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Pan et al. claim that our results actually support a strong linear positive relationship between
productivity and richness, whereas Fridley et al. contend that the data support a strong
humped relationship. These responses illustrate how preoccupation with bivariate patterns distracts
from a deeper understanding of the multivariate mechanisms that control these important
ecosystem properties.

Debate over the productivity-richness rela-
tionship (PRR) has been strongly influ-
enced by the way that scientific motives

influence how theories are evaluated. Analyses
of how scientists participate in the process of
theory maturation (1) point out that attachment
to particular explanations can result in a tenden-
cy to overlook inadequacies and contradictions.
Such attachment can lead to a reliance on “the-
ory demonstrations,”which selectively sift through
data to find supporting evidence. “Theory inves-
tigations,” in contrast, have a different motiva-
tion: to evaluate the explanatory adequacy and
limitations of theories so as to improve them.
Theory investigations are challenged to be either
exhaustive in their examination of evidence (e.g.,
through complete meta-analyses) or to rely on
unfiltered samples that represent the variation
nature has to offer. Generally, demonstrations seek
qualitative (yes/no) support, whereas theory in-
vestigations seek to quantify the relative impor-
tance of different processes.

In our study (2), we investigated the PRR at
the local, regional, and global scale and reported
the patterns found with all sites included or with
sites of anthropogenic origin (e.g., old fields and
restored prairies) excluded. Along with the mean
responses, we evaluated boundaries using non-
linear quantile regression. We emphasized that
for all these different analyses, there was a great
deal of unexplained variance.

Pan et al. (3) argue that our study provides
clear and strong support for a positive linear
relationship between productivity and richness.
They selected one subset where we found a weak,
positive linear PRR among site means (the straight
dotted line in Adler et al., figure 3), culled addi-
tional sites, and then averaged across similar sites,

boosting the apparent strength of the relationship.
Pan et al. (3) claim that we were biased in our
investigation of the PRR because of unbalanced
replication of samples across the bins in the com-
munity classification scheme they used to post-
process the data. Counter to their claim, there is no
requirement for equal representation in bins unless
one seeks homogeneity of variance across the rela-
tionship. Averaging across similar sites so as to
create a single value for each bin, however, re-
duces unexplained variance by eliminating within-
bin variance and exaggerates predictive capacity.
The use of bins defined by an informal commu-
nity classification scheme also confounds pro-
ductivity with the classification scheme.

In sharp contrast to Pan et al., Fridley et al.
(4) contend that our data show strong support
for the humped-back model (HBM). Original
support for the HBM comes from theory demon-
strations, such as the Al-Mufti (5) study where
data were hand-selected to represent a humped-
back line. Theory investigations based on unfil-
tered samples and rigorous quantitative analyses
since that time have consistently found PRR pat-
terns to be weak and variable (6–8), consistent
with our findings [although analyses that have
filtered studies have produced more consistent
results, with the form of relationship depending
on the filtering applied (9, 10)].

Fridley et al.’s specific claims are that we
(i) filtered data by eliminating anthropogenic
sites; (ii) failed to properly test the HBM by not
including litter; (iii) failed to include enough high-
productivity sites to detect a hump; and, incon-
sistent with that point, (iv) claim the data show
a humped relationship. We dispute their impli-
cation that we presented biased results and dis-
agree with their conclusions as described here:

(i) We performed many analyses and sum-
marized the full range of patterns found. One
of the analyses prominently presented was across
all sites (Adler et al., figure 3, solid line) and
showed a weak but significant humped relation-
ship. Another analysis excluded anthropogenic
sites (Adler et al., figure 3, dotted line), antic-
ipating that some might object to inclusion of
highly altered sites (which Pan et al. did). This
analysis showed a (weak) linear positive rela-
tionship. Within-site analyses of small-scale rich-
ness patterns showed very weak and highly
variable patterns (Adler et al., figure 2).
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(ii) The majority of studies of the PRR have
described productivity as the variable of theo-
retical interest rather than accumulated biomass,
including Fridley et al. themselves at times [(9),
p. 127]. To be comparable with previous theory
investigations, we analyzed productivity without
including litter accumulated from previous years.

(iii) Sites were selected without filtering and
represent the variance encountered when ecolo-
gists are asked to sample natural grasslands. Se-
lectively including sites with high productivity,
as suggested by Fridley et al., would bias the
sample, leaving us with no estimate of the pre-
dictive adequacy of the PRR. That said, 20 of the
48 sites included in our study contained indi-
vidual plots with productivity levels greater than
500 g/m2 and 8 had levels greater than 800 g/m2

(and ranged over 1500 g/m2), counter to the im-
pression given by Fridley et al.

(iv) Fridley et al. suggest, based on visual
examination and no formal analysis, that there is

a clear modal PRR relationship, contradicting their
own claim that more high-productivity sites are
needed to detect a humped relationship. However,
production and richness data are log-normally
distributed in this case (Adler et al., figure 2), and
a random bivariate sample from a log-normal
distribution will necessarily have a humped ap-
pearance in linear space (Fig. 1A). Plotting data
from a bivariate log-normal distribution in log-log
space (Fig. 1B) reveals the randomness. The ob-
served data (Fig. 1, C and D) show only modest
deviations from random expectations, illustrat-
ing why quantitative analyses failed to detect
strong patterns.

We note that even if productivity and rich-
ness were strongly correlated, we still would be
unable to resolve underlying mechanisms. There
have been well over 100 theories proposed to
explain diversity patterns (11). A linear positive
relationship is predicted by many different pos-
sible mechanisms (12), and the HBM likewise

represents a large collection of conflicting the-
ories (7).

We reiterate that it is past time to develop
the multivariate expectations for our multipro-
cess theories and to evaluate those expectations
quantitatively (13). Insights into the mechanisms
controlling diversity cannot be achieved by con-
tinued fixation on bivariate patterns such as
the PRR.
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Fig. 1. (A) Random expectations for
plot-level data, based on data char-
acteristics in figure 2 in Adler et al.
(2). Note the apparent hump produced
by log-normal distributions of both
biomass and species richness. (B)
Random expectations for Adler et al.
data in log-log space. (C) Observed
data in linear space. (D) Observed da-
ta in log space.
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