Evaluation of *Verticillium lecanii* Strains Applied in Root Drenches for Suppression of *Meloidogyne incognita* on Tomato

SUSAN L. F. MEYER

USDA-ARS, Nematology Laboratory, Beltsville, Maryland 20705-2350 (e-mail: smeyer@asrr.arsusda.gov)

ABSTRACT: Three-week-old tomato seedlings were transplanted from sand into 10-cm-diameter pots (540-ml volume). Each pot contained 600 g loamy sand to which either 1,000 or 5,000 *Meloidogyne incognita* eggs were added. Five strains of the fungus *Verticillium lecanii* were individually applied in root drenches to the tomato plants at the time of transplanting, at an application rate of about 0.08% (dry weight fungus/dry weight loamy sand). The strains were a wild type strain and four mutants induced from that strain. Control plants were treated with water only or with autoclaved (nonviable) fungus. The experiments ended 45 days after transplanting, when the number of eggs per pot, root infection ratings, root lengths, and shoot dry weights were determined. The numbers of eggs counted from fungus-treated plants did not differ significantly from the numbers on water-only control plants. Application of autoclaved wild type strain to pots treated with 5,000 eggs resulted in an infection rating significantly higher than infection ratings recorded from several other fungus treatments and from plants treated with water only, but not in increased egg numbers.

Key Words: Biological control, fungus, *Lycopersicon esculentum*, root-knot nematode.

Meloidogyne (root-knot nematode) is one of the most destructive genera of plant-parasitic nematodes, affecting numerous crop plants worldwide. The identification and successful deployment of biological control organisms would greatly benefit existing management programs for this plant pest. Numerous studies have focused on fungi as microbial pest control agents for the species *Meloidogyne incognita* (Kofoid & White) Chitwood on tomato (e.g., Jansson et al., 1985; Mankau and Wu, 1985; Gaspard, 1986; Ibrahim et al., 1987; Cabanillas et al., 1989; Gaspard et al., 1990a, b; Leij et al., 1992a, b, c; Santos et al., 1992; Duponnois et al., 1995; Gautam et al., 1995). A commercial product containing *Arthrobotrys* was developed for management of root-knot nematode on tomato plants, but is not in widespread use (Stirling, 1991). *Verticillium lecanii* (A. Zimmermann) Viégas is another fungus investigated as a potential management agent for *M. incognita* (Meyer, 1994). A mutant strain (selected for increased benomyl tolerance) and a wild type strain, both found to have action against *Heterodera glycines* (soybean cyst nematode) on soybean (Meyer and Meyer, 1995, 1996; Meyer and Huettel, 1996), were tested in the greenhouse for antagonism to *M. incognita* on tomato plants (Meyer, 1994). An alginate granule formulation was selected for the tomato study because it was efficacious in soybean tests with *V. lecanii* (Meyer and Huettel, 1993, 1996; Meyer and Meyer, 1995, 1996), and because alginate granules have been effectively employed in various tests of biocontrol fungi for plant-parasitic nematodes (e.g., Cabanillas et al., 1989; Schuster and Sikora, 1992a, b; Stirling and Mani, 1995).

Application of the 2 *V. lecanii* strains in alginate granules decreased *M. incognita* populations on tomato in some experimental trials, but no application rate of either strain resulted in consistent, significant decreases in *M. incognita* populations (Meyer, 1994).

Because formulation is vital to success of biocontrol agents, the current study was initiated to determine whether a root drench would be efficacious for application of *V. lecanii* strains against root-knot nematode. The effects of root drenches applied at the time of tomato seedling transplant were investigated for the 2 previously tested *V. lecanii* strains and for the 3 other mutant strains that had been selected for benomyl tolerance (Meyer, 1992). All 5 strains were tested because biocontrol activity often varies with fungus strain.

Materials and Methods

Preparation of fungi and nematodes

Mutant strains M151, M251, M951, and M1051 (Agricultural Research Service Culture Collection, NRRL, #’s 18725, 18726, 18727, and 18728, respectively) were induced from a wild type strain of *Verticillium lecanii* (American Type Culture Collection 58909) with ultraviolet radiation and selected for increased tolerance to the fungicide benomyl (Meyer, 1992). For the greenhouse tests, the fungi were grown...
for 3 days in 1-L erlenmeyer flasks (each flask containing 250 ml potato dextrose broth) that were rotated on orbital shakers (240 rpm) at 25°C (Meyer, 1994). Mycelium was harvested by centrifugation of the broth cultures at 13,000 g (Meyer, 1994). Conidia produced in the broth cultures were collected with the mycelium, but our studies on shelf life of these V. lecanii strains indicated that the conidia are short lived; and therefore, they are not considered useful for nematode management applications (unpubl.). The collected mycelium was divided into 2 parts; half was autoclaved to be used as a nonviable control, while the other half was used live for addition to pots. Autoclaved treatments are given the suffix “A.” All strains were refrigerated at 4°C overnight and used the day after harvest from the erlenmeyer flasks.

Meloidogyne incognita eggs for tomato plant infestation were collected from greenhouse cultures (Meyer, 1994).

Greenhouse experiments

Tomato (Lycopersicon esculentum Mill.) cv. Marglobe seeds were sown in sand in styrofoam flats. Seedlings (ca. 3 wk old) were transplanted into 540-ml pots (10 cm diameter), each containing 600 g (air-dried weight) of loamy sand. The loamy sand was made from a compost/sand mixture (3 parts compost to 1 part sand) with a final composition of 79% sand, 11% silt, 7% clay, 3% organic matter, pH 6.9. Meloidogyne incognita eggs were mixed into the loamy sand just prior to transplanting of the tomato seedlings. The root-knot nematode eggs were added at 2 rates: 1,000 and 5,000 eggs per pot. For transplanting, a depression large enough for the plant roots was made in the loamy sand of each pot. Fungus (live or dead) in 60 ml of water was added to the depression in each pot. The fungus application rate was ca. 0.5 g dry weight fungus per pot, equivalent to ca. 0.08% dry weight fungus per dry weight loamy sand. Controls without live or dead fungus received 60 ml of water only. A tomato seedling was immediately transplanted into each depression. Ten pots were used for each treatment, and the experiment was later repeated for a total of N = 20 pots per treatment (with a few exceptions where plants died during the course of the experiment). The pots were arranged in a randomized complete block design under daylight (greenhouse temperatures reaching up to ca. 40°C). Plants were fertilized with Sierra® Poinsettia Mix at recommended rates. The experiments were terminated 45 days after transplanting, at which time the tomato plants were cut off just above the soil line, and shoot weights were determined after drying at 65°C.

Egg counts and infection class ratings

Root lengths were measured from the soil line to the tip of the main root. Nematode infection class numbers were assigned to roots (Dautlon, 1959). Rating numbers indicate the following: 0 = free from galls; 1 = less than 5 galls; 2 = trace to 25 galls; 3 = 26 to 100 galls; 4 = moderate, numerous galls, mostly discrete; 5 = moderately heavy, numerous galls, many coalesced. Root-knot nematode eggs were collected as in Meyer (1994), except that egg masses from loamy sand that was very dry at harvest had to be collected on the 60-mesh sieve and broken apart in a mortar and pestle or a manual tissue grinder. The eggs were then collected on a 500-mesh screen (pore size 25 μm) and counted.

Isolation of fungi from loamy sand

To test for the presence of the fungus at the end of the experiment, loamy sand from each pot was stirred in water (0.02% dry weight per volume water), plated onto semiselective media (0.05 ml of suspension per petri dish), and incubated at 25°C. Two media were used. One medium was PDA ABE 1000, similar to PDA ABE 100 (Meyer, 1994). Each liter of PDA ABE 1000 contained 39 g of PDA (potato dextrose agar), 970 ml of distilled water, 2 gr of benlate in 20 ml of distilled water (Benlate 50 Wettable Powder or DF, E. I. DuPont de Nemours & Co., Wilmington, Delaware), and antibiotics (0.3 g of streptomycin sulfate plus 0.3 g of tetracycline in 10 ml of sterile water). Six milliliters of EtOH were used to rinse the flask in which the antibiotics were mixed and were then added to the medium. The second medium was modified Ausher's Medium Number 2 (Ausher et al., 1975), with PCNB replaced by benomyl. Loamy sand suspensions were plated out as follows: (1) water controls: 1 petri dish of Ausher's medium and 1 petri dish of PDA ABE 1000 per pot; (2) wild type strain treatments: 2 petri dishes of Ausher's medium per pot; and (3) mutant strain treatments: 2 petri dishes of PDA ABE 1000 per pot. Consequently, loamy sand from water control treatments was plated onto 78 petri dishes (1 pot was not sampled), and loamy sand from each fungus treatment was plated onto 80 petri dishes.

Analysis of data

The experiments were combined and analyzed as an incomplete block design using the SAS procedure MIXED (SAS, 1992). The egg count values were wide ranging, differing in magnitude by as much as a factor of 10; the variances of the treatments were heterogeneous. To correct this, the data were log_{10} transformed. The variables: log_{10} (egg count), infection class, root length, and shoot dry weight were analyzed as mixed models. Experiment and the experiment by treatment interaction were considered random effects.

Results and Discussion

When 1,000 eggs were initially applied to pots, the largest reductions in egg populations resulted from individual application of M1S1A, live wild type strain, and wild type A (Table 1). The latter 2 treatments resulted in a 32% reduction in egg numbers compared to water controls (based on egg count means transformed from log_{10} egg counts), and M1S1A treatment resulted in a 28% decrease. However, the reductions were not significantly different from the egg numbers found in pots treated with water only. In the pots that had received 1,000 eggs, 2 of the 3 lowest infection ratings were recorded.
from the 2 wild type strain treatments (Table 1), but the infection ratings were similar for all treatments, generally falling in the 2–3 range (from more than 5 galls to less than 100). Root lengths among treatments were similar (P > 0.05), ranging from 12.1 cm to 16.8 cm (least squares mean per treatment). The highest shoot dry weights were in plants treated with M1S1A (Table 1).

Trends recorded at 1 nematode population density did not appear at the other. When 5,000 eggs were initially added to each pot, the largest reduction in egg numbers (52% compared with water-treated controls) was recorded after treatment with M2S1A (Table 1). Despite the overall large reduction, there was high variability, and the 2 values were not significantly different. However, in the pots receiving 5,000 eggs, treatment with M2S1A did result in significantly fewer eggs than treatment with viable strain M2S1 or with M1S1A, and in one of the smallest root infection ratings. Applications of M1S1A or of the live wild type strain, which were associated with low egg counts when 1,000 nematodes were added per pot, were connected with high egg populations in the pots receiving 5,000 eggs. Additionally, M1S1A and wild type A treatments resulted in significantly higher infection class ratings than some other treatments in the pots that received 5,000 eggs. Most of the other infection class ratings were similar to each other (ca. 3–4; from 26 galls to more than 100, galls mostly discrete), although plants in pots treated with strain M10S1 and 5,000 eggs had low infection ratings and also had the heaviest shoots (Table 1).

Delivery of a potential biocontrol fungus during transplant of tomato seedlings was previously tested with Monacrosporium ellipsosporum (Grove) Subr., which was applied on wheat grain substrate to tomato seedling transplant holes (Mankau and Wu, 1985). That study demonstrated a trend toward nematode suppression in fungus-treated plants, but there was not a significant difference from controls. Similarly, in the current study, none of the 5 strains applied to transplant holes significantly affected root-knot nematode populations on tomato plants. The lack of food source for the fungus in the root drench may have outweighed any advantage of direct root contact from the drench application, although V. chlamydosporium and Monacrosporium ellipsosporum were effective against Meloidogyne spp. on tomato when applied to soil without a food source (Leij and Kerry, 1991; Santos et al., 1992). Indeed, V. chlamydospor-
resulted in lower root infection ratings than application of wild type A. This sug-

markable suppression of *M. incognita*, it might be worthwhile to investigate impact on juveniles as well as on eggs, and to pursue application as an amendment or to study breakdown products from the dead mycelium. However, the effect compared with the water controls was not large enough to warrant study as a potential management agent.

A fungus that is effective against plant-parasitic nematode is not necessarily active against another species. These strains of *Verticillium lecanii*, while efficacious against *H. glycines* under various greenhouse conditions (Meyer and Meyer, 1995, 1996; Meyer and Huettel, 1996), did not demonstrate similar activity against *M. incognita*.

Acknowledgments

Thanks are extended to Crop Genetics International for use of greenhouse space and for maintenance of ongoing experiments, to Paula Crowley for greenhouse and laboratory work, and to Mary Camp and Sue Douglass (Biometrical Consulting Service) for analysis of data.

Mention of a trademark or proprietary product does not constitute a guarantee, warranty, or endorsement by the U.S. Department of Agriculture and does not imply its approval to the exclusion of other similar products. The study was conducted under the terms of a Cooperative Research and Development Agreement with Crop Genetics International, Columbia, Maryland.

Literature Cited

Gaspard, J. T. 1986. Strategies for biocontrol of *Meloidogyne* spp. using the nematophagous fungi *Monacrosporium ellipsosporum, Paecilomyces lilacinus* and *Verticillium chlamydosporium*. Ph.D.
Dissertation, University of California, Riverside, California. 141 pp.

