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ABSTRACT 

Gent, D. H., and Ocamb, C. M. 2009. Predicting infection risk of hop by 
Pseudoperonspora humuli. Phytopathology 99:1190-1198. 

Downy mildew, caused by Pseudoperonospora humuli, is one of the 
most destructive diseases of hop. Weather factors associated with 
infection risk by P. humuli in the maritime region of western Oregon 
were examined for 24- and 48-h periods and quadratic discriminant 
function models were developed to classify periods as favorable for 
disease development on leaves. For the 24-h data sets, the model with 
superior predictive ability included variables for hours of relative 
humidity >80%, degree-hours of wetness, and mean night temperature. 
The same variables were selected for the 48-h data sets, with the addition 
of a product variable for mean night temperature and hours of relative 
humidity >80%. Cut-points (pT) on receiver operating characteristic 
curves that minimized the overall error rate were identified by selecting 
the cut-point with the highest value of Youden’s index. For the 24- and 
48-h models these were pT = 0.49 and 0.39, respectively. With these 

thresholds, the sensitivity and specificity of the models in cross validation 
by jackknife exclusion were 83.3 and 88.8% for the 24-h model and 87.5 
and 84.4% for the 48-h model, respectively. Cut-points that minimized 
the average costs associated with disease control and crop loss due to 
classification errors were determined using estimates of economic 
damage during vegetative development and on cones near harvest. Use of 
the 24- and 48-h models was estimated to reduce average management 
costs during vegetative development when disease prevalence was <0.31 
and 0.16, respectively. Using economic assumptions near harvest, man-
agement decisions informed by the models reduced average costs when 
disease prevalence was <0.21 and 0.1 for the 24- and 48-h models, 
respectively. The value of the models in management decisions was 
greatest when disease prevalence was relatively low during vegetative 
development, which generally corresponds to the normally drier period 
from late spring to midsummer in the Pacific Northwest of the United 
States. 

 
Downy mildew of hop, caused by Pseudoperonospora humuli, 

is among the most important diseases of hop (Humulus lupulus) 
(1,29). The disease continues to threaten the economic viability of 
the U.S. hop industry because of widespread fungicide resistance 
in the pathogen population (5,20,28) and lack of host resistance to 
the disease in commercially acceptable cultivars (29,33). 

Economic damage from the disease may occur in numerous 
ways because P. humuli can infect cones, leaves, and shoots, and 
also may cause systemic infections of the perennial crown and 
root system (33,38). Systemic infection of shoots leads to the 
formation of the so-called ‘basal spikes,’ which are stunted and 
have brittle, downward-curled leaves from which masses of 
purple to black sporangiophores and sporangia are produced. 
Infection of shoots can result in a lack of healthy shoots that can 
be trained for production (39). Infection of shoots after they have 
been trained onto strings to enable production of lateral branches 
can cause bines to fall away from strings, necessitating retraining 
and reducing yield (29,33). Similarly, infection of lateral branches 
(termed ‘lateral spikes’) prevents the normal development of the 
cone-bearing branches. The most serious yield losses typically 
result from infection of developing cones, which can cause com-
plete crop loss due to cone abortion, reductions in α-acid content, 
and poor cone quality (33). In certain cultivars, the disease also 
may cause a crown rot and subsequent plant death (15,38). 

Disease development and severity is favored by extended 
periods of wetness, high humidity, and temperatures of 5 to 29°C 

(24,32). Various combinations of weather-related variables have 
been in used in empirical forecasting systems in Europe (21,33) 
and Washington State (13,16,17), with varying success. 

Quantitative analysis of weather factors associated with daily 
infection risk have not been conducted in the western United 
States, although models for sporulation potential and long-range 
forecasts of epidemic occurrence have been developed for semi-
arid production environments in Washington State (12,13,16,17). 
Because downy mildew epidemics do not occur annually in Wash-
ington, these models were promoted as tools to enhance sampling 
efficiency and provide long-range predictions of epidemics. How-
ever, such models are of limited use in hop production regions 
where downy mildew is endemic, such as western Oregon and 
northern Idaho. 

Consequently, disease control measures typically are applied 
prophylacticly in regions where the disease occurs on an annual 
basis (11,39), which likely results in inefficient fungicide use. 
Therefore, the objectives of this research were to identify weather 
factors associated with infection risk by P. humuli in the maritime 
region of western Oregon, and explicitly model conditions favor-
able for infection. Optimal management action thresholds for 
discriminant functions were derived by receiver operating-charac-
teristic curve analysis to identify action thresholds for the models 
that minimize average disease control costs and crop loss due to 
classification errors. 

MATERIALS AND METHODS 

Plant material. Plants of the downy mildew susceptible cv. 
Nugget (8) were propagated clonally from soft wood cuttings (9) 
and maintained in a greenhouse devoid of downy mildew. The 
greenhouse was maintained at 20 to 25°C with a 14-h photo-
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period. Plants were grown in Sunshine Mix no. 1 (SunGro 
Horticulture, Bellevue, WA) in 440-cm3 pots for approximately  
14 days and then repotted in 1,000-cm3 pots for an additional  
14 days of growth. Plants were watered regularly and supplied 
with Champion 17-17-17 (N-P2O5-K2O) fertilizer with micronu-
trients (McConkey’s, Portland, OR) at each irrigation to promote 
vigorous growth. Plants were treated with imidacloprid (Mara-
thon 1% G; OHP, Inc., Mainland, PA) at the manufacturer’s 
recommended rate to control aphids after plants were repotted in 
1,000-cm3 pots. 

Infection bioassay. A bioassay similar to that described by 
Royle (32) was used to identify days associated with P. humuli 
infection. Approximately every week (May through September 
2005, March through October 2006, and March through June 
2007), 10 to 20 potted plants were placed in an experimental hop 
yard near Corvallis, OR (44.5696, –123.2380). Hills (i.e., a group 
of one or more rhizome pieces planted together) in the hop yard 
were arranged on a 2.1-m grid (narrow spacing) under a 5-m 
trellis. The youngest, fully unfurled leaves on the bioassay plants 
were marked for later identification as plants were placed in the 
field at 4:00 p.m. in 2005 and 8:00 p.m. in 2006 and 2007. In all 
years, bioassay plants were arranged in a circular pattern around 
several plants with numerous downy mildew spikes in an area of 
the hop yard that did not receive fungicide applications. The 
plants used in the bioassay were bordered by at least one diseased 
hop plant on all sides to minimize variability in the assay related 
to (potentially) increased deposition of inoculum on some bio-
assay plants due to the effect of the prevailing wind direction. 
Preliminary analyses also investigated the effect of plant position 
in the field on disease incidence and found no evidence of a 
systematic bias for disease incidence or severity due to position in 
the field. Sets of bioassay plants were exposed to environmental 
conditions and natural inoculum for a 24-h period or one 48-h 
period in order to account for the potential of deposition of 
sporangia occurring on one day and infection on the second day. 
In total, 28, 59, and 38 sets of plants (data sets) were collected for 
a 24-h period in 2005, 2006, and 2007, respectively, and 29 and 
19 data sets were collected for a 48-h period in 2006 and 2007, 
respectively. 

After 24 or 48 h of exposure, plants were placed in a growth 
chamber or greenhouse facility maintained at 18 to 20°C and 
approximately 70% relative humidity. Plants were irrigated from 
the bottom to avoid wetting the leaves, thus reducing the chance 
of infection during the incubation period in the growth chamber 
or greenhouse. After the 7- to 10-day incubation period, plants 
were misted to just before runoff with sterile 18 ohm water 
(nanopure water; Barnstead, Dubuque, IA) and enclosed in plastic 
bags overnight to induce sporulation. The bags were removed the 
following day and the procedure was repeated the following 
night. After the second night of incubation, the incidence of leaves 
with downy mildew was assessed. Infection severity (lesions per 
square centimeter) was measured by counting the number of 
lesions on leaves marked previously. Leaves were then detached 
and their area was determined with a Li-Cor LI-3000 leaf area 
meter (Li-Cor Inc., Lincoln, NE). Data from all of the plants were 
averaged to produce an estimate of disease severity for each  
24- or 48-h period. At least one control plant that was not 
deployed to the field was included with each set of bioassay 
plants to examine the potential for infection during the growth 
chamber or greenhouse incubation. Other control plants were 
inoculated regularly with multiple monosporangial isolates of P. 
humuli (5) to test plant susceptibility to infection. 

Inoculum density in the hop yard was measured with a Burk-
hard volumetric spore trap (Burkhard Manufacturing Co., 
Ricksmanworth, United Kingdom) operated continuously near the 
bioassay plants. The sampler orifice was located 1 m from the soil 
surface at approximately the top of the first node of the bioassay 
plants. Air flow was maintained at 10 liters/min and was verified 

at least weekly. Sporangia of P. humuli were quantified by stain-
ing the Melinex tape with several drops of aniline blue and ex-
amining the tape under ×160 magnification. 

Weather data. Weather variables at the field site were 
monitored and recorded every 15 min with a Campbell Scientific 
CR10X datalogger (Campbell Scientific, Inc., Logan, UT). Air 
temperature and relative humidity was measured at 1.5 m from 
the ground with a model HMP45C temperature and relative hu-
midity probe. Leaf wetness duration was measured with a model 
237 artificial leaf-type sensor coated with latex paint and mounted 
at 1 m from the ground at a 45° angle facing west (41). Solar flux 
was measured with a Li-Cor LI-200X pyranometer (Li-Cor) 
positioned at 6 m from the ground at the top of the hop trellis. 
Rainfall was measured with a model TE525 tipping bucket rain 
gage mounted 6 m from the ground at the top of the hop trellis. 
All sensors and equipment were purchased from Campbell 
Scientific. 

Temperature, relative humidity, and solar flux for a 15-min 
period were obtained by averaging three measurements taken at 
5-min intervals. Leaf wetness was recorded as a single-point 
measurement every 15 min. Leaf wetness measurements were 
calibrated by observing leaves on several mornings and noting 
when wetness was present and the time of leaf drying. Leaves 
were considered wet during a 15-min period if the sensor 
resistance was <4,000, precipitation was recorded, or relative 
humidity was >95%. 

Infection model development. Preliminary analysis of po-
tential predictor variables for infection was conducted by creating 
scatter plots of the incidence of leaves with downy mildew and 
the weather variables. The independent variables selected after 
inspection of scatter plots were cumulative rain, hours of relative 
humidity >80 or 90%, cumulative hours of leaf wetness, leaf 
wetness associated with rain, morning leaf wetness or daylight 
leaf wetness, cumulative degree-hours of leaf wetness, cumulative 
degree-hours of leaf wetness during daylight, mean daily tem-
perature, and mean night temperature. For the 48-h data sets, 
cumulative degree-hours during nighttime humidity >80 or 90% 
also were calculated. In calculating the weather variables, a 15-
min time period was defined as “daylight” if the average solar 
flux was at least 1 W m2 and “night” otherwise. Cumulative 
degree-hours were calculated similar to Pfender (31). A low 
temperature threshold of 8°C was used in the calculations based 
on earlier reports that 8°C is the minimum temperature for shoot 
infection (32) and near the threshold for sporulation by P. humuli 
(16). For calculating degree-hours of nighttime humidity >80 or 
90%, observations from 12:00 midnight to 6:00 a.m. were used 
based on previous studies on the diurnal cycle of sporangia 
appearance and development (34,45). 

Box plots and scatter plots of weather and inoculum variables 
were constructed to compare the distribution of variables on days 
without and with infection. Median values of the predictor 
variables for data sets without and with infection were compared 
using a nonparametric sign test (35). Associations between dis-
ease incidence and predictor variables were measured by 
Spearman’s rank correlation coefficient (S) (42). Correlations also 
were calculated after disease incidence was normalized for 
inoculum density by dividing by the logarithm of sporangia  
M–3 h–1 as determined from the number of sporangia collected by 
the Burkhard spore trap. The distribution of predictor variables on 
days without or with infection were compared with the nonparam-
etric Kolmogorov-Smirnov (K-S) test using the NPAR1WAY 
procedure in SAS (version 9.1; SAS Institute, Cary, NC). Monte 
Carlo estimation was used to derive exact P values for the K-S 
test. 

Discriminant analysis was used to develop classification func-
tions to predict whether downy mildew would or would not occur 
on the bioassay plants. Discriminant analysis is a multivariate 
method used to classify observations into two or more categorical 
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groups (“group membership”). The method is similar to linear 
regression because both techniques use one or more predictor 
variables and a single response variable. However, in discriminant 
analysis, the response variable is categorical. Categorical predic-
tor variables were not included in the discriminant function be-
cause parametric discriminant analysis assumes that the data has a 
multivariate normal distribution (18). Numerous preliminary 
models were constructed using forward, backward, and stepwise 
selection. Many of the weather variables considered were related 
(e.g., hours of leaf wetness and cumulative degree-hours of 
wetness), and weather variables with redundant information were 
considered separately during model development to minimize 
collinearity. For stepwise selection, the significance level for entry 
into the model was set to α = 1.0 and the significance level for 
remaining in the model was set to α = 0.1 to provide information 
about a large number of possible models. Model accuracy, 
sensitivity (Se), and specificity (Sp) in resubstitution and cross-
validation by jackknife exclusion (18) were calculated and used to 
evaluate preliminary models. To perform cross-validation by 
jackknife exclusion, data sets were classified using a discriminant 
function model determined when each observation was omitted 
individually from the analysis and only the remaining data sets 
were used to fit the model. An advantage of this validation pro-
cedure compared with analysis by resubstitution is that jackknife 
exclusion reduces bias caused by classifying the same data sets 
used during model development. 

Accuracy was defined as the proportion of data sets classified 
correctly, Se was the proportion of data sets where disease 
occurred that were classified correctly, and Sp was the percentage 
of data sets where disease did not occur that were classified 
correctly. Final models were selected based on examination of 
scatter plots and box plots of individual variables, model 
accuracy, Se, and Sp, the number of variables in the model, and 
biological considerations. Models with the least number of inde-
pendent predictor variables were preferred to avoid overspeci-
fication. Discriminant analysis was conducted using the 
DISCRIM procedure in SAS. 

Bartlett’s modified likelihood ratio test (27) indicated that the 
assumption of homogeneous variance-covariance matrices was 
violated, which is common with large data sets because of the 
high power of this test (18). Johnson (18) suggested that differ-
ences between variance-covariance matrices, although significant 
by Bartlett’s modified likelihood ratio test, may not be large 
enough to be of practical importance for discriminant analysis. 
Therefore, both pooled (linear discriminant rule) and within-
group covariance matrices (quadratic discriminant rule) were 
tested and the models that provided the highest Se, Sp, and 
accuracy in cross-validation were selected. 

Receiver operating characteristic curve analysis. Classifi-
cation of data sets by discriminant analysis requires an arbitrary 
threshold probability, pT, (often nominally set to 0.5) for pre-
diction of group membership. However, the threshold chosen 
clearly will influence classification accuracy, Se, and Sp. Receiver 
operating characteristic (ROC) curve analysis was used to 
evaluate the discriminant models and identify decision thresholds, 
specifically the coordinates of Se and Sp associated with model-
estimated probability of group membership. ROC curve analysis 
provides a graphical method to evaluate a diagnostic test or 
predictive system, and is a routine analysis in clinical medicine 
(46). An advantage of ROC curve analysis over other methods of 
evaluating predictive systems is that it can provide a measure of 
accuracy for a predictor for both positive and negative predictions 
which is independent of the prevalence of disease in the data sets 
(26). 

Data sets for the 24- and 48-h infection models were classified 
as “cases” where disease occurred (D+) or “controls” where no 
disease occurred (D–). In ROC curve analysis, the term control is 
used to define the disease status of a data set and should not be 

confused with an experimental control. The Se and Sp of each 
model was determined by calculating the proportion of data sets 
that were classified correctly in cross-validation, assuming a 
probability of group membership above a decision threshold, or 
“cut-point.” A cut-point is a point on an ROC curve used to 
dichotomize predictions of a continuous variable into categories, 
with each cut-point corresponding to a predictive threshold for a 
model. To construct empirical ROC curves, model Se (referred to 
as true positive proportion, TPP) was plotted against 1 – Sp 
(referred to as false positive proportion, FPP) by allowing the cut-
point to vary over the range of its possible values (10,26). To 
compare models, the area under the ROC curve (AUROC) and its 
standard error were calculated (7) for each curve using the 
software MedCalc (MedCalc Software, Mariakerke, Belgium). 
AUROC is a summary measure of the predictive ability of a 
predictive system and may vary from 0 to 1 (perfect prediction). A 
standard normal z-statistic and associated probability was calcu-
lated to test the null hypothesis that the AUROC was >0.5, which 
is the area under the line representing a noninformative predictor 
(i.e., the diagonal of the unit square). 

For each model, the cut-point where the overall error rate was 
smallest was determined by Youden’s index, J, which identifies 
the point on the ROC curve at the greatest geometric distance 
from the line representing a noninformative predictor (26). 
Youden’s index is commonly used as a measure of overall 
diagnostic effectiveness and is calculated by J = Se + Sp – 1 (26). 

Likelihood ratios (LRs) for positive and negative predictions 
were depicted graphically for the cut-points identified by 
Youden’s index. The likelihood ratio of a positive prediction is 
represented as LR(+) and is calculated as TPP/FPP. The likelihood 
ratio of a negative prediction is represented as LR(–) and is 
calculated as FNP/TNP. LR(+) and LR(–) are useful for com-
paring cut-points or predictors and inferring “predictive value”, 
which can be derived by expressing the likelihood ratio as a 
posterior probability for a given prevalence of disease (Prev). In 
this context, the posterior probability is the probability of 
infection by P. humuli subsequent to a positive model prediction 
of infection. The Prev represents the probability of downy mildew 
exceeding a threshold, in this case the occurrence of infection and 
disease at any level of disease incidence >0. This definition of 
Prev is distinct from the typical use of the term “disease 
prevalence” in plant pathology to refer to the proportion of fields 
with diseased plants (23). For a given cut-point, the slope of the 
line extending from the origin to the cut-point is LR(+). The line 
with steepest slope has the highest LR(+) and, thus, a higher 
probability of infection occurring given a positive prediction of 
infection by the discriminant function (referred to as “positive 
predictive value”). The line extending from the cut-point to the 
point (1,1) is LR(–). The line with the shallower slope has the 
higher LR(–) and, thus, greater probability of infection not 
occurring given a negative prediction (referred to as “negative 
predictive value”). 

Derivation of optimal decision thresholds. A potential limita-
tion of Youden’s index is that model Se and Sp are weighted 
equally and, for a discriminant function, Youden’s index identifies 
a cut-point that minimizes overall misclassification error rate. In 
most instances, Se and Sp are not of equal importance economi-
cally for diagnostic tests (26) or plant disease management (43) 
because growers of high-value crops tend to be risk adverse 
(23,30). 

Fabre et al. (4) described how a cost function can be utilized to 
derive an optimal threshold probability (pT) where average 
management costs are minimized relative to errors, taking into 
account the cost of false-positive and false-negative predictions. If 
p is the probability that a fungicide application for downy mildew 
will provide a positive net return, pT is defined as a threshold 
value such that, if p > pT, a fungicide treatment is recommended 
and, if p < pT, a fungicide treatment is not recommended. Pre-
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serving the notation of Fabre et al. (4), T+ and T– represent pre-
diction that a treatment is recommended or not recommended, 
respectively, by the discriminant function. D+ and D–, as defined 
previously, are assumed to be infection events where a treatment 
is required or not required, respectively, independent of a model 
prediction. The Prev, as described above, represents the prob-
ability of downy mildew exceeding a threshold, in this case the 
occurrence of infection and disease at any level. Costs associated 
with T and D are C++ (true positive), C+– (false positive), C–+ (false 
negative), and C–– (true negative). The expected cost associated 
with pT, denoted by C(pT), for a given level of disease prevalence 
is  

C(pT) = Prev [Se × C++ + (1 – Se) × C–+] +  
(1 – Prev) × [Sp × C– –  + (1 – Sp) × C+–] 

(1) 

Cost associated with C++, C+–, C–+, and C–– were estimated for 
crop damage during vegetative development and cone develop-
ment based on information obtained from previous studies. 
Infection of shoots during early vegetative development can lead 
to systemic infection of the crown and root system (2,3,38), 
which has been associated with a 28% reduction in yield 
compared with noninfected plants. Conversely, infection of cones 
by P. humuli can reduce cone quality (based on subjective assess-
ments by the contracting brewery or dealer), which may result in 
crop devaluation (33) of ≈50% (D. H. Gent, unpublished). The 
cost of a false positive and true positive was estimated to be $150 
per hectare based on an unnecessary fungicide application of 
Aliette WDG (Bayer CropScience, Research Triangle Park, NC), 
given $100 per hectare for the fungicide and $50 per hectare in 
application costs. The cost of a true negative was assumed to be 
zero. It was also assumed that a crop of aroma hops was valued at 
$20,000 per hectare based on 2007 market conditions (6) and 
2008 contract prices. These estimates assume costs for C++, C+–, 
C–+, and C–– associated with a single fungicide application, which 
is likely a worse-case scenario because a false-negative pre- 
diction of disease may not lead to crop loss if additional control 
measures can be implemented. Clearly, actual values associated 
with the cost of T+ and D+ vary with crop value and a particular 
sequence of future weather and infection events; therefore, the 
cost presented are not appropriate for all situations. However, they 
provide a reasonable and conservative approximation for 
estimating pT because multiple values of D+ and Prev were 
considered. 

To derive optimal decision thresholds, C(pT) was minimized for 
a range of potential values of Prev by setting the first derivative of 
C to zero with respect to pT, as described by Fabre et al. (4). 
Algebraic approximations for the first derivates of Sp (ΔSp) and 
Se (ΔSe) were estimated by fitting (independently) the following 
models to the data for Sp(pT) and Se(pT): 

Sp(pT) = rp × ln(kp × pT + 1) (2) 

Se(pT) = 1 – ke × exp(re × pT – 1) (3) 

Equations 2 and 3 yield curves for Sp and Se expressed in a 
functional (parametric) form. Estimates of the shape parameters 
rp, kp, re, and ke for equations 3 and 4 were obtained by 
nonlinear regression using PROC NLIN in SAS (version 9.1; SAS 
Institute). The optimum pT for a range of values of Prev was then 
identified by minimizing: 

[ΔSp × (1 – Prev) × (C– –  – C+–) + ΔSe × Prev × (C++ – C–+)]2 (4) 

Calculations involving equation 4 were solved using the Solver 
add-in in Microsoft Excel (Microsoft Corp., Redmond, WA). 

RESULTS 

Infection bioassay. For the 24-h data sets, infection occurred 
on 18 of 125 days over the 3 years of study. The mean incidence 
of leaves with downy mildew was 0 to 0.7 among the data sets. 
The distribution of disease incidence on leaves was heavily right-
skewed, with mean 0.023 (standard deviation 0.088) and median 
0. For the 48-h data sets, infection occurred on 16 of the 48 sets 
of plants. Mean incidence of leaves with downy mildew was 0 to 
0.89. Similarly to the 24-h data sets, the distribution of disease 
incidence was heavily right-skewed, with mean 0.083 (standard 
deviation 0.22) and median 0. 

Among the weather variables for the 24-h data sets, most of the 
variables, with the exception of mean daily temperature and mean 
night temperature, were significantly associated with the disease 
incidence. Expectedly, variables including a measurement of wet-
ness tended to be highly correlated with disease incidence, with 
cumulative rain (S = 0.566; P < 0.0001) and hours of leaf wetness 
associated with rain (S = 0.571; P < 0.0001) being the most 
strongly correlated. For the 48-h data sets, the strongest correla-
tions were observed with degree-hours of humidity >80% (S = 
0.554; P < 0.0001), degree-hours of humidity >90% (S = 0.525;  
P < 0.0001), and degree-hours of leaf wetness (S = 0.535;  
P < 0.0001). 

Sporangia were detected in the Burkhard trap during 66 of the 
125 periods for the 24-h data sets and 30 of the 48 periods for the 
48-h data sets. Sporangia density was correlated with disease 
incidence for the 24-h data sets (S = 0.491; P < 0.0001) and 48-h 
data sets (S = 0.427; P < 0.003). In the 24-h data sets, the signi-
ficance of the correlation between a weather variable and disease 
incidence did not change when the analysis was conducted with 
disease incidence standardized by spore density, although the 
magnitude of S often changed. The exception to this trend was 
mean night temperature, which was significantly associated with 
standardized disease incidence (S = 0.346; P < 0.004). The vari-
ables most highly associated with standardized disease incidence 
were degree-hours leaf wetness (S = 0.620; P < 0.0001), rain leaf 
wetness (S = 0.597; P < 0.0001), cumulative rain (S = 0.589; P < 
0.0001), and degree-hours of daylight wetness (S = 0.584; P < 
0.0001). For the 48-h data sets, all variables that were signifi-
cantly associated with disease incidence also were significant 
using standardized disease incidence. The variables most highly 
correlated with the standardized disease incidence were degree-
hours of humidity >80% (S = 0.766 P < 0.0001), degree-hours of 
humidity >90% (S = 0.721; P < 0.0001), degree-hours of leaf 
wetness (S = 0.726; P < 0.0001), and mean night temperature (S = 
0.702; P < 0.0001). 

Weather variables that were significantly associated with dis-
ease incidence as measured by Spearman’s rank correlation 
generally were significant by the K-S test (Table 1). For the 24-h 
data sets, exceptions to this trend were for mean night tempera-
ture and relative humidity >90%. Mean night temperature was not 
significantly correlated with disease incidence (P = 0.191), al-
though the distribution of this variable was significantly different 
on days without and with infection (P = 0.013), as determined by 
the K-S test. Hours of relative humidity >90% was correlated 
with disease incidence (P = 0.033), whereas the distributions were 
similar on days without and with infection (P = 0.100). For the 
48-h data sets, cumulative rain and hours of rain leaf wetness 
were correlated with disease incidence (P = 0.002 and 0.010, 
respectively); however, the distributions of these variables among 
data sets were not significantly different by the K-S test (P = 
0.054 and 0.176, respectively). 

Infection model development. After inspection of numerous 
preliminary models, a quadratic discriminant function was devel-
oped for the 24-h data sets that included the predictor variables 
hours of relative humidity >80%, degree-hours of wetness, and 
mean night temperature (Fig. 1). The distribution of these vari-
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ables varied significantly between days without and with infection 
by P. humuli (Table 1) (P ≤ 0.0131). Median values of hours 
relative humidity >80%, degree-hours of wetness, and mean night 
temperature were 12.5, 44.6, and 11.6 on days with infection, 
respectively, and 9.5, 6.2, and 10.6 on days without infection. 
Median values of the predictor variables were significantly differ-
ent for data sets without and with infection based on the non-
parametric sign test, with the exception of mean night tempera-
ture (Fig. 1). 

In cross-validation, a quadratic discriminant function with these 
variables classified 88.8% of days into the correct category, with 
83.3% Se and 89.0% Sp, assuming a nominal pT = 0.5 for 
designating a day as an infection day. A similar model assuming 
homogeneity of covariance matrices (i.e., a linear discriminant 
function) had 85.6% accuracy, 72.2% Se, and 87.9% Sp. Due to 
the superior Se of the quadratic discriminant function compared 
with the linear discriminant function, the quadratic model was 
selected for further evaluation (described below). 

For the 48-h data sets, the final model included predictor vari-
ables for hours of relative humidity >80%, degree-hours of wet-
ness, mean night temperature, and an interaction variable for the 
product of mean night temperature and hours of relative humidity 
>80% (Fig. 2). The distribution of degree-hours of wetness, mean 
night temperature, and an interaction variable for the product of 
mean night temperature varied significantly between data sets 
without and with infection (Table 1) (P ≤ 0.002). The distribution 
of hours of relative humidity >80% were similar (P = 0.9445) 
between infection and noninfection data sets (Fig. 2). However, 
this variable was retained in the model because the interaction 
variable with mean night temperature and relative humidity was 
significant, and also because of biological considerations. Median 
values for hours of relative humidity >80%, degree-hours of wet-
ness, mean night temperature, and an interaction variable for the 
product of mean night temperature and hours of relative humidity 
>80% for data sets without infection were 19.6, 9.8, 5.9, and 
117.7, respectively. For data sets with infection, the median values 
were 20.5, 64.0, 10.3, and 202.0, respectively. Median values of 
the variables, with the exception of hours of relative humidity 
>80%, were significantly different for data sets without and with 
infection based on the sign test (Fig. 2). 

In cross-validation, a quadratic discriminant function for the 
48-h data sets had 77.1% accuracy, 68.8% Se, and 81.3% Sp, 
assuming a nominal pT = 0.5. A similar model for the 48-h sets 
based on pooled covariance matrices had 75% accuracy, 56.3% 
Se, and 78.1% Sp. The quadratic discriminant function was 
selected for further evaluation based on the superior Se, Sp, and 
accuracy of this model. 

ROC curve analysis. The AUROC curves for the 24- and 48-h 
models were significantly >0.5 (P < 0.0001) (i.e., predictions no 
better than chance), with 95% confidence intervals (0.814, 0.934) 
(0.733, 0.945), respectively (Fig. 3A). The AUROC for the 24- 
and 48-h models were similar (z = –0.256; P = 0.798) (Table 2). 

Youden’s index identified the optimal cut-points as pT = 0.49 
for the 24-h model and pT = 0.39 for the 48-h model (Table 2). 
With these thresholds, the Se and Sp of the models in cross 
validation were 83.3 and 88.8% for the 24-h model and 87.5 and 
84.4% for the 48-h model, respectively. At these thresholds, 
LR(+) and LR(–) were 7.43 and 0.19 for the 24-h model and 5.60 
and 0.15 for the 48-h model, respectively (Fig. 3B). These values 
are depicted graphically in Figure 3B. The greater positive 
predictive ability of the 24-h model compared with the 48-h 
model (with pT determined by Youden’s index) is indicated by the 
steeper slope of the line for LR(+) and shallower slope for LR(–). 

Derivation of optimal decision thresholds. Equations 2 and 3 
provided a reasonable fit to the observations for Se and Sp (Fig. 
4A and B). Parameter estimates for the analytical approximations 
for Se and Sp are presented in Table 3 so that the fitted curves for 
Se and Sp can be reconstructed by the reader. For both the 24- and 
48-h models, pT decreased rapidly with increasing Prev (Fig. 4C). 
For example, at Prev = 0.5, pT was <0.04 for both models with 
economic assumptions for vegetative development or harvest. For 
the 24-h model, the model predictions reduced average costs 
during vegetative development, compared with routine fungicide 
applications, when Prev was 0.01 to 0.31. At harvest, the model 
reduced average costs when Prev was 0.01 to 0.21. For the 48-h 
model, average costs were reduced by the model during vegeta-
tive development for Prev of 0.01 to 0.16 and Prev of 0.01 to 0.1 
at harvest. Above these values of Prev, average costs associated 
with use of the model exceeded the costs of routine fungicide 
applications due primarily to false-negative predictions (C–+). 

DISCUSSION 

The primary purpose of this study was to identify and model 
weather variables associated with daily risk of infection of hop by 
P. humuli in the unique environment of western Oregon, and 
identify when use of the models could reduce average manage-
ment costs for downy mildew. Madden et al. (23) suggest that the 
first step in formulating a disease management strategy is to 
“…identify the most important risk factors among those on the 
long list of possible candidates.” For the 24-h data sets, the model 
with superior predictive ability included the variables hours of 
relative humidity >80%, degree-hours of wetness, and mean night 
temperature. Similar variables were selected for the 48-h data 

TABLE 1. Spearman’s correlation (S) and significance of the Kolmogorov-Smirnov (K-S) test for weather variables associated with the incidence or occurrence of 
downy mildew for 24- and 48-h infection bioassaysa 

 24-h bioassay 48-h bioassay 

Weather variable S P-value K-S S P-value K-S 

Daylight leaf wetness (h) 0.396 <0.0001 <0.0001 0.271 0.062 0.338 
Degree-hours daylight wetness 0.467 <0.0001 <0.0001 0.511 0.0002 0.002 
Degree-hours humidity >80% … … … 0.554 <0.0001 <0.0001 
Degree-hours humidity >90% … … … 0.525 <0.0001 0.002 
Degree-hours leaf wetness 0.466 <0.0001 <0.0001 0.539 <0.0001 0.016 
Leaf wetness (h) 0.289 0.001 0.003 0.128 0.387 0.993 
Mean night temperature (°C) 0.118 0.191 0.013 0.497 0.0003 <0.0001 
Mean daily temperature (°C) –0.039 0.663 0.266 0.339 0.019 0.014 
Morning leaf wetness (h) 0.277 0.002 0.004 0.155 0.292 0.438 
Rain (mm) 0.566 <0.0001 <0.0001 0.436 0.002 0.054 
Rain leaf wetness (h) 0.571 <0.0001 <0.0001 0.356 0.010 0.176 
Relative humidity >80% (h) 0.285 0.001 0.006 0.104 0.481 0.945 
Relative humidity >90% (h) 0.191 0.033 0.100 0.072 0.627 0.792 
Spore density (sporangia M–3 h–1) 0.491 <0.0001 <0.0001 0.427 0.003 0.025 

a  K-S = Kolmogorov-Smirnov test that the weather variables on days without and with infection belong to the same distribution. Monte Carlo estimation was used
to derive exact P values. 
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sets, with the addition of a product variable for mean night tem-
perature and hours of relative humidity >80%. The weather 
variables identified as associated with infection by P. humuli 
generally are in agreement with previous studies conducted in the 
diverse climates of central Washington (13,16,17), England (32), 
and Germany (21), but with important distinctions. However, we 
made no attempt in this study to quantify the effect of weather 
factors on individual components of disease development, specifi-
cally sporulation, spore dispersal, germination, or infection. The 
models developed in the current study likely include variables  
that may affect all of these processes but the models only con- 
sider these factors implicitly and estimate an overall probabil- 
ity that conditions were suitable for some level of disease 
development. 

Leaf wetness was identified as an important predictor of infec-
tion and infection severity, which was expected because moisture 
is required for infection by nearly all pathogenic oomycetes and is 
accounted for directly or indirectly in numerous models (14,19, 
22,36). Weather variables that incorporated an explicit or surro-
gate measure of wetness (e.g., rain) were significantly associated  

 

Fig. 1. Box plots of 24-h weather variables selected for discriminant function
construction for classifying days as favorable (1) or unfavorable (0) for
infection of hop plants by Pseudoperonospora humuli. Box plots show the
median (line), middle 50% of the data (open box), confidence interval for the 
median based on the nonparametric sign-test (solid bar inside box) (33),
extremes of the data points (whiskers), and outliers (solid circles). The
probability level of the Kolmogorov-Smirnov test is presented numerically on
the graphs. RH = relative humidity. 

 

Fig. 2. Box plots of 48-h weather variables selected for discriminant function 
construction for classifying days as favorable or unfavorable for infection of
hop plants by Pseudoperonospora humuli. Box plots show the median (line), 
middle 50% of the data (open box), confidence interval for the median based 
on the nonparametric sign-test (solid bar inside box) (35), extremes of the data 
points (whiskers), and outliers (solid circles). The probability level of the
Kolmogorov-Smirnov test is presented numerically on the graphs. RH =
relative humidity. 
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 with infection and differentiated days without or with infection. 
We chose to represent units of wetness as a product of tempera-
ture to obtain a metric of thermal time during wetness due to the 
simplicity of implementing this variable in automated calculations 
and its intuitive interpretation. Pfender (31) utilized degree-hours 
of leaf wetness in a regression model for stem rust of perennial 
ryegrass, and described the advantage of this approach compared 
with other models based on a sigmoid function such as the 
Weibull cumulative distribution function. Degree-hours of wet-
ness likely account for the multiplicative interaction of tempera-
ture and wetness; for example, a shorter period of wetness at a 
higher temperature is modeled to have a similar effect as a longer 
wet period at a lower temperature. Waggoner et al. (44) provided 
similar evidence of multiplicative interactions among rain wetness 
duration, rain, and inoculum density on downy mildew through a 
formulation of the Law of the Minimum (Liebig’s Law). 

The role of dew wetness in epidemic development is unre-
solved. The importance of dew in infection has been discounted in 
Europe and only infections following rain wetness were reported 
as being economically important (21,32), although length of dew 
duration after sunrise was not considered in these studies. Ex-
tended dew wetness, particularly during the morning, was impli-
cated in infection in California (40) and for other downy mildew 
diseases (36). Royle (32) also stated that “relatively light” and 
“moderate levels of infection” of leaves in England can occur in 
association with dew wetness. In this study, we found that leaf 
wetness expressed in units of thermal time of total wetness dura-
tion, and not only wetness associated with rain events, was a 
better predictor of disease incidence and occurrence than rain 
wetness for the 48-h data sets. However, rain wetness was the 
most highly correlated variable with disease incidence in the 24-h 
data sets. Scherm and van Bruggen (37) demonstrated that lettuce 
may by infected by sporangia of Bremia lactucae produced that 
day during a morning with extended dew. Given the results of the 
current study, this may suggest that, for hop downy mildew, dew 
wetness may be more important for infection by sporangia that 
survive from the previous day than by sporangia that are produced 
and released during the dew wetness. In other studies, tempera-
ture has not been considered a limiting factor for the P. humuli 
infection process and downy mildew development (21,32,40). 
Night temperature and temperature during wetness clearly were 
important predictors in this study, similar to previous studies in 
Washington (16). 

The importance of humidity (at night or otherwise) was an 
important factor associated with sporulation and infection of P. 
humuli, as reported in England (32), continental Europe (33), and 
the semiarid environment of central Washington (16). In the 
current study, model Se and accuracy were greater when using a 
humidity threshold of 80 instead of 90%, which has been sug-
gested as the minimum threshold for sporulation by P. humuli 
(33). The weather measurements used in developing the models 
are proxies for the actual microclimate conditions on the leaf 
surface where the pathogen interacts with the plant. An ambient 

 

Fig. 3. A, Receiver operating characteristic curves for the 24- and 48-h 
Pseudoperonospora humuli infection risk discriminant function models. The
dashed line represents the line of no discrimination for a predictive system
that does predict infection better than by chance. B, Graphical representation
of the positive [LR(+)] and negative likelihood ratios [LR(–)] for cut-points 
identified by Youden’s index for the 24- and 48-h discriminant functions.
Solid circles are the 24-h model and open circles are the 48-h model. For a 
given cut-point, the slope of the line extending from the origin to the cut-point 
is LR(+). The line with steepest slope has the highest LR(+). The line 
extending from the cut-point to the point (1,1) is LR(–). The line with the
shallower slope has the highest LR(–). 

TABLE 2. Characteristics and performance of discriminant functions for classifying days as favorable or unfavorable for infection of hop by Pseudoperonospora 
humuli 

Modela Casesb Controlsc AUROCd SEe Tj
f Accuracyg Sensitivityh Specificityi 

24-h 18 107 0.88 0.053 0.49 0.86 0.83 0.89 
48-h 16 32 0.86 0.063 0.39 0.86 0.88 0.84 

a  Independent quadratic discriminant functions were derived from predictors variables for 24 or 48-h periods. 
b Number of data sets where infection did occur. 
c  Number of data sets where infection did not occur. 

d  Area under the receiver operating characteristic curve (AUROC). 
e  Standard error of the AUROC. 
f  Optimal cut-point identified by Youden’s index. 
g  Proportion of data sets classified correctly at the cut-point identified by Youden’s index. 
h  Proportion of cases classified correctly at the cut-point identified by Youden’s index. 
i  Proportion of controls classified correctly at the cut-point identified by Youden’s index. 
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relative humidity of 80 instead of 90% may be a better surrogate 
for conditions at the leaf surface favorable for sporulation and the 
infection process. Alternatively, the improved model Se and accu-
racy with the lower relative humidity threshold may be related to 
minimum temperature. Calculation of relative humidity is depen-
dent on temperature, and humidity may be greater on days that 
temperature drops below the minimum temperature required for 

infection or sporulation. Nonetheless, the empirical humidity 
threshold selected appears to be a suitable approximation for 
prediction of conditions suitable for infection and can be recorded 
simply by an automated weather station. 

The discriminant function models developed in this research 
purposefully were developed to be relatively simple and conser-
vative. Leaf infection is known to occur at temperature thresholds 
and wetness durations lower than that of shoots (33), although 
leaf infections are of minimal economic consequence. Potentially, 
positive predictions of leaf infection could occur when conditions 
are unsuitable for shoot or cone infection. However, leaf and 
shoot infection are correlated and conditions favorable only for 
leaf infection likely would be limited because the degree-hour 
calculation was based on a lower temperature threshold of 8°C. 
Similarly, the models were developed for a single, highly 
susceptible cultivar and other cultivars may behave differently. 
Because the discriminant functions do not estimate the level of 
infection, we expect that only cultivars with exceptionally high or 
low susceptibility to downy mildew would respond markedly 
differently than cv. Nugget. 

Additionally, the models do not provide a quantitative estimate 
of the level of infection but, rather, simply estimate the 
probability that infection has occurred at any level. Although this 
level of precision likely is not adequate to optimize fungicide use 
efficiency in all circumstances, we recognize that growers of 
high-value crops such as hops are risk averse (23,30) and, thus, 
may make management decisions that do not minimize long-term 
average costs. Optimum economic decision thresholds indicated 
that conservative management of the disease is cost effective, on 
average, with several economic assumptions, except for when 
disease prevalence is relatively low (i.e., 0 to 0.31, depending on 
the time of the season and model). These conditions would tend to 
occur during the relatively dry and warm conditions typical of 
western Oregon in late spring and summer. Indeed, no infections 
on the 24- or 48-h bioassay plants were observed between 14 July 
and 7 September. Given the conservativeness of the models, a 
negative disease prediction during this time could be helpful for 
informing a grower’s decision if continued fungicide applications 
for downy mildew are necessary. 

Based on the economic assumptions used in this study, the 
value of the models in management decision making is expected 
to be greatest when disease prevalence is relatively low (e.g., 
during relatively dry weather). The economic value of using a 
predictive model for other high-value crops may also be restricted 
to periods when disease prevalence is relatively low because the 
economic cost of crop loss would tend to be much greater than 
the costs associated with an unnecessary fungicide application. As 
stated by Maloy (25) in reference to disease forecasting, “Many 
growers view routine (i.e., calendar) spraying as insurance—
better to have it and not need it than the other way around.” The 
research presented here indicates that predictive systems for hop 
downy mildew need to be extremely accurate to reduce average 
management costs compared with routine fungicide applications 
because the cost of a false negative is much greater than a false 
positive. 

Fig. 4. Observed and modeled sensitivity and specificity of discriminant
function models for classifying the A, 48-h or B, 24-h period as favorable for
infection by Pseudoperonospora humuli as a function of the optimum decision
threshold, pT; pT is defined as a threshold value such that if p > pT, a fungicide 
treatment is recommended and if p < pT, a fungicide treatment is not
recommended, where p is the probability that a fungicide application for
downy mildew will provide a positive net return. Solid circles represent
sensitivity and open circles represent specificity. C, Optimum decision
threshold, pT, in relation to disease prevalence and crop phenology. ‘Vegeta-
tive’ refers to infection by P. humuli during early- to midseason vegetative
development, and ‘harvest’ refers to infection of cones near harvest. Economic
assumptions of the models are described in the text. 

TABLE 3. Parameter estimates for nonlinear regression models describing 
sensitivity and sensitivity for discriminant functions classifying a 24- or 48-h 
period as favorable for infection by Pseudoperonospora humuli 

 Parameter estimatea 

Model rp kp re ke 

24-h 0.222 103.9 2.521 0.149 
48-h 0.099 21,614.1 3.406 0.077 

a Equations 2 and 3 in the text provide explicit formulas for sensitivity and
specificity, respectively. Parameters estimates are provided so that fitted
curves for sensitivity and specificity can be reconstructed by the reader. 
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