

computed brightness temperatures, with soil moisture adjusted (spanning the dynamic 

range: mg = 3 to 35%) until the difference between the modeled and computed brightness 

temperatures, (H- and V- pol) was minimized. Results of the predicted low vegetation, L-

band model are shown in Figure 4. The model gives a relatively good prediction of soil 

moisture for July 12th, 13th and 14th over the low vegetated fields (standard error = 2.23% 

mg).  

 

Multiple models were run using different combinations of days for the regression scheme 

for both the L and S-band radiometer wavelengths. The soil moisture retrieval estimates 

from the models over all vegetation ranges are summarized in TableV. Both the L- and S- 

band outputs of the models give relatively consistent results, however, there is one 

instance (using July 11th, 12th and 14th for the regression in the L-band model) that gives 

an extraordinarily low standard error of 0.6% mg. This is a result of the low number of 

prediction values available, 3, which happen to be very close to the observed moisture 

values and is not considered representative of the entire dataset.  The models have shown 

that both the 1.4 and 2.7 GHz channels of the radiometer are successful in predicting soil 

moisture through low vegetation conditions. The soil moisture predictions obtained at S- 

band are reasonably close to those obtained from the L-band analysis, however they result 

in slightly higher standard error (0.48% mg on average).  The brightness temperature 

dependence on the 0- to 5-cm gravimetric soil moisture is found to be stronger for the 1.4 

GHz channel as confirmed in the regression analysis.  
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6.0. Forward Models for Active Backscatter 

Prior investigations utilizing microwave scatterometers for retrieval of surface variables 

have shown the benefits of long wavelength, co-polarized backscatter measurements 

when applied to surface roughness and land-cover separability [44]-[46]. These studies 

have demonstrated the strong degree to which 0σ  is a function of surface roughness, 

vegetation and near surface soil moisture. The active channels were also examined for 

soil moisture sensitivity.  

 

We utilize here two simplified scattering models developed by Dobson et al. [20], and 

Dubois et al [37]. Whereas the Dobson scattering model was developed from truck-

mounted scatterometer data (LHH) over varying vegetation types, the Dubois empirical 

model was derived to describe truck-mounted copolarized backscatter measurements 

(LVV, LHH) of bare surfaces as a function of surface roughness, dielectric constant, 

incidence angle and frequency. The range of surface conditions encountered during 

SGP99 is close to that used to train both the above models and are assumed applicable 

when applied to the PALS frequency at L-band (for the Dobson model) and L- and S-

band (for the Dubois model).  

 

The Dobson scattering model uses the small perturbation approach to compute total LHH 

backscatter as a sum of surface scatter from the soil, 0
surfσ , volume scatter from the 

canopy, 0
volσ , and scatter from surface/volume interaction,0

intσ .  



 18 

0
int

000 σσσσ ++= volsurftot                                                       (4)  

The model computes0
volσ  and 0

intσ  using empirically derived expressions as described in 

[20], involving wavelength, RMS roughness, surface correlation length, dielectric 

constant, and canopy albedo. A summary of the model parameters required is shown in 

table VI. Since the Dobson model is based on a more detailed parameterization than the 

Dubois model, it is more susceptible to error in comparing modeled backscatter with 

PALS observations if these parameters are not accurately known. 

  

The Dubois model was developed using a variety of sources of training data: incidence 

angle, dielectric constant, RMS height, and wavelength to empirically derive equations 

for the HH- and VV- polarized backscattering cross-sections 0
hhσ  and 0

vvσ  for varying soil 

moisture and surface roughness within the 1.5 GHz – 11 GHz range. The vegetation 

effects are excluded in this version of the Dubois model, optimizing it for bare surfaces 

and is used here as a comparative tool for the SGP99 low vegetated fields. The model 

computes the copolarized backscattering cross-sections 0
hhσ  and 0

vvσ  as functions of 

incidence angle, θ, real part of the dielectric constant, ε ′ , and RMS height of the surface, 

s, [37]. Caution must be used when applying empirical models to datasets other than 

those used for their development. In our case the model was determined to be sufficient 

based on the range of surfaces that it was developed for and the scatterometer data that it 

has been applied to: AIRSAR, SIR-C, POLARSCAT, and RASAM.  
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Figure 5 shows a comparison of the Dobson model and PALS backscatter (LHH) over the 

low vegetated fields. The scattering model was developed for calculating surface scatter 

at 1.28 GHz, and therefore a comparison with the PALS 3.15 GHz frequency cannot be 

performed. The model displays a similar variation of backscatter with gravimetric soil 

moisture to that observed with PALS. Within the observed ranges of surface and canopy 

cover conditions the active model bounds the majority of observed data but shows more 

variance than the passive model. These deviations can be attributed to heterogeneity 

effects and model parameterization errors. The parameter values used in Table VI, to 

which the radar is more sensitive than the radiometer, can at best be considered first order 

approximations to the actual variability across the SGP region.  

 

Figure 6 shows the soil moisture estimation for July 9th, 12th and 14th over bare and low 

vegetated (biomass < 0.25 kg m-2) fields using the Dobson model. The model-based 

estimates underpredict all but one of the observed moisture values. Surprisingly, better 

model-based estimates are obtained for the high-vegetated fields (not shown). This could 

be a result of the model having been developed with more applicability to corn canopies, 

as encountered in the high-vegetated fields rather than to pasture and bare conditions as 

encountered in the low vegetated fields.  

 

Figure 7 presents both the 0hhσ  and 0
vvσ responses of the Dubois model compared to the 

measurements from the PALS data collected over the low vegetated fields. This model 

has a better correlation (R2=0.6) with the PALS backscatter compared with the Dobson 

model, (over low vegetated fields). It should be noted that the low-vegetated fields 
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include bare fields and low vegetated fields (<0.25 kg/m2), but still give a good response 

when applied to the bare-surface empirical model.  

 

The forward-regression-inverse technique was applied to the Dubois model using the 

LHH channel for comparison to the Dobson model. A series of regressions and 

predictions were performed for a combination of the five days of collocated SGP99 data. 

The observed in-situ versus predicted gravimetric soil moisture for July 12th and 14th over 

the low vegetated fields is shown in Figure 8. The error in predicting soil moisture over 

these low vegetated fields giving a standard deviation of 2.79% mg and an R2 value of 

0.64 represents the cumulative error of the algorithm (in-situ data, regressions, 

inversions).  

 

Both active models provide reasonable estimates of soil moisture under similar 

conditions. The comparison with in-situ data shows that the Dobson model 

underestimates moisture more than the Dubois model for the SGP99 field conditions. 

However, this underestimation is not a result of our model calibration. As stated earlier, 

deviations of estimated from in-situ soil moisture values for the Dobson model are 

possibly a result of differences between the parameterizations used to derive the original 

model and values assumed for the SGP99 experiment. It is also noted that given the 

relationship between the dielectric constant of soil and backscatter coefficient, as well as 

the correlation with surface roughness and vegetation, the presence of vegetation could 

result in overestimated surface roughness and/or underestimated soil moisture. A 
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summary of the L-band performance of both active models is provided in Table VII for 

the low vegetated fields. 

 

 8.0.  Conclusions and Discussion 

A combination of multiple regression analyses and contrasting evaluations with 

microwave physical models have been used in this study for evaluation of the L-band 

passive and active sensitivity to near surface soil moisture. A distinct soil moisture signal 

was observed for the highly vegetated fields as well as for the bare and low-vegetated 

fields. In studying the capabilities of PALS, the results have: 

1) Illustrated the sensitivity of remote sensing measurements (active and passive) to 

soil moisture in the presence of variable vegetation cover and heterogeneity. 

2) Improved our knowledge of the emission (passive) and scattering (active) 

characteristics of microwave interactions with soils at different frequencies and 

polarizations, and the effects of ancillary variables such as vegetation water 

content, surface roughness and temperature. 

The prediction techniques investigated exhibited varying soil moisture retrieval potential. 

Most of the estimates using passive channels provided between 2% and 3% accuracy in 

comparisons with the in-situ gravimetric soil moisture. Estimates using the active 

channels provided accuracies mostly in the 2-5% range.  Part of the error in these 

estimates is contributed by in situ sampling error and collocation error. 

 

This paper has provided a framework for studying active and passive observations of the 

land-surface under diverse conditions. Statistically based regressions were developed 
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although these are of limited scope considering the small size of the observational SGP99 

data set. The estimation of soil moisture based on physical forward models was motivated 

by a desire to apply understanding of the radiative transfer and backscatter processes to 

more generally applicable retrieval methods. It has been shown that physically based 

methods coupled with regression analyses can serve as useful tools for this and other 

studies. 

 

 The physically based emission model is found to correlate well with the PALS data 

collected over bare and low vegetated (biomass < 0.25 kg m-2), medium (0.25-3.0 kg m-

2), and high (>3.0 kg m-2) vegetated fields, with LH-band brightness temperature standard 

error of 6.6K, 9.9K, and 6.17K respectively. The backscatter models were found to 

provide additional information, but with more variance due to vegetation and 

heterogeneity effects. We have not attempted in this study to merge the active and passive 

components into a single retrieval technique. A combined active/passive technique could 

serve as a method to retrieve multiple surface variables: viz., soil moisture, surface 

temperature, surface roughness, and vegetation water content. Given the rather limited 

scope of the SGP99 in situ sampling and range of vegetation and soil moisture conditions 

observed, additional more detailed study (currently in progress) will be needed to develop 

such a combined approach. Future field experiments to acquire a larger quantity of 

collocated field data covering a wider dynamic range of environmental conditions will 

facilitate these efforts. 
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Field Site Flight Line Vegetation Cover 
Vegetation Water 
Content (kg m-2) 

2 10 Range 0.16 

3 10 Range 2.38 

4 10 Range 0.48 

5 10 Range 0.34 

21 9 Wheat (harvested) 0.12 

22 9 Wheat (harvested) 0.02 

23 9 Wheat (harvested) 0.36 

24 12 Bare 0.00 

25 12 Corn 7.18 

26 12 Corn 5.19 

27 12 Alfalfa 1.01 

 
Table I.  Field Characteristics within the Little Washita 
Watershed during SGP99.  
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R2 Channels 
.904 lh 

.908 lh, lv 

.92 lh, lv, sh 

.92 lh, lv, sh, sv 
 

Table IIa. Passive channels providing the highest 
correlation with in-situ soil moisture in the 0-0.5 cm 
range (in all fields) using 1, 2, 3 and 4 channels.  
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R2 Channels 
.341 svv 

.582 lhh, svv 

.664 lhh, lvv, svv 

.699 lhh, lvv, svv, shhvv 
 

Table IIb. Active channels providing the highest correlation with in-
situ soil moisture in the 0-0.5 cm range (in all fields) using 1, 2, 3 and 4 
channels.  
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Using Passive Channels Using Active Channels  

Regressed days 
(Predicted)  Standard Error 

(%GSM)  
Standard Error 

(%GSM) 

9, 12, 14 (11, 13) 1.39 3.62 
9, 11, 13 (12, 14) 2.01 2.56 
11, 12, 14 (9, 13) 2.22 3.52 

  12 13, 14 (9,11) 1.94 5.3 
9, 11 (12, 13, 14) 1.83 2.63 
11, 14 (9, 12, 13)  1.90 3.39 
11, 13 (9, 12, 14) 2.19 3.15 

  
Table III. Standard error (% gravimetric soil moisture) of the statistically 
predicted soil moisture and the in-situ soil moisture over all vegetation types, 
using the passive and active PALS channels. 
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(a) Media & Sensor Parameters   

Vegetation:   

Single scattering albedo, ω 0 

Opacity coefficient, b 0.1, 0.19 

Soil:   

Roughness coefficients, h (cm) and Q    0.2, 0.2  

Bulk density (g cm-3) 1.28 

Sand and clay mass fractions, s and c 0.3, 0.2 

Sensor:   

Viewing angle, θ    (deg) 39 

Frequency, f    (GHz) 1.4, 2.7 

Polarization H, V 

(b) Media Variables   

Land Surface:   

Surface soil moisture, mg   (%) in-situ 

Vegetation water content, wc    (kg m-2) in-situ 

Surface temperature, T  (K) in-situ 
 

Table IV. Microwave Radiative Transfer Model 
inputs. 
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Regressed days 
(Predicted) 

L-band         
Standard 

Error   
(%GSM) 

S-band         
Standard 

Error 
(%GSM) 

9, 12, 14 (11, 13) 2.89 1.90 
9, 11, 13 (12, 14) 2.01 3.04 
11, 12, 14 (9, 13) 0.60 2.03 

      12 13, 14 (9,11) 2.49 2.41 
9, 11 (12, 13, 14) 2.23 3.00 
11, 14 ( 9, 12, 13)  2.48 2.87 
11, 13 (9, 12, 14) 2.40 3.69 

 

Table V. The passive model (L- and S-band) was run with 
inputs of surface parameters from the fields within the 
Little Washita Watershed. Regressions were performed in 
the forward scheme on either two or three days of data. 
The table shows the standard error (% gravimetric soil 
moisture) of the predicted soil moisture. Notice the 
increase in error when using the S-band. 
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a) Media & Sensor Parameters   
Vegetation:   
Opacity coefficient, b 0.1 
Stalk reflectivity, Rst 0.6 
Single scattering albedo, ω 0 
Soil:   
Roughness coefficient, σ 0.2 

Bulk density (g cm-3) 1.28 
Sand and clay mass fractions, s and c  0.3,0.2 
Sensor:   
Viewing angle, θ    (deg) 39 
Frequency, f   (GHz) 1.26 
Polarization HH 
(b) Media Variables   
Land Surface:   

Surface soil moisture, mg (%) in-situ 

Vegetation water content, wc   (kg m-2) in-situ 
    

                        Table VI. Parameter inputs for the Dobson 
        scattering model.  
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Regressed days 
(Predicted) 

Standard Error  
(%GSM-Low Veg) 

Dobson Model 

Standard Error 
(%GSM-Low Veg) 

Dubois Model 
9, 12, 14 (11, 13) 4.72 5.28 
9, 11, 13 (12, 14) 3.13 3.39 
11, 12, 14 (9, 13) 1.41 1.84 
12, 13, 14 (9,11) 3.90 4.15 
9, 11 (12, 13, 14) 3.00 3.35 
11, 14 ( 9, 12, 13)  2.90 3.37 
11, 13 (9, 12, 14) 2.95 3.40 

Table VII. The active models (L-band) were run with inputs of surface 
parameters from the low vegetated fields within the Little Washita 
Watershed. Regressions were performed in the forward scheme on either 
two or three days of data. The table shows the standard error (% 
gravimetric soil moisture) of the predicted soil moisture.   
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Figure 1. Predicted vs. In-Situ soil moisture using the passive 
channel statistical regression technique (on days July 9th and 
11th) to predict soil moisture for July 12th, 13th and 14th over 
all fields. 
 

 

standard error  = 1.83 
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Figure 2. Predicted vs. In-Situ soil moisture using 
the statistical regression technique (on days July 9th 
and 11th) to predict soil moisture for July 12th , 13th 
and 14th over all fields using the active channels. 

 
 

standard error  = 2.63 
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Figure 3. Simulated average brightness 
temperatures )2/( BLVLHBB TTT +=  computed 

at frequency 1.4 GHz plotted against 
observed PALS average brightness 
temperatures. 

 

standard error  = 11.7 
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Figure 4. Passive model (L-band) retrieval 
of soil moisture for low vegetated fields 
(July 12th, 13th, and 14th). 
 

 

standard error  = 2.23 
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Figure 5. Comparison of modeled σο and PALS σο (LHH) 
over low vegetated fields with 0 - 5.0cm gravimetric soil 
moisture using the Dobson model. 

 

Standard error  = 2.75 
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Figure 6.  Active model inversion (LHH) (Dobson et 
al. model) over low vegetated fields. Regression was 
performed on July 9th ,11th and 13th data, shown is the 
predicted values for July 12th and 14th.  

standard error  = 5.39 
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Figure 7. Comparison of modeled σο and PALS 
σο (LHH, LVV) over low vegetated fields with 0-
5.0 cm gravimetric soil moisture using the Dubois 
model.  
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Figure 6. Active model inversion output over low 
vegetated fields. Regressed 11th and 13th, predicted  
for 9th, 12th and 14th using the Dubois model. 

 

 
Figure 8. Active model inversion (LHH) (Dubois 
et al. model) over low vegetated fields. Regressed 
July 9th, 11th and 13th, predicted  for July 12th and 
14th. 

 

standard error  = 2.79 


