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Hop (Humulus lupulus) is a climbing 
perennial bine grown for its cones, which 
have been used in the brewing of beer 
since at least 400 to 600 A.D. (1). The 
lupulin glands of hop cones produce soft 

resins (α and β acids) and essential oils 
that impart flavor and aroma to beer, and 
also serve as preservatives. Nearly all 
commercial hop production in the United 
States is located in Pacific Northwest 
states, although small commercial plant-
ings of hop can be found in northern Cali-
fornia, the upper Midwest, and the north-
eastern United States (1,17). 

In 1997, hop powdery mildew (caused 
by Podosphaera macularis), one of the 
oldest and most destructive diseases of hop 
(26,31), was observed for the first time in 
commercial hop yards near the Yakima 
Indian Reservation in Washington (29). 
Greater than 800 ha of a susceptible culti-
var were cut at the ground and abandoned 
that year because of severe infection of the 
cones by P. macularis (23). The following 
season, hop powdery mildew was con-
firmed in all major hop-growing regions in 
Idaho, Oregon, and Washington, and the 

disease now occurs annually in most hop 
yards planted to susceptible cultivars in 
these states. Estimated economic impacts 
of the disease from direct yield and α-acid 
losses, as well as additional management 
costs, are estimated at nearly $740/ha an-
nually (23). 

Hop powdery mildew can affect all ae-
rial plant parts, but the most significant 
economic damage is caused by infection of 
developing flowers (burrs) and cones 
(26,31). Infected burrs and young cones 
are misshapen or aborted, resulting in di-
rect losses in cone yield and reductions in 
α-acid content (26,31). Infection of cones 
close to harvest also is associated with 
premature senescence that leads to rapid 
deterioration of cone quality (23,31) or 
browning during kiln drying (23). Al-
though leaf and stem infections cause little 
or no direct damage to hop, management 
of the leaf phase of the disease is essential 
to protect cones from severe infection 
because diseased leaves produce the pri-
mary inoculum for burr and cone infec-
tions later in the season (23,31,37). Young 
leaf tissue remains susceptible to infection 
for approximately 2 weeks after emer-
gence (37) and, unlike many hosts (16), 
hop produces copious amounts of new leaf 
tissue throughout the season. Conse-
quently, management of the leaf phase of 
the disease is difficult in hop because fun-
gicides must be applied throughout the 
season to protect newly emerging leaves 
and, thus, minimize the risk of cone infec-
tion (23,24,37). In practice, scheduling of 
fungicide applications in a yard is based on 
disease risk forecasts and the disease status 
of that yard, as determined by regular 
scouting (23). 

Economic thresholds and economic in-
jury levels for powdery mildew on hop 
leaves have not been established fully. 
Nonetheless, a prerequisite for implemen-
tation of an action threshold is a sampling 
procedure to estimate disease incidence or 
classify disease incidence as above or be-
low some prespecified value. Sequential 
sampling methods have been used exten-
sively in entomology to minimize sam-
pling costs for assessing pest density 
(3,12,28,30), but less extensively for as-
sessing foliar diseases of plants 
(9,10,22,34,35). Depending on the objec-
tive, two forms of sequential sampling, 
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sequential estimation and sequential classi-
fication, can be used to assess the disease 
status of a host population when the spatial 
pattern of disease is known or can be esti-
mated (4,20). Sequential estimation is used 
when it is necessary to estimate disease at 
a prespecified level of precision (20,22). 
Diseased individuals are tallied from each 
sampling unit during assessment, and sam-
pling ceases when sufficient information 
has been collected to estimate disease at 
the specified level of precision. Often, 
however, it is not necessary to obtain a 
precise estimate of disease in a population 
to make an appropriate pest management 
decision (3,4,27). In such circumstances, 
sequential classification can be used to test 
a hypothesis about disease status, such as 
whether disease incidence is above or be-
low a critical value important for disease 
management. The number of sampling 
units required to classify disease above or 
below the critical value depends on how 
much the disease incidence differs from 
the critical value (20). Disease incidence 
can be classified with limited sampling 
when the disease incidence is much higher 
or lower than the critical value, but a 
greater number of units must be sampled 
to classify disease incidence when the 
incidence is near the critical value. Gener-
ally, fewer samples are required for se-
quential classification than sequential es-
timation because precision is not 
controlled for all levels of disease using 
the former and sampling ceases when 
enough individuals have been sampled to 
classify disease incidence. 

Development of a rapid and reliable 
sampling strategy for hop powdery mildew 
on leaves would enable growers to mini-
mize scouting time and costs, and could be 
integrated into an overall decision-support 
system for management of this disease. 
Therefore, the objectives of this research 
were to develop and validate sequential 
sampling plans for (i) estimating the mean 
incidence of hop powdery mildew on 
leaves and (ii) classifying the mean inci-
dence of powdery mildew on hop leaves as 
above or below selected disease threshold 
values. Part II of this article series ad-
dresses similar objectives for sequential 
sampling for the incidence of powdery 
mildew on hop cones. 

MATERIALS AND METHODS 
Field sites and data collection. The in-

cidence of hop powdery mildew on leaves 
was sampled in commercial hop yards in 
the primary hop-growing regions of Ore-
gon and Washington from 2000 to 2001 
and 2004 to 2005; namely, the Willamette 
Valley in Oregon and the Yakima Valley 
and surrounding areas in Washington. All 
Oregon hop yards included in this study 
were located in Marion County. Yards in 
Washington were located in three distinct 
hop-production regions: the Yakima Indian 
Reservation, near Moxee City, and the 

Lower Yakima Valley (near Mabton and 
Prosser), as described by Gent et al. (11). 
The severity of hop powdery mildew varies 
among these regions, partly because of 
regional differences in climate and grower 
cultural practices (1,36), and generally is 
greatest in and around the Yakima Indian 
Reservation, followed in order by Moxee 
City, the Lower Yakima Valley, and Ore-
gon. 

Model construction data set. The model 
construction data set was obtained from an 
analysis of spatial patterns of hop powdery 
mildew on leaves (36). Data for model 
construction was collected from 54 com-
mercial hop yards in 2000 and 2001, in 
which 198 assessments of disease inci-
dence were conducted. Yards were as-
sessed every 3 to 4 weeks beginning in 
May and continuing through harvest in late 
August or September. Estimated mean 
disease incidence ( p̂ ) was assessed using 
a cluster sampling design (14). In 2000, 
yards were stratified into multiple strata 
(H), where H = number of rows in a 
yard/20 (rounded up to the nearest inte-
ger). A single number, r, between 1 and 20 
was chosen randomly and the rth row from 
each stratum was sampled as described 
below; this is considered systematic sam-
pling. In 2000, H was variable, and in 2001 
H was set at 2. In each row, 10 leaves (n) 
were selected arbitrarily from first 100 
(Oregon) or 75 (Washington) plants (N, 
sampling units) along the transect, and 
each leaf was rated for presence or absence 
of powdery mildew to determine inci-
dence. The total number of leaves assessed 
from each row was nN, and nΣNH leaves 
were assessed per yard, where NH is the 
number of sampling units in the Hth stra-
tum. Mean incidence of diseased leaves 
( p̂ ) was calculated as p̂  = Σx/(nΣNH), 
where x is the number of diseased leaves 
per sampling unit. Following the terminol-
ogy of Turechek and Mahaffee (36), this 
analysis was conducted at the “yard level” 
because the sampling units from all rows 
sampled in a hop yard were used in the 
calculation of p̂ . Therefore, a “yard-level 
data set” consisted of nΣNH leaves evalu-
ated from N sampling units among H strata 
in a yard during a disease assessment. 
Yard-level data sets consisted of multiple 
“row-level data sets,” each consisting of 
nN leaves assessed from one row of a yard. 
Information on spatial patterns of disease 
incidence was used to construct the se-
quential sampling plans described below. 

Validation data set. Surveys for hop 
powdery mildew were conducted in 27 
commercial hop yards in Oregon (16 
yards) and Washington (11 yards) from 
2004 to 2005. Yards were assessed weekly 
for hop powdery mildew, beginning in 
May and continuing through August or 
September. A transect of 100 (Oregon) or 
75 (Washington) plants (N) was sampled 
from each of the first two strata (rows 1 to 
40) selected arbitrarily from each yard, as 

described above for the model construction 
data set. Therefore, 1,000 (Oregon) or 750 
(Washington) leaves were assessed from 
each row, and 2,000 (Oregon) or 1,500 
(Washington) leaves were assessed from 
each yard. The first transect always was 
located closer to the edge (eastern or west-
ern side) of the yard than the second tran-
sect. From the validation data set, 104 
yard-level data sets (208 row-level data 
sets) were selected randomly to represent 
two α-acid cultivars (CTZ and Chelan) and 
two aroma-type cultivars (Glacier and 
Willamette), the five production regions 
described above, nine growers, and the 
range of disease incidence typically found 
in Oregon and Washington. 

Spatial pattern analyses (validation 
data set). Distributional analysis. The 
beta-binomial and binomial distributions 
were fit to the incidence data using the 
computer program BBD (18). For binary 
data collected as a cluster sample, a good 
fit to the binomial distribution is an indica-
tion of a random pattern of diseased plants, 
whereas a good fit to the beta-binomial 
distribution is an indication of an aggre-
gated disease pattern when the parameter θ 
of the beta-binomial distribution is greater 
than 0 (13,19). A log-likelihood ratio test 
statistic was calculated to determine 
whether the data fit the beta-binomial dis-
tribution better than the binomial distribu-
tion. 

The degree of aggregation of disease in-
cidence was quantified using the parameter 
θ of the beta-binomial distribution, which 
provides a measure of variation in disease 
incidence per sampling unit that generally 
is referred to as heterogeneity (21,34). 
Additionally, the index of dispersion, D, 
was calculated by dividing the observed 
variance of diseased leaves (vobs) by the 
theoretical variance for a binomial distri-
bution (vbin) where 

vobs = ∑ −− )1]/()ˆ([ 2 Nnpx ii  (eq. 1) 

vbin = pnˆ (1 – p̂ ) (eq. 2) 

and xi, p̂ , n, and N are as defined previ-
ously. When θ = 0 or D = 1, the pattern of 
diseased plants is random. Aggregation is 
indicated when D > 1 or θ > 0, with the 
degree of aggregation directly proportional 
to the magnitude of the statistic. D has a χ2 
distribution, and can be used to test the 
null hypothesis of a random distribution of 
disease incidence with N – 1 degrees of 
freedom (20). 

Binary power law analyses. The ob-
served and theoretical binominal variances 
were fit to the binary form of Taylor’s 
power law (13,33), calculated as 

ln(vobs) = ln(Ax) + bln[ pnˆ (1 – p̂ )] (eq. 3) 

where ln(Ax) and b are the intercept and 
slope parameters of a straight line, respec-
tively. When Ax = 1 and b = 1, equation 1 
indicates a random pattern of disease that 
can be represented by the binomial distri-
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bution. When Ax > 1 and b = 1, disease 
incidence is aggregated, but aggregation is 
not dependent on disease incidence (p). 
Values of b > 1 indicate that aggregation is 
systematically related to p. Ordinary least 
squares regression was used to estimate the 
intercept and slope parameters with SAS 
(version 9.1, PROC REG; SAS Institute, 
Cary, NC) after a covariance analysis was 
conducted to verify that the different sam-
ple sizes collected in Oregon (N = 100) 
and Washington (N = 75) did not affect the 
intercept (p = 0.089) or slope (p = 0.878) 
of the binary power law. Covariance analy-
sis was conducted in SAS (PROC GEN-
MOD) as described by Gent et al. (11). 

Sequential sampling curves. Sequen-
tial estimation. Statistical methods for 
development of sequential estimation 
models for powdery mildew on hop leaves 
were based on methods presented by Mad-
den and Hughes (20) and Madden et al. 
(22). Binary power law parameters esti-
mated by regression analysis from the 
model construction data set were used to 
develop the sequential estimation models. 
Precision was expressed in terms of the 
coefficient of variation, C = SE p̂ / p̂ , 
where SE is the standard error (21,22). The 
SE of p̂ was expressed in terms of the bi-
nary power law parameters as 

Nppa b /)]1(ˆ[ −  (eq. 4) 

where a = Axn
b–2 (14,34). This expression 

for a is based on the binary power law for 
count data and is different from the expres-
sion of a for proportions, where a = Apn

–b. 
In sequential sampling for estimation, 

the cumulative number of diseased leaves 
over N sampling units, TN, is tallied after 
each sampling unit is assessed. Sampling 
ceases when TN reaches or exceeds a 
threshold value, referred to as the stop 
limit, which is defined by a, b, n, N, and C. 
Disease incidence, as determined by se-
quential sampling, is then calculated as 
p̂ = TN/nN. The stop lines can be calcu-

lated exactly for a binomial distribution 
(i.e., θ = 0). However, b was >1 for pow-
dery mildew on hop leaves (36) and, under 
this condition, TN cannot be written as a 
simple function of a, b, n, N, and C with a 
discrete solution (22,34). Equation 4 can 
be written as a function of TN(γN) and 
solved numerically for TN as 

γN = TN
b–2(nN – TN)b = (C2/a)n2b–2N2b–1 (eq. 5) 

A Mathcad (Mathsoft Inc., Cambridge, 
MA) worksheet (34) was developed to 
solve equation 5 iteratively for TN when N 
= 1 to 500 and C = 0.1, 0.2, and 0.3. 

Sequential classification. Statistical 
methods used for development of the se-
quential classification models were based 
on Wald’s sequential probability ratio test 
(SPRT) (39), as modified by Madden and 
Hughes (20). Reviews of the SPRT have 
been published (3,4) and only an overview 
of the methods is presented here. For se-

quential classification, pt = (p0 + p1)/2 is 
defined as some critical value of disease 
incidence, such as a management threshold 
for a fungicide application. The variables 
p0 and p1 represent the lower and upper 
boundaries of disease incidence such that, 
when the true incidence of disease, p, is 
equal to or less than p0, the field is classi-
fied correctly at least 100(1 – α)% of the 
time. When the true incidence of disease is 
equal to or greater than p1, the field is clas-
sified correctly at least 100(1 – β)% of the 
time. In practice, the resulting classifica-
tions are interpreted as a test of the null 
hypothesis H0: p ≤ pt against the alternative 
hypothesis H1: p > pt, respectively. A type I 
error is made when the disease incidence, 
p, is incorrectly classified as greater than 
the critical value, pt. A type II error is 
made when p is incorrectly classified as 
less than pt. The rate of these two errors is 
expressed by the operating characteristic 
(OC), which is defined as the probability 
of accepting the null hypothesis given the 
true value of p. If pt is a disease action 
threshold, the OC also may be defined as 
the probability of not making a decision to 
apply a control measure (4). The OC = 1 – 
(type I error rate) when p ≤ pt, and is the 
type II error rate when p > pt. The OC of a 
perfect sampling plan is 1 when p ≤ pt and 
0 when p > pt. In practice, it is difficult or 
impossible to achieve such an OC, but the 
steepness of the OC provides an indication 
of the error rate of the sampling plan (4). 
Plots of average sample number (ASN) 
versus p also are used to evaluate the prop-
erties of sequential classification sampling 
plans (4,34). The ASN is the expected 
number of sampling units that need to be 
examined in order to accept or reject the 
null hypothesis for any true value of p. The 
OC and ASN are expected values and, 
therefore, provide average properties of the 
sampling plan over a large number of sam-
pling bouts, and not necessarily the per-
formance of the sampling plan for a spe-
cific hypothesis (20). 

Sequential classification requires two 
lines (stop lines) be calculated to represent 
p0 

and p1. Exact calculation of stop lines 
for the SPRT is not possible for data de-
scribed by the beta-binomial distribution, 
but formulae approximating the stop lines 
have been developed (20). The general 
formula for stop lines is 

i0 + snN < TN < i1 + snN (eq. 6) 

where sn is the common slope of the stop 
lines, and i0 are i1 are intercepts of the 
lower and upper stop lines, respectively. 
Intercept terms are defined by a, b, p0, p1, 
and error parameters analogous to type I 
(α) and type II (β) errors. Formulae for s, 
i0, and i1 given by Madden and Hughes 
(20, equations 24a to 24c) and Turechek et 
al. (34, equations A4 to A6). 

Because economic thresholds for hop 
powdery mildew have not been developed 
fully, sequential classification plans for 

hop powdery mildew on leaves were de-
veloped for four levels of pt: 0.025 (p0 = 
0.0125, p1 = 0.0375), 0.05 (p0 = 0.025, p1 
= 0.075), 0.10 (p0 = 0.05, p1 = 0.15), and 
0.15 (p0 = 0.05, p1 = 0.25). These threshold 
values were evaluated at each of four com-
binations of α (0.05 and 0.10) and β (0.05 
and 0.10). In total, 16 sampling plans were 
developed and evaluated by plots of OC 
and ASN versus p. OC and ASN were 
calculated by Monte-Carlo simulations 
using a Fortran program developed by J. P. 
Nyrop and modified by L. V. Madden (34). 
Based on results of the simulations, four 
sequential classification sampling plans 
were evaluated and validated at each of the 
four levels of pt described above, at each of 
α = β = 0.05 and α = β = 0.10, using field 
data not used in the construction of the 
model. 

Sampling plan evaluation. Sequential 
estimation—bootstrapping. Bootstrapping 
allows a statistic of interest (e.g., achieved 
N by sequential sampling for estimation) to 
be estimated empirically as a frequency 
distribution from sample data (4). Evalua-
tion of sampling plans by bootstrapping is 
useful in assessing variability in sampling 
plan performance among fields or, in this 
case, over a range of values of disease 
incidence. Evaluation of the sequential 
estimation sampling plan was conducted 
by bootstrap simulation of 18 yard-level 
data sets, each consisting of two row-level 
transects, that encompassed the range of 
p̂ observed among the 104 model valida-

tion data sets collected from 2004 to 2005. 
The 104 model validation data sets were 
classified into six disease incidence cate-
gories: 0.01 < p̂  < 0.025, 0.025 ≤ p̂  < 
0.05, 0.05 ≤ p̂  < 0.10, 0.10 ≤ p̂  < 0.20, 
0.20 ≤ p̂  < 0.40, and p̂  ≥ 0.40. Three 
data sets were selected randomly from 
each disease incidence class for bootstrap 
evaluation. Evaluation of data sets where 
p̂ = 0 at the yard level were not performed 

because estimates of C are not possible at 
this value of p̂  and, thus, bootstrap 
evaluations are not informative for deter-
mining performance of the sampling plan. 
Predicted stop limit curves were deter-
mined according to equation 5 with C = 
0.1 and C = 0.2, and pooled yard-level 
estimates of the binary power law parame-
ters, where a = 0.198 and b = 1.099 (36). 
Yard-level estimates of the binary power 
law parameters were used because these 
values best characterize the variability of 
hop powdery mildew on leaves among 
sampling units within a yard (36). 

A software macro was written in Mini-
tab (version 14; Minitab Inc., State Col-
lege, PA) to conduct the bootstrap analysis 
as described previously (34). For a given 
bootstrap simulation, sampling units (n 
=10 leaves from a plant) were sampled 
randomly one at a time, with replacement, 
from among all sampling units from the 
two row-level data sets collected in a given 
yard. Sampling ceased when the cumula-
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tive number of diseased leaves exceeded 
the model TN, or when the number of sam-
pling units equaled the total number of 
sampling units in the data set (200 in Ore-
gon and 150 in Washington). A minimum 
of three sampling units was collected be-
fore sampling ceased to ensure that a rep-
resentative sample was collected. The 
achieved C and moment estimate of p then 
were calculated. The bootstrap simulation 
was conducted 100 times for each data set 
and specified values of C. Nonparametric 
confidence intervals based on the sign test 
(22) for the achieved C, the difference 
between the p of the data set (true p) and 
achieved p using sequential sampling for 
estimation, and the achieved N for each of 
the 18 yard-level data sets were calculated 
as described previously (22,34). 

Sequential estimation—simulated sam-
pling validation. Sampling plans also were 
validated with independent data by simu-
lated sampling. As indicated by Binns et 
al. (4), simulated sampling can be used to 
complement model evaluation conducted 
by bootstrapping because simulated sam-
pling and bootstrapping provide different 
insights into model performance. Simu-
lated sequential sampling of the 104 yard-
level model validation data sets was per-
formed using a Minitab macro (34). For a 
given data set, the sampling units were 
entered into the macro in the same order 
they were collected in the field. The macro 
simulated sampling of diseased leaves 
collected from the sampling units, and 
tallied the cumulative number of diseased 
leaves until this value exceeded that of the 
model TN calculated from equation 5. If the 
model TN was not exceeded during sam-
pling in the first transect, sampling contin-
ued into the second transect, which is re-
ferred to as the “original order.” Simulated 
sampling of each yard also was conducted 
by initiating sampling at the second tran-
sect, referred to as the “reversed order.” 
Therefore, each yard was sampled two 
times (in the original and reversed orders) 
to determine if the position in the yard at 
which sampling was initiated affected 
results of the sequential sample. Yard-level 
estimates of p, the achieved C, and the 
achieved N were calculated for both the 
original and reversed orders. 

Sequential classification—bootstrapping. 
The four sequential classification sampling 
plans selected after Monte-Carlo simula-
tion were evaluated by bootstrap simula-
tion, as described above for sequential 
estimation. Stop lines were determined 
using equation 6 with s, i0, and i1 calcu-
lated as reported by Madden and Hughes 
(20, equations 24a to 24c) and Turechek et 
al. (34, equations A4 to A6). A Minitab 
macro was written to conduct the bootstrap 
analysis as described previously (34). For a 
given bootstrap simulation, sampling units 
(n =10 leaves from a plant) were sampled 
randomly one at a time, with replacement, 
from among all sampling units from the 

yard. Sampling ceased when the cumula-
tive number of diseased leaves exceeded 
the upper or lower stop lines of the model, 
or the data set was sampled fully. A mini-
mum of three sampling units was collected 
before sampling ceased to ensure a repre-
sentative sample was collected. The 
achieved OC and ASN then were calcu-
lated. The bootstrap simulation was con-
ducted 100 times for each data set and 
specified values of pt, p0, p1, α, and β. 

Sequential classification—simulated sam-
pling validation. The four sequential clas-
sification sampling plans selected after 
Monte-Carlo simulation were evaluated by 
simulated sampling, as described above for 
sequential estimation. Simulated sampling 
of 104 yard-level model validation data 
sets was performed using a Minitab macro 
(34). For each of the 104 yard-level data 
sets, the sampling units were entered into 
the macro in the original order and then in 
the reversed order of sampling, as de-
scribed above. Sampling ceased in the first 
transect if the cumulative number of dis-
eased leaves exceeded the upper or lower 
stop lines of the model and a decision 
could be made. If a decision was not made 
before the end of the first transect, sam-
pling continued into the second transect 
until a decision could be made or the data 
set was fully sampled (i.e., 200 sampling 
units for yards in Oregon and 150 for yards 
in Washington). Additionally, the 208 row-
level data sets were sampled using the 
macro to validate the sampling plan for 
individual transects in the manner de-
scribed for yard-level data sets. 

Stop lines were calculated based on ei-
ther the binomial distribution (34, equa-
tions A1 to A3) or beta-binomial distribu-
tion (34, equations A4 to A6). To 
determine whether a correct decision for a 
data set was made, it was assumed that p 
for a row-level or yard-level data set repre-
sented the true p for that yard. The true 
value of p for a data set was compared 
with the hypothesized pt to determine 
whether to reject the H0 in favor of the H1. 
The decision based on results of the simu-
lated sequential classification was com-
pared with the correct decision for the 
yard, in order to calculate type I and type 
II error rates. When sampling row-level 
data sets, a correct decision was recorded 
if the true p of the row was correctly clas-
sified as above or below pt. At the yard 
level, where multiple row-level data sets 
were assessed from each yard, a correct 
decision at the yard-level was recorded if 
mean disease incidence was correctly clas-
sified above or below pt for both transects 
at the row level. A type I error was re-
corded if mean disease incidence was in-
correctly classified as greater than pt for at 
least one of the two data sets at the row 
level, and a type II error was recorded if 
mean disease incidence was incorrectly 
classified as less than pt for at least one of 
the two data sets at the row level. Type I 

and II errors were recorded when mean 
disease incidence was incorrectly classi-
fied as greater than pt in one row-level data 
set and less than pt for the other row-level 
data set in that yard. 

RESULTS 
Spatial pattern analyses. A detailed 

analysis of the model construction data set 
was published previously (36), and a 
summary of the results is presented here. 
Disease incidence for the model construc-
tion data sets ranged from 0.0004 to 0.71, 
with a median of 0.012. For any single 
data set, the values obtained were assumed 
to be the true p for that yard. A log-
likelihood ratio test indicated that the beta-
binomial distribution provided a better fit 
than the binomial distribution for 47% of 
the 198 data sets at the yard level. The 
parameter θ of the beta-binomial distribu-
tion ranged from 0 to 0.31, with a median 
of 0.022, which indicated a low degree of 
small-scale aggregation of disease. Covari-
ance analysis indicated that the year in 
which samples were collected did not have 
a significant effect on the slope (b) and 
intercept (ln[Ax]) parameters of the binary 
power law. Therefore, the data were pooled 
over the years 2000 to 2001, resulting in 
parameters ln(Ax) = 0.457 (SE = 0.023) 
and b = 1.099 (SE = 0.008). With these 
parameters, Ax = 1.579 and a = 0.198. 

For the 104 yard-level validation data 
sets collected in 2004 and 2005, p̂ ranged 
from 0.0005 to 0.65, with a median of 
0.022 (Fig. 1A). The parameter θ of the 
beta-binomial distribution ranged from 0 
to 0.71, with a median of 0.0361 (Fig. 1B). 
The beta-binomial distribution fit better 
than the binomial distribution for 54.8% of 
the data sets according to the log-
likelihood ratio test. The binary power law 
provided an excellent fit to the data (R2 = 
0.981) (Fig. 1C). Parameter estimates were 
ln(Ax) = 0.621 (SE = 0.0409) and b = 1.136 
(SE = 0.0152). With these parameters, Ax = 
1.861, a = 0.255, and Ap = 3.481. Hetero-
geneity in the model construction and vali-
dation data sets were similar numerically, 
although the slope and intercept parameter 
estimates of the binary power law were 
significantly greater in the model valida-
tion data set than the model construction 
data set, as determined by t tests (slope p < 
0.0001 and intercept p = 0.0083). 

Sequential estimation. Sequential es-
timation stop limits for estimating mean 
incidence of powdery mildew on leaves 
and the corresponding incidence of disease 
are shown in Figure 2A and B, respec-
tively, for C = 0.1, 0.2, and 0.3. The 
achieved level of precision increased as the 
true level of disease incidence decreased, 
or the number of diseased leaves that 
needed to be sampled in order to end the 
sequential sampling increased. 

Bootstrapping validation. The achieved 
C was greater than the prespecified C for 
most data sets where p̂  ≤ 0.025 (Fig. 3A 
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and B). The achieved C approached the 
prespecified C as p̂  increased, and the 
median achieved C was less than the pre-
specified C for 8 of 15 (53%) data sets 
where p̂  > 0.025 and C = 0.2. The 
achieved C was less than the prespecified 
C for 50% of data sets where p̂  > 0.2 
(data sets 13 to 18; Fig. 3A and B) because 
the data sets tended to be oversampled due 

to the minimum sampling rule. When C 
was prespecified at 0.1, the achieved C 
approached 0.1 for p̂  > 0.10 (Fig. 3B). 
For p̂ < 0.05 (data sets 1 to 6), C = 0.1 
could not be attained even when the num-
ber of plants sampled equaled the total 
number of sampling units in the data sets 
(200 for Oregon and 150 for Washington; 
Fig. 3B and F). 

The 95% confidence interval for the 
median of the difference between p̂  and p 
included zero for all 18 data sets at C = 0.1 
and 16 of 18 (88.9%) data sets at C = 0.2 
(Fig. 3C and D), indicating that p̂  was 
close to p for these data sets. Confidence 
intervals generally increased with increas-
ing p because the sample size (N) de-
creased with increasing p for both levels of 
C (Fig. 3E and F). Sample size was great-
est for data sets where p ≤ 0.025 (data sets 
1 to 3), and in these data sets the estimated 
p̂  ≈ p. 

Simulated sampling validation. Median 
values of the difference between p and p̂  
were 0 for C = 0.2 and C = 0.1 when the 
transects were sampled in the original or 
reversed orders (Fig. 4A and B). The inter-

quartile range of p – p̂  was 0.011 and 
0.004 for C = 0.2 during sampling of data 
sets in the original and reversed orders, 
respectively, and 0 for C = 0.1 for sam-
pling of data sets in the original or re-
versed orders. As noted by Turechek et al. 
(34), the difference between p and p̂  may 
be misleading because, when disease inci-
dence is low (<0.1), the data sets were 
fully sampled and, thus, p = p̂ . Over the 
104 validation data sets, the difference 
between p and p̂  was > 0.10 in only 10 or 
8 data sets when C = 0.2 and sampling was 
conducted in the original or reversed or-
ders, respectively; and 6 or 4 data sets 
when C = 0.1 and transects were sampled 
in the original or reversed orders, respec-
tively. 

Median values of the achieved C were 
0.259 and 0.210 for sampling of transects 
in the original order, which was greater 
than the prespecified values of C = 0.2 and 
C = 0.1, respectively (Fig. 4C and D). 
Medians values of the achieved C were 
similar for sampling in reversed order, 
with values of 0.248 and 0.220 at C = 0.2 
and C = 0.1, respectively. The distribution 
of the achieved C for both prespecified 
levels of C was positively skewed in the 
original order, with interquartile ranges of 
0.257 (Q1 = 0.194 and Q3 = 0.448) and 
0.210 (Q1 = 0.135 and Q3 = 0.448) for C = 
0.2 and 0.1, respectively (Fig. 4C and D). 
The median, first quartile, and third quar-
tile for sampling in reversed order were 
0.248, 0.186, and 0.448 at C = 0.2, respec-
tively, and 0.220, 0.130, and 0.448 at C = 
0.1, respectively. Among the 104 model 
validation data sets, the achieved C was 
equal to or less than the prespecified C for 
30 (original) and 36 (reversed) data sets at 
C = 0.2, and 10 (original) and 14 (re-
versed) data sets at C = 0.1, respectively. 
For 39 data sets at C = 0.2 and 78 data sets 
at C = 0.1, the prespecified value of C 
could not be attained because all sampling 
units in the data set were collected and 
sampling was forced to cease. For those 
data sets for which the prespecified C was 
attained, the number of sampling units (N) 
collected decreased as the p of the yard 
increased, independent of the order of 
sampling of the transects (Fig. 4E and F). 
The minimum number of sample units, 
imposed by the sampling rule, were col-
lected in four (original) or five (reversed 
order) data sets at C = 0.2, and one data set 
(original or reversed) at C = 0.1. The num-
ber of sampling units required to achieve 
the desired C was nearly identical to the 
theoretical N in fixed sampling (22, equa-
tion 17b) when p was greater than ap-
proximately 0.10 and the data set was not 
sampled entirely. 

Sequential classification. Sequential 
classification stop lines for four combina-
tions of α and β at p0 = 0.0125 and p1 = 
0.0375 (pt = 0.025) are shown in Figure 
5A. Varying α and β had little effect on the 
distance between the stop lines. The OC 

 

Fig. 1. Frequency distribution of the beta-
binomial distribution parameters A, p̂  and B, θ̂
and C, the relationship between the natural loga-
rithms of the theoretical variance for a binomial
(random) distribution and the observed variance
for the incidence of hop powdery mildew on 
leaves for the model validation data set. A and B,
The vertical dashed lines are the median values 
for the indicated statistic, with the numerical 
value shown on the graph. C, The dash-dot line 
represents the theoretical binomial line, the solid
line represents the least squares regression fit to
the yard-level model construction data set de-
scribed by Turechek and Mahaffee (36), and the 
dashed line represents the least squares regression
fit to the model validation data set collected from
hop yards in Oregon and Washington in 2004 and
2005. The open circles are individual values for
104 yard-level model validation data sets. 

 

Fig. 2. Sequential-estimation stop limits for 
estimating the mean incidence of hop powdery
mildew on leaves with a coefficient of variation
(C) of 0.1, 0.2, and 0.3 indicated numerically on
the graph. A, Cumulative number of diseased 
leaves (TN) versus the total number of sampling 
units (N) based on equation 2 in the text, with 
binary power law parameters of b = 1.099 and a 
= 0.198. B, Mean disease incidence at critical TN
(the point where the observed cumulative num-
ber of diseased leaves crosses the model TN
curve) in relation to N. Sampling ceased when 
the cumulative number of diseased leaves
crossed the critical TN in A, at which point the 
mean disease incidence was then calculated as 
TN/nN. 
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Fig. 3. A and B, Box plots of the achieved coefficient of variation (C); C and D, the difference between the true incidence of hop leaves with powdery mil-
dew, p, and the estimated incidence of powdery mildew, p̂ , based on sequential samples; and E and F, the achieved sample size (N) for estimating the inci-
dence of hop powdery mildew on leaves from 100 bootstrap samplings of 18 data sets for model evaluation. Preselected values of C are A, C, and E, 0.2 and 
B, D, and F, 0.1, and are indicated by dashed lines in A and B. Sequential estimation stop lines were generated according to equation 2 in the main text, with
binary power law parameters of a = 0.198 and b = 1.099 (36). The 18 model validation data sets were chosen by selecting three data sets randomly from each
of seven disease incidence classes (0.01 < p̂  < 0.025, 0.025 ≤ p̂  < 0.05, 0.05 ≤ p̂  < 0.10, 0.10 ≤ p̂  < 0.20, 0.20 ≤ p̂  < 0.40, and p̂  > 0.40) from among 
the 198 model construction data sets collected in hop yards in 2000 and 2001. The 18 model evaluation data sets are arranged in ascending order of p̂ . Data 
sets collected in Washington contained 150 sampling units (75 per transect), and data sets collected in Oregon contained 200 sampling units (100 per tran-
sect). Box plots show the median (line in open boxes), middle 50% of the data (open box), 95% confidence interval for the median based on the non-
parametric sign-test (solid bar inside box) (32), extremes of the data points (whiskers), and outliers (solid circles). 
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curves were similar among the four com-
binations of α and β, although the OC 
was slightly steeper for β = 0.05 com-
pared with β = 0.10 when p > pt (Fig. 
5B). That is, a higher correct decision rate 
was achieved when p > pt. The OC was 0 
for all combinations of α and β at p ≥ 
0.10. Varying α and β did have a large 

effect on the ASN curves, which was 
particularly evident when p was near pt. 
The ASN (rounded up to the nearest inte-
ger) at pt = 0.025 was 51, 45, 42, and 32 
sampling units for α = β = 0.05, α = 0.10 
and β = 0.05, α = 0.05 and β = 0.10, and 
α = β = 0.1, respectively (Fig. 5C). The 
ASN was within 1 sampling unit, or iden-

tical, for all combinations of α and β 
when p was far (≥0.10) from pt. 

Changing pt had a greater effect on the 
OC and ASN curves than did altering α or 
β (Fig. 6). Increasing pt increased the slope 
of the stop lines (Fig. 6A), with a slight 
shift of the OC curve to the right (Fig. 6B). 

 

Fig. 4. Results of sequential sampling for validating estimates of the incidence of powdery mildew on 
hop leaves from 104 yard-level data sets collected from hop yards in Oregon and Washington in 2004
and 2005. A and B, Frequency distribution of the difference between true disease incidence (p) of the 
data set and estimated disease incidence from the sequential sample, p̂ . C and D, Frequency distribu-
tion of the achieved coefficient of variation, C. E and F, Relationship between mean disease incidence
for the yard (p) and number of sampling units (N) collected. Preselected values of C are A, C, and E, 
0.2 and B, D, and F, 0.1. The solid bars are results from simulated sampling of two transects per yard
in the same order in which data was originally collected in the yard (original order). The open bars are
results when sampling order of the transects was reversed (reversed order). The dashed lines in A–D
are the median of 104 data sets when sampling was conducted in the original order, and the solid lines
are the first and third quartiles for the specified statistic (indistinguishable in A and B). Numerical
values of the statistics are given on the graph. When the row-level data sets were sampled in reverse 
order, values of the first quartile, median, and third quartile for p – p̂  were A, –0.004, 0, and 0, re-
spectively at C = 0.2 and B, 0, 0, and 0, respectively at C = 0.1. Values of the first quartile, median, and
third quartile for the achieved C were C, 0.186, 0.248, and 0.448, respectively, at C = 0.2 and D, 0.130, 
0.220, and 0.448, respectively at C = 0.1. The data sets for which the achieved at C = 1 and 0.705 
represented nine and six yards, respectively, where 1 diseased leaf was observed from among n = 
2,000 (Oregon) or n = 1,500 leaves (Washington) sampled. E and F, Solid lines represent the expected 
number of sampling units given p as calculated by Madden et al. (22, equation 17b). Solid circles are
data sets sampled in the original order, and open circles are data sets sampled in reversed order. 

 

Fig. 5. Stop lines for classifying the incidence of 
powdery mildew on hop leaves as above or below 
a critical threshold, pt, from a cluster sample with 
n = 10 leaves per sampling unit in hop yards 
sampled in Oregon and Washington in 2004 and 
2005. A, Stop lines based on Wald’s sequence
probability ratio test (39) with p0 = 0.0125 and p1
= 0.0375 (pt = 0.025) at four combinations of α
and β, where α and β are analogous to type I and 
type II error rates, respectively. B, Operating 
characteristic (OC) curves, and C, average sample 
number (ASN) curves for sequential classification 
stop lines defined in A. Error probabilities are set 
at α = 0.05 and β = 0.05 (solid line), α = 0.10 and 
β = 0.05 (long dashed line), α = 0.05 and β = 0.10 
(dotted line), and α = 0.10 and β = 0.10 (dash-dot 
line). OC and ASN curves were determined by 
1,000 Monte Carlo simulations using a modifica-
tion of the algorithm described by Hoffman et al. 
(12), with the parameter θ as a function of disease 
incidence according to the binary power law 
(described in the main text and by Turecheck et 
al. [36]), where a = 0.198 and b = 1.099. 
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Increasing pt also flattened the OC curve, 
indicating an overall increase in the incor-
rect decision rate (Fig. 6B). Flattening of 
the OC curve also occurred when the differ-
ence between p0 and p1 increased. The ASN 
required to classify disease incidence above 
or below pt was reduced by increasing pt 
(Fig. 6C). At p = pt = 0.025, 0.05, 0.10, or 
0.15, ASN (rounded up to the nearest inte-
ger) was 51, 33, 21, or 9, respectively. 

Bootstrapping validation. Four sequen-
tial classification sampling plans were 
selected for further evaluation by bootstrap 
simulation based on the results of the 
Monte Carlo analysis. The parameters of 
these sampling plans were pt = 0.025 and 
pt = 0.10 at error rates of α = β = 0.05 and 
α = β = 0.10 (Fig. 7A to D). The achieved 
OC was very similar to the OC curves 
obtained by Monte Carlo simulation for 
the 18 data sets at all combinations of pt 
and error rates (Fig. 7A and B). In one data 
set where p = 0.079 (p = 0.117 and 0.041 
at the row levels), the achieved OC (0.590) 
was lower than the OC predicted by Monte 
Carlo simulation (0.785) for error rates of 
α = β = 0.10, and the achieved ASN (7.15) 
also was lower than the simulated ASN 
(11.07). The difference between the 
achieved and predicted OC and ASN val-
ues occurred because the θ (at the yard 
level) was 0.373 and much greater than the 
θ predicted by the binary power law 
(0.062) (36). Yard-level heterogeneity in 
this data set was the greatest among all 
model construction data sets (36, Fig. 1D). 

Similarly, for pt = 0.10 and α = β = 0.10, 
the ASN for one yard (p = 0.107) was sub-
stantially lower (13.78) than the ASN de-
rived by simulation (19.47). For this yard, 
θ = 0.129 and the predicted θ = 0.0675. 

Simulated sampling validation. Correct 
decisions rates were 2.0 to 3.9% higher at 
the row level when stop lines were devel-
oped based on the beta-binomial distribu-
tion rather than the binomial distribution 
(Table 1). For the beta-binomial approxi-
mation, correct decisions were made in 
93.8 and 96.2% of the data sets where pt = 
0.025 for α = β = 0.10 or α = β = 0.05, 
respectively. For pt = 0.10, correct deci-
sions were made in 95.2 or 95.7% of the 
data sets for α = β = 0.10 or α = β = 0.05, 
respectively. For stop lines derived from 
beta-binomial approximation, type II er-
rors were more common than type I errors 
with any combination of α, β, and pt. The 
higher rate of correct decisions with the 
beta-binomial-based stop lines resulted in 
a greater mean and median number of 
samples being collected compared with the 
binomial-based stop lines. Depending on 

 

Fig. 6. A, Stop lines, B, operating characteristic
(OC) curves, and C, average sample number
(ASN) curves for sequential classification as
determined by Wald’s sequential probability
ratio test (39) for the incidence of powdery
mildew on hop leaves from a cluster sample
with n = 10 leaves per sampling unit, in hop
yards sampled in Oregon and Washington in
2004 and 2005. OC and ASN curves were de-
termined by 1,000 Monte Carlo simulations
using a modification of the algorithm described
by Hoffman et al. (12), with the parameter θ
described as a function of disease incidence
according to the binary power law (described in
the main text and by Turecheck et al. [36]),
where a = 0.198 and b = 1.099. Error probabili-
ties in all cases were set at α = β = 0.05. The 
critical value, pt, is written adjacent to the corre-
sponding stop lines in A. The parameters p0 and 
p1 of the stop lines are given in the text. 

 

Fig. 7. A and B, Operating characteristic (OC), and C and D, average sample number (ASN) curves for 
sequential classification sampling plans as determined by Wald’s sequential probability ratio test (39) 
for the incidence of powdery mildew on hop leaves from data sets collected at the yard-level in hop 
yards of Oregon and Washington in 2004 and 2005. Threshold values are A and C, p0 = 0.0125, p1 = 
0.0375, and pt = 0.025; and B and D, p0 = 0.05, p1 = 0.15, and pt = 0.10. OC and ASN curves were 
determined by 1,000 Monte Carlo simulations using a modification of the algorithm described by
Hoffman et al. (12), with the parameter θ a function of the mean disease incidence according to the 
binary power law (described in the main text and by Turecheck et al. [36]), where a = 0.198, and b = 
1.099. Curves with error probabilities of α = β = 0.05 (solid line) and α = β = 0.10 (dashed line) are 
shown. Circles are the achieved OC and ASN from 100 bootstrap simulations of sequential sampling 
for classification of 18 yard-level model validation data sets; open circles are simulations where α = β
= 0.05, and solid circles are simulations where α = β = 0.10. The 18 model validation data sets were 
chosen by selecting three data sets randomly from each of six disease incidence classes (0.010 < p̂  <
0.025, 0.025 < p̂  < 0.050, 0.050 < p̂  < 0.100, 0.100 < p̂  < 0.200, 0.200 < p̂  < 0.400, and p̂ > 
0.400) from among 104 model validation data sets collected during 2004 and 2005. Data is not pre-
sented for p̂  > 0.25 when pt = 0.025, or p̂  > 0.50 when pt = 0.10, because the OC = 0 and ASN ≈ 3 
in these cases. 



1010 Plant Disease / Vol. 91 No. 8 

α, β, and pt, two to five more samples were 
collected on average before p was classi-
fied as above or below pt. As expected, 
mean N increased when error rates were 
lowered. Mean N was 1.9 or 1.3 more 
when error rates were controlled at 0.05 
compared with 0.10 (Table 1). 

Correct decision rates were lower when 
the row-level data sets from a yard were 
considered as two individual data sets, and 
a correct decision in both row-level data 
sets was necessary to make a correct deci-
sions at the yard level (Table 1). For the 
beta-binomial approximation for pt = 
0.025, correct decisions were made in 87.5 
and 92.3% of data sets at the yard level 
compared with 93.8 and 96.2% at the row 
level for α = β = 0.10 and α = β = 0.05, 
respectively. For pt = 0.10, correct deci-
sions were made in 91.3 and 92.3% of data 
sets when α = β = 0.10 and α = β = 0.05, 
respectively. Type I and type II error rates 
were higher at the yard level than the row 
level because correct decisions in both row-
level data sets were needed for a correct 
decision, but were lower than the prespeci-
fied error rates for pt = 0.025 and 0.10. At pt 
= 0.10 and α = β = 0.10 in one data set (1% 
of all data sets), a type I error was made in 
one row-level data set and a type II error 
was made in the other row-level data set 
from that yard. In this yard, p in the row-
level data sets was near pt (0.18 and 0.089). 
A type II error occurred in row 1 when the p 
= 0.18 was classified as less than pt and a 
type I error occurred in row 2 when p = 
0.089 was classified as greater than pt. 

The order in which transects were sam-
pled affected error rates. For pt = 0.025 and 
error rates controlled at 0.05, the correct 
decision rate was 7.7% greater when sam-
pling was initiated in the original order in 
which the data was collected in the yards, 
compared with when the order of sampling 
was reversed (Table 2). Conversely, for pt 
= 0.10, correct decision rates for the yard 
were 4.2 to 6.7% greater when sampling 
was initiated in the reversed order com-
pared with the original order. Among the 
104 model validation data sets, the mean p 
in the first and second transects was 
0.0788 (median 0.0183) and 0.0833 (me-
dian 0.0177), respectively, indicating that 
the disease incidence, on average, was 
slightly greater in the interior of yards than 
closer to the edges of the yards. This may 
explain why the correct decision rate was 
greater for pt = 0.025 in the original order 
of sampling and greater for pt = 0.10 for 
the reversed order of sampling. 

Where higher correct decision rates 
were observed during sampling data sets 
in the original versus reversed orders, the 
increase in correct decision rates gener-
ally was associated with a reduction in 
the rate of type II errors, although the 
mean and median N were similar (less 
than 1 sampling unit difference) or iden-
tical for sampling transects in the original 
or reversed orders. Type I errors were 
controlled at the prespecified rates for all 
sampling plans; however, prespecified 
rates of the type II errors were achieved 
only for pt = 0.10 and α = β = 0.10 when 

transects were sampled in the reversed 
order (Tables 1 and 2). 

DISCUSSION 
Management of the foliar phase of hop 

powdery mildew is critical for successful 
management of the disease on cones and to 
minimize crop loss (31,37). Economically 
sustainable management of the disease 
requires growers to make management 
decisions by integrating knowledge of host 
susceptibility, environmental conditions 
favorable for the disease, and inoculum 
density (23,24,36,37). The sequential sam-
pling plans developed in this research, 
based on knowledge of spatial heterogene-
ity of the disease, provide the foundation 
for efficient sampling of hop powdery 
mildew on leaves and linkage of sampling 
protocols to thresholds for disease man-
agement. 

Evaluation of sequential estimation 
sampling plans by bootstrap analysis of 
selected data sets from the model construc-
tion data, and simulated sampling of data 
collected independently of the model con-
struction data, revealed that it is possible to 
estimate disease incidence with reasonable 
precision (C = 0.2) for yards in which the 
incidence powdery mildew is p ≥ 0.025. 
Deviation of the median value of the dif-
ference in the true incidence of sympto-
matic leaves, p, and the incidence of symp-
tomatic leaves estimated by sequential 
sampling, p̂ , tended to increase with p, 
suggesting some bias in the sequential 
estimation, as reported previously (4,22,34). 

Table 1. Correct decision and error rates (%) of sequential sampling plans for classifying the incidence of powdery mildew on hop leaves for 208 row-level 
and 104 yard-level data sets collected from hop yards in Oregon and Washington in 2004 and 2005a 

 Row levelb Yard levelb 

 pt = 0.025c pt = 0.10d pt = 0.025c pt = 0.10d 

Parameterse 0.05 0.10 0.05 0.10 0.05 0.10 0.05 0.10 

Binomial         
Correct decision 93.3 91.8 91.8 91.8 86.5 83.7 84.6 84.6 
Type I error 2.9 2.9 4.3 4.3 5.8 5.8 7.7 7.7 
Type II error 3.8 5.3 3.8 3.8 7.7 10.6 6.7 6.7 
Type I and II error … … … … 0 0 1.0 1.0 
Mean N 12.5 9.4 3.8 3.7 12.5 9.4 3.8 3.7 
Median N 12.0 9.0 3.0 3.0 12.0 9.0 3.0 3.0 

Beta-Binomial         
Correct decision 96.2 93.8 95.7 95.2 92.3 87.5 92.3 91.3 
Type I error 1.4 1.9 1.4 1.4 2.9 3.8 1.9 1.9 
Type II error 2.4 4.3 2.9 3.4 4.8 8.7 4.8 5.8 
Type I and II error … … … … 0 0 1.0 1.0 
Mean N 17.5 12.5 7.1 5.7 17.5 12.5 7.1 5.7 
Median N 16.0 12.0 5.0 4.0 16.0 12.0 5.0 4.0 

a Type I error indicates that mean disease incidence was incorrectly classified as > pt. Type II error indicates that mean disease incidence was incorrectly 
classified as < pt, where pt = a critical value of disease incidence, such as a management action threshold for a fungicide application. Mean and median N 
were calculated from all 208 row-level data sets or 104 yard-level data sets. The parameters α and β were specified to control type I and type II error rates. 

b Data sets collected at the row level consisted of a single transect sample of N = 100 (Oregon) or 75 (Washington) plants within a row. Yard-level data sets 
consisted of two transect data sets per yard. At the yard level, a correct decision indicates that correct decisions were made in both transects at the row level.
Type I error indicates that at least one type I error was made at the row level in a yard. Type II error indicates that a type II error was made at the row level 
in a yard. Type I and II errors indicate that a type I error was made in one row-level data set, and a type II error was made in the other row-level data in that 
yard. 

c pt = (p0 + p1)/2; p0 = 0.0125 and p1 = 0.0375. For sequential classification, pt is defined as some critical value of disease incidence, such as a management
action threshold for a fungicide application, and p0 and p1 represent the lower and upper boundaries of disease incidence, such that when the true incidence 
of disease, p, is equal to or less than p0, the field is classified correctly at least 100(1 – α)% of the time, and when the true incidence of disease is equal to 
or greater than p1, the field is classified correctly at least 100(1 – β)% of the time. 

d pt = (p0 + p1)/2; p0 = 0.05 and p1 = 0.15. 
e Distribution and parameters estimated.  
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Achieving a C of 0.1 was not possible with 
most of the model validation data sets in 
which disease incidence was <0.2 because 
too few sampling units (150 or 200) were 
collected. However, achieving a C of 0.1 
likely would require too much time and 
expense to be practical for routine disease 
assessments by growers and crop consult-
ants. Using estimates of the parameters a 
and b from the binary power law (22, 
equation 17b) and a prespecified C of 0.1, 
279 or 1,220 sampling units are required to 
estimate disease incidence when the true 
incidence is 0.05 or 0.01, respectively. 
Based on current knowledge of hop pow-
dery mildew, designing a sampling strat-
egy to attain C = 0.1 probably is not neces-
sary if the objective is disease management 
(6,20). Additionally, because growers typi-
cally manage multiple hop yards, it is not 
practical to sample to attain C = 0.1 be-
cause it is more important to sample the 
greatest number of yards possible on a 
given farm than to obtain very precise 
estimates of disease from a few yards (36). 

The sequential classification sampling 
models developed in this research allow 
for pest density to be classified as above or 
below various threshold values. Generally, 
smaller sample sizes are required when the 
objective of sampling is to reach a decision 
rather than to estimate disease incidence 
precisely. From a practical perspective, 
information on whether disease incidence 
is above or below a threshold value typi-
cally is sufficient for making most man-
agement decisions (4,27). The OC and 
ASN curves generated from bootstrap 

simulations of the model construction data 
sets were very similar to the OC and ASN 
curves derived by Monte Carlo simulation. 
No more than 51, 33, 21, or 9 sampling 
units would need to be evaluated to clas-
sify disease incidence when pt = 0.025, 
0.05, 0.10, or 0.15, respectively. This could 
dramatically reduce the time and expense 
associated with current hop powdery mil-
dew sampling protocols that recommend 
sampling a minimum of 225 to 300 plants 
to estimate disease incidence for a yard 
(36). The number of sampling units needed 
to classify disease incidence could be re-
duced further by assuming a binomial 
distribution of disease incidence among 
leaves, which would reduce N, on average, 
by three to six plants depending on the 
error rate and pt (Tables 1 and 2). However, 
it is questionable whether the modest de-
crease in N, perhaps a savings of 5 min of 
sampling, would justify the increase in 
type I and II error rates and loss of accu-
racy and precision. 

Several factors affected the results of the 
sequential sampling plans developed in 
this research. The location in the yard 
where sampling was initiated affected the 
error rates of sequential classification. 
Disease incidence, on average, was greater 
in the second transect (closer to the center 
of the yard) than the first transect, and 
correct decisions rates varied depending on 
pt and which transect was sampled first. 
Mean disease incidence can be variable 
among transects within a single yard (36) 
and, clearly, can affect conclusions (i.e., 
the estimate of p) obtained from a sequen-

tial sample. However, it is not practical to 
manage hop powdery mildew differently in 
areas of a yard where disease incidence 
may not be uniform. Control measures are 
applied to an entire yard if disease is above 
pt in any area of the yard, because the risk 
of not treating a yard when a treatment is 
warranted is a more serious error than 
applying a treatment unnecessarily (25). 
Therefore, sampling should be initiated in 
areas of the yard where disease incidence 
typically is expected to be greatest, and the 
entire yard should be treated if disease 
exceeds pt during sampling of any transect 
or area of the yard. Intentionally introduc-
ing bias into the sampling plan (i.e., tar-
geted sampling) also may reduce sampling 
time and costs (4). Achieving a nonbiased 
sample of leaves from plants also may be 
difficult because powdery mildew lesions 
on adaxial leaf surfaces are readily appar-
ent, although overestimation of disease 
incidence was not apparent during valida-
tion of the models by simulated sampling 
(Fig. 4; Tables 1 and 2). Biased selection 
of diseased leaves could reduce the rate of 
type II errors, which many growers con-
sider more serious and costly than type I 
errors (25). 

Heterogeneity in the model validation 
data sets was greater than for the model 
construction data sets (36). Estimates of 
the binary power law parameters used in 
the analyses were derived from yard-level 
assessments made in 2000 and 2001 (36). 
Consequently, these parameters underesti-
mated disease heterogeneity in the valida-
tion data sets. It is unknown whether simi-

Table 2. Correct decision and error rates (%) and mean and median number of samples required for sequential classification of hop powdery mildew on
leaves in relation to the location at which sampling was initiated in the hop yard 

 Original sampling ordera Reversed sampling ordera 

 pt = 0.025b pt = 0.10c pt = 0.025b pt = 0.10c 

Ratesd 0.05 0.10 0.05 0.10 0.05 0.10 0.05 0.10 

Binomial         
Correct decision 91.3 88.5 89.4 89.4 85.6 88.5 94.2 94.2 
Type I error 1.0 1.0 4.8 4.8 3.8 1.0 2.9 2.9 
Type II error 7.7 10.6 5.8 5.8 10.6 10.6 2.9 2.9 
Mean N 12.3 9.3 3.7 3.6 13.0 9.3 3.9 3.7 
Median N 12.0 9.0 3.0 3.0 12.0 9.0 3.0 3.0 

Beta-Binomial         
Correct decision 94.2 90.4 90.4 90.4 86.5 90.4 97.1 96.2 
Type I error 1.0 1.0 4.8 4.8 3.8 1.0 2.9 2.9 
Type II error 5.8 8.7 6.7 6.7 10.6 8.7 1.9 2.9 
Mean N 17.2 12.2 7.1 5.7 18.1 12.2 7.1 5.8 
Median N 16.0 12.0 5.0 4.0 16.0 12.0 5.0 4.0 

a  In the original sampling order, sampling began in transect 1 and continued into transect 2 if additional sampling was necessary to classify disease incidence
as above or below pt at the specified error rates, where pt = a critical value of disease incidence, such as a management action threshold for a fungicide 
application. In the reversed sampling order, transect 2 of the data set was sampled first, and sampling continued into transect 1. Data sets were collected by 
assessing n =10 leaves from the first N = 100 (Oregon) or 75 (Washington) plants from each of two transects (rows) in the hop yard. The parameters α and 
β were specified to control type I and type II error rates. 

b  pt = (p0 + p1)/2; p0 = 0.0125 and p1 = 0.0375. For sequential classification, pt is defined as some critical value of disease incidence, such as a management
action threshold for a fungicide application, and p0 and p1 represent the lower and upper boundaries of disease incidence, such that when the true incidence 
of disease, p, is equal to or less than p0, the field is classified correctly at least 100(1 – α)% of the time, and when the true incidence of disease is equal to 
or greater than p1, the field is classified correctly at least 100(1 – β)% of the time. 

c  pt = (p0 + p1)/2; p0 = 0.05 and p1 = 0.15. 
d  Distribution and rates (α and β). A correct decision indicates that mean disease incidence was correctly classified above or below pt for the yard. Type I 

error indicates that mean disease incidence was incorrectly classified as greater than pt for the yard. Type II error indicates that mean disease incidence was 
incorrectly classified as less than pt for the yard. Mean and median N were calculated from all 104 yard-level data sets. Results are presented for stop lines 
generated by Wald’s sequential probability ratio test for the binomial and beta-binomial cases (34, equations A1 to A6). 
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lar results would be found if another set of 
validation data was collected; however, 
from a practical standpoint, slight underes-
timation had little impact on the outcome 
because prescribed error rates generally 
were achieved with the validation data. It 
is possible to merge data sets and estimate 
a new set of power law parameters, but this 
would leave no independent data sets for 
model validation. 

An important barrier that may prevent 
implementation of sequential sampling is 
the lack of formal disease thresholds for 
initiating control measures for hop pow-
dery mildew. Economic thresholds have 
been derived for numerous arthropod pests 
(3,12,28,30) and monocyclic plant diseases 
(2,5,7,8,15), but few economic thresholds 
have been developed or proposed for poly-
cyclic diseases (6,22). Where disease 
thresholds have been developed, they gen-
erally have been used to initiate a fungi-
cide program (38) or to time fungicide 
applications in pathosystems where only a 
single application is needed to prevent 
substantial crop loss (9,10). Deriving dis-
ease thresholds for polycyclic diseases 
such as hop powdery mildew is more diffi-
cult than with many monocyclic diseases 
because of the short generation time of the 
pathogen and complex interactions of host, 
pathogen, and environment that result in 
crop loss (25). Maloy (25) suggests that 
monitoring for polycyclic diseases is prob-
lematic because the latent period between 
infection and disease development allows 
many diseases to expand to the point 
where economic management is not possi-
ble before detection. This may be true for 
hop powdery mildew, but many growers 
and integrated pest management personnel 
do consider disease status of a hop yard 
when deciding if, or at what intensity, 
control measures should be applied (36). 
Many growers have derived provisional 
action thresholds based on their past ex-
perience, the particular cultivar, and risk 
aversion (D. H. Gent and W. F. Mahaffee, 
unpublished). Thus, sequential classifica-
tion plans for four values of pt were devel-
oped to allow growers to select a disease 
threshold that reflects their provisional 
action threshold or to adjust the threshold 
based on infection risks (23,24). 

This research demonstrated that it is 
possible to estimate or classify the inci-
dence of powdery mildew on leaves of a 
hop yard over a wide range of disease 
levels by assessing relatively few sampling 
units. The sequential sampling plans de-
veloped in this study could be used to im-
prove the efficiency and accuracy of dis-
ease assessments for current provisional 
action thresholds, and implementation of 
sequential sampling plans for hop powdery 
mildew may be one component of an over-
all decision-support system that considers 
cultivar susceptibility, past and forecast 
weather conditions, and grower risk aver-
sion (23,24,37). 

ACKNOWLEDGMENTS 
Financial support was provided by USDA-ARS 

CRIS 303-5358-22000-030-00D and 5358-21000-
035-00 and grants from the Hop Research Council, 
Washington State Commission on Pesticide Regis-
tration, and the Washington Hop Commission. We 
thank the many individuals who assisted in disease 
assessments, the hop growers who provided access 
to their yards and numerous insights, and L. du Toit 
and C. Ocamb for their review of an earlier draft of 
the manuscript. 

LITERATURE CITED 
1. Barth, H. J., Klinke, C., and Schmidt, C. 1994. 

The Hop Atlas. Joh. Barth and Sohn, Nurem-
berg, Germany. 

2. Bejarano-Alcazar, J., Melero-Vara, J. M., 
Blanco-Lopez, M. A., and Jimenez-Diaz, R. 
M. 1995. Influence of inoculum density of de-
foliating and nondefoliating pathotypes of Ver-
ticillium dahliae on epidemics of Verticillium 
wilt of cotton in southern Spain. Phytopathol-
ogy 85:1474-1481. 

3. Binns, M. R., and Nyrop, J. P. 1992. Sampling 
insect populations for the purpose of IPM de-
cision making. Annu. Rev. Entomol. 37:427-
453. 

4. Binns, M. R., Nyrop, J. P., and van der Werf, 
W. 2000. Sampling and Monitoring in Crop 
Protection: The Theoretical Basis for Design-
ing Practical Decision Guides. CABI Publish-
ing, Oxon, UK. 

5. Burt, O. R., and Ferris, H. 1996. Sequential 
decision rules for managing nematodes with 
crop rotations. J. Nematol. 28:457-474. 

6. Campbell, C. L., and Madden, L. V. 1990. 
Introduction to Plant Disease Epidemiology. 
John Wiley and Sons, New York. 

7. Chellemi, D. O. 2002. Nonchemical manage-
ment of soilborne pests in fresh market vege-
table production systems. Phytopathology 
92:1367-1372. 

8. Crow, W. T., Weingartner, D. P., McSorley, R., 
and Dickson, D. W. 2000. Damage function 
and economic threshold for Belonolaimus 
longicaudatus on potato. J. Nematol. 32:318-
322. 

9. Dillard, H. R., and Seem, R. C. 1990. Use of 
an action threshold for common maize rust to 
reduce crop loss in sweet corn. Phytopathology 
80:846-849. 

10. Gaunt, R. E., and Cole, M. J. 1992. Sequential 
sampling for wheat stripe rust management. 
Crop Prot. 11:138-140. 

11. Gent, D. H., Mahaffee, W. F., and Turechek, 
W. W. 2006. Spatial heterogeneity of the inci-
dence of powdery mildew on hop cones. Plant 
Dis. 90:1433-1440. 

12. Hoffman, M. P., Nyrop, J. P., Kirkwyland, J. J., 
Riggs, D. M., Gilrein, D. O., and Moyer, D. D. 
1996. A sequential sampling plan for use in 
scheduling control of Lepidopterous pests for 
fresh market sweet corn. J. Econ. Entomol. 
89:386-395. 

13. Hughes, G., and Madden, L. V. 1992. Aggrega-
tion and incidence of disease. Plant Pathol. 
41:657-60. 

14. Hughes, G., Madden, L. V., and Munkvold, G. 
P. 1996. Cluster sampling for disease incidence 
data. Phytopathology 86:132-137. 

15. Kim, D. G., and Ferris, H. 2002. Relationship 
between crop losses and initial population den-
sities of Meloidogyne arenaria in winter-
grown oriental melon in Korea. J. Nematol. 
34:43-49. 

16. Lalancette, N., and Hickey, K. D. 1986. An 
apple powdery mildew model based on plant 
growth, primary inoculum, and fungicide 
concentration. Phytopathology 76:1176-1182. 

17. MacKinnon, D. 2006. USA Hops: 2005 Statis-
tical Report. Hop Growers of America, 
Yakima, WA. 

18. Madden, L. V., and Hughes, G. 1994. BBD-
computer software for fitting the beta-binomial 

distribution to disease incidence data. Plant 
Dis. 78:536-540. 

19. Madden, L. V., and Hughes, G. 1995. Plant 
disease incidence: distribution, heterogeneity, 
and temporal analysis. Annu. Rev. Phytopa-
thol. 33:529-564. 

20. Madden, L. V., and Hughes, G. 1999. Sam-
pling for plant disease incidence. Phytopathol-
ogy 89:1088-1103. 

21. Madden, L. V., Hughes, G., and Ellis, M. A. 
1995. Spatial heterogeneity of the incidence of 
grape downy mildew. Phytopathology 85:269-
275. 

22. Madden, L. V., Hughes, G., and Munkvold, G. 
P. 1996. Plant disease incidence: Inverse sam-
pling, sequential sampling, and confidence in-
tervals when observed mean incidence is zero. 
Crop Prot. 15:621-632. 

23. Mahaffee, W. F., Thomas, C. S., Turechek, W. 
W., Ocamb, C. M., Nelson, M. E., Fox, A., and 
Gubler, W. D. 2003. Responding to an intro-
duced pathogen: Podosphaera macularis (hop 
powdery mildew) in the Pacific Northwest. 
Online. Plant Health Progress doi:10.1094/
PHP-2003-1113-07-RV. 

24. Mahaffee, W. F., Turechek, W. W., and Ocamb, 
C. M. 2003. Effect of variable temperature on 
infection severity of Podosphaera macularis 
on hops. Phytopathology 93:1587-1592. 

25. Maloy, O. C. 1993. Plant Disease Control: 
Principles and Practice. John Wiley and Sons, 
New York. 

26. Neve, R. A. 1991. Hops. Chapman and Hall, 
London. 

27. Nyrop, J. P., Binns, M. R., and van der Werf, 
W. 1999. Sampling for IPM decision making: 
where should we invest time and resources? 
Phytopathology 89:1104-1111. 

28. Nyrop, J. P., Villani, M. G., and Grant, J. A. 
1995. Control decision rule for European cha-
fer (Coleoptera: Scarabaeidae) larvae infesting 
turfgrass. Environ. Entomol. 24:521-528. 

29. Ocamb, C., Klein, R., Barbour, J., Griesbach, 
J., and Mahaffee, W. 1999. First report of hop 
powdery mildew in the Pacific Northwest. 
Plant Dis. 83:1072. 

30. Renkema, J. M., Nyrop, J. P., Difonzo, C., 
Sears, M. K., and Schaafsma, A. W. 2006. 
Control decision rule for European chafer 
(Coleoptera: Scarabaeidae) larvae in field corn. 
J. Econ. Entomol. 99:76-84. 

31. Royal, D. J. 1978. Powdery mildew of the hop. 
Pages 281-409 in: The Powdery Mildews. D. 
M. Spencer, ed. Academic Press, London. 

32. Ryan, B., Joiner, B., and Cryer, J. 2005. Mini-
tab Handbook, 5th ed. Brooks/Cole, Belmont, 
CA. 

33. Taylor, L. R. 1961. Aggregation, variance, and 
the mean. Nature 189:732-735. 

34. Turechek, W. W., Ellis, M. A., and Madden, L. 
V. 2001. Sequential sampling for incidence of 
Phomopsis leaf blight of strawberry. Phytopa-
thology 91:336-347. 

35. Turechek, W. W., and Madden, L. V. 1999. 
Spatial pattern analysis and sequential sam-
pling for the incidence of leaf spot on straw-
berry in Ohio. Plant Dis. 83:992-1000. 

36. Turechek, W. W., and Mahaffee, W. F. 2004. 
Spatial pattern analysis of hop powdery mil-
dew in the Pacific Northwest: Implications 
for sampling. Phytopathology 94:1116-
1128. 

37. Turechek, W. W., Mahaffee, W. F., and Ocamb, 
C. M. 2001. Development of management 
strategies for hop powdery mildew in the Pa-
cific Northwest. Online. Plant Health Progress 
doi:10.1094/PHP-2001-0313-01-RS. 

38. Vincelli, P. C., and Lorbeer, J. W. 1987. Se-
quential sampling plan for timing initial fungi-
cide application to control Botrytis leaf blight 
of onion. Phytopathology 77:1301-1303. 

39. Wald, A. 1947. Sequential Analysis. John 
Wiley & Sons, New York. 


