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ABSTRACT 

Gent, D. H., Turechek, W. W., and Mahaffee, W. F. 2008. Spatial and 
temporal stability of the estimated parameters of the binary power law. 
Phytopathology 98:1107-1117. 

The incidence of hop powdery mildew on leaves, caused by 
Podosphaera macularis, collected from 1,606 transects in 77 commercial 
hop yards in Oregon and Washington over 9 years was used to assess 
variability in heterogeneity of disease and the estimated binary power law 
parameters. Spatial analyses of data sets were conducted at the level of 
individual rows (row level) and multiple rows within a yard (yard level). 
The binary power law provided a good fit to all data sets, with R2 values 
ranging from 0.933 to 0.993. At the row level, the intercept parameter 
ln(Ax) was >0 for 8 years, but was not significantly greater than 0 in 2006. 
The parameter b was greater than 1 for all row-level data sets collected 

from 1999 to 2005, but was <1 in 2006 and not significantly different 
from 1 in 2007. Covariance analysis indicated the factor ‘region’ affected 
ln(Ax) in 3 years, and b in 2 years. ‘Cultivar’ had an effect on ln(Ax) in 3 
years and b in year. At the yard level, ln(Ax) was greater than 0 for 6 
years, but in 2006 and 2007, ln(Ax) was not significantly different from 0. 
The slope parameter b was greater than 1 in 6 years, but was not 
significantly different from 1 in 2006 and 2007. Differences in b among 
years were large enough to have practical implications for sample sizes 
and precision of fixed and sequential sampling. Although the binary 
power law parameter tended to be relatively stable, variability of the 
estimated parameters may have practical consequences for sampling 
precision and costs. 

Additional keywords: quantitative epidemiology, Sphaerotheca macularis. 

 
Description and quantification of spatial patterns of plant 

disease are integral to botanical epidemiology, providing insight 
into biological processes associated with pathogen dispersal and 
disease development, and allowing for the development of 
testable hypotheses to explain observed patterns (18). Quanti-
fication of spatial pattern is prerequisite to designing statistically 
sound sampling methods (3–5,7,14,16,30,31) and controlling the 
effects of aggregation in analysis of data from designed field 
experiments (19), and also has been used in development of crop 
loss models (6). 

For disease incidence data, the binary form of Taylor’s power 
law (23–25) provides a simple model with only two parameters to 
detect and quantify aggregation at the scale of individual 
sampling units. Taylor’s power law relates the observed variance 
(vobs) to the population mean (m) for count data with no upper 
limit through a power function: 

vobs
 = amb (1) 

where a and b are parameters typically estimated by least squares 
regression after logarithmic transformation. For count data, when 
vobs = m (i.e., a = b = 1) the data can be described by the Poisson 
distribution, indicating a random pattern. Parameter b is a rate of 
chance of log variance with log mean, and is considered an index 
of aggregation (28). However, one can consider Taylor’s power 
law as describing the empirical relationship between two vari-

ances, an observed variance (vobs) and the variance of the popu-
lation if it were randomly distributed (m), since the variance is 
equal to the mean for the Poisson distribution (21). For binary 
data, the binomial is the appropriate distribution for a random 
spatial pattern (13,18), which has a variance of vbin = np(1 – p), 
where n is the number of observations (individuals) within a 
sampling unit and p is the probability of a plant being diseased. 
The estimate of p, p̂ , is equivalent to disease incidence, the mean 
proportion of plants diseased. Thus, the binary power law can be 
written as 

vobs = Ax
bvbin  = b

x ppnA )]ˆ1(ˆ[ −  (2) 

where Ax and b are parameters. Using the notation of Turechek 
and Madden (32), the binary power law can be written as 

ln(vobs) = ln(Ax) + bln(vbin) (3) 

in its linear form after log transformation. When Ax = 1 and b = 1, 
equation 3 indicates a random pattern of diseased individuals that 
can be represented by the binomial distribution. When Ax > 1 and 
b = 1, disease incidence has an aggregated pattern that is not de-
pendent on p. Values of b > 1 indicate that aggregation is sys-
tematically related to p, which is typical of most plant diseases at 
multiple scales (2,3,11,13,16,30,32,33,35). 

The binary power law provides a convenient method of quanti-
fying and characterizing aggregation of disease for multiple data 
sets when they are collected at a single or over several time periods 
(8,13). The power law model in equation 3 can be expanded 
allowing a covariance analysis to determine the effect of factors 
or class variables (e.g., cultivar, fungicide application, and year) 
on the degree of aggregation (3,16,31–33). Gent et al. (3) ana-
lyzed the incidence of the hop powdery mildew (caused by 

Corresponding author: D. H. Gent; E-mail address: gentd@onid.orst.edu 

doi:10.1094 / PHYTO-98-10-1107 
This article is in the public domain and not copyrightable. It may be freely re-
printed with customary crediting of the source. The American Phytopathological
Society, 2008. 



1108 PHYTOPATHOLOGY 

Podosphaera macularis) on hop cones, and found that year of 
sampling affected parameter estimates, with a tendency for the 
intercept (ln[Ax]), and slope (b) to increase with time. This raises 
questions about the temporal stability of the parameters of the 
binary power law. Explanations for this variability are speculative, 
but may include natural variability of ln(Ax) and b caused by 
seasonal weather patterns, the impacts of different and/or chang-
ing management practices, or the variability may represent a 
temporal process where ln(Ax) and b are approaching relatively 
stable, mean values as the pathogen adapts to the new environ-
ment. However, in other pathosystems parameter estimates were 
stable when compared over a period of 2 to 3 years. Madden et al. 
(16) suggested that for grape downy mildew (caused by Plasmo-
para viticola) b was a “stable character” at the geographic loca-
tion where data sets were collected. 

While instantaneous spatial patterns are transient and rarely 
identical, the relationship between mean and variance of counts 
generally are stable and robust across space and time (23-25,27-
29). In their study of 156 data sets comprising counts of organ-
isms (with no upper limit) of 102 species, Taylor et al. (28) found 
that Taylor’s power law provided an adequate model to describe 
the relationship between mean population density and variance 
over nearly all taxa, scales, and sampling methods investigated in 
unmanaged systems. Sampling of numerous aphid and moth 
species at multiple locations over a period of 6 to 14 years also 
suggested that parameter b was temporally stable (27), and the 
authors suggested that, “…temporal stability is largely an intrinsic 
species property.” However, the intercept parameter a is reported 
to differ among environments (26,28,29). With constant b, a 
change in the parameter a indicates that environment affects vari-
ance and, consequently, the magnitude (or degree) of aggregation 
equally across the range of possible densities (26). 

The portability and temporal stability of parameter estimates of 
the binary form of the power law are unclear, partly due to the 
lack of available long-term data sets for disease incidence data. 
Stability of the parameter estimates in managed agroecosystems 
also is unknown. In this study, incidence of hop powdery mildew 
on leaves collected from commercial hop yards over 9 years was 
used to assess variability in heterogeneity of disease and the 
binary power law parameters. From a practical standpoint we also 
investigate the impact of parameter variability on fixed and se-
quential sampling plans for this disease. The importance of proper 
covariance analysis and sampling over time to estimate param-
eters of the binary power law are emphasized. 

MATERIALS AND METHODS 

Field sites and data collection. The incidence of powdery 
mildew on hop leaves was assessed from 1,606 transects in 77 
commercial hop yards in the primary hop growing regions of 
western Oregon (Willamette Valley) and three separate regions in 
central Washington, namely the Yakima Indian Reservation, near 
the town of Moxee City (Moxee), and in the eastern extent of the 
Yakima Valley (Lower Valley) from 1999 to 2007. Data sets were 
constructed from the disease incidence data from all sampling 
units within an individual row and also all sampling units 
assessed in that yard, and are herein referred to as row- and yard-
level data sets, respectively (33). Data sets from 1999 to 2001 
were reported previously (33). Climate, cultural practices, culti-
vars, and disease severity vary among these regions (3,20,33), and 
typically the greatest disease severity is observed near the Yakima 
Indian Reservation, followed by Moxee, the Lower Valley, and 
Oregon (34). 

Yards surveyed in Oregon were planted exclusively with the 
aroma cultivars Glacier (41 yard-level data sets), Liberty (3 data 
sets), Perle (71 data sets), and Willamette (187 data sets) that are 
moderately to highly susceptible to hop powdery mildew. Yards 
surveyed in Washington were planted primarily with the bittering 

cultivars Chelan (12 yard-level data sets), Columbus, Tomahawk, 
or Zeus (genetically indistinguishable and collectively referred to 
as CTZ) (426 yard-level data sets), or Galena (5 yard-level data 
sets) that are highly susceptible to hop powdery mildew. Twenty-
five yard-level data sets were collected from yards planted to 
cultivar Willamette in Washington. A total of 770 yard-level data 
sets and 1,606 row-level data sets where p̂  > 0 were included in 
the analysis. 

Disease incidence was assessed using a cluster sampling design 
(10), as described in detail previously (33). In 1999, a single 
transect (row) was sampled from each yard. In 2000, yards were 
stratified into H strata, where H = number of rows in a yard/20 
(rounded-up to the nearest integer), and one transect in each of 
the strata was selected arbitrarily for sampling. From 2001 to 
2007, a transect was sampled from each of the first two strata 
from the first 40 rows of a yard. Individual yards were sampled 
multiple times in each season, but transects were chosen arbi-
trarily on each sampling date. The number of individual yards 
sampled within a season range from 5 (2006) to 54 (2001). 

Ten leaves (n) were sampled arbitrarily from each of the first 75 
to 100 (N) plants along the transect, or until the end of the row if 
the row contained less than the desired number of plants. Each 
leaf was rated for the incidence (presence or absence) of powdery 
mildew. Mean p̂  was calculated as p̂  = Σxi /Σni, where xi is the 
number of diseased leaves and ni is the number of leaves sampled 
in the ith sampling unit. 

Distributional analyses. The beta-binomial and binomial 
distributions were fit to the incidence data using the computer 
program BBD (12). For binary data collected as a cluster sample, 
a good fit to the binomial distribution is an indication of a random 
pattern of diseased plants, whereas a good fit to the beta-binomial 
distribution is an indication of an aggregated disease pattern (13). 
A log-likelihood ratio test statistic was calculated to determine 
whether the data fit the beta-binomial distribution better than the 
binomial distribution (22). 

The degree of aggregation of disease incidence was quantified 
using the parameter θ of the beta-binomial distribution, which 
provides a measure of variation in disease incidence per sampling 
unit (13,15). The index of dispersion (D) was calculated by 
dividing the observed variance of diseased leaves (vobs) by the 
theoretical variance for a binomial distribution (vbin) where vobs = 
∑ −− )1/(])ˆ([ 2 Nnpx ii  and vbin = )ˆ1(ˆ ppn −  and xi, p̂ , n, and N are 

as defined previously. When θ = 0 or D = 1, the pattern of 
diseased plants is random, with aggregation indicated when D > 1 
or θ > 0 and the degree of aggregation directly proportional to the 
magnitude of the statistic. D has a chi-square distribution, and can 
be used to test the null hypothesis of a random distribution of 
disease incidence with N – 1 degrees of freedom (13,15). 

Binary power law analyses. The binary power law model 
(equation 3) was fitted to the observed and binomial variances. 
Ordinary least squares regression was used to estimate the inter-
cept and slope parameters using the SAS procedure PROC REG 
(SAS version 9.1, SAS Institute, Cary, NC). In some instances, 
only a single diseased leaf was found during the sampling at the 
row or yard level. Taylor (23) referred to discrete data sets with 
only a single observed individual as “singletons” and suggested 
excluding these data sets because spatial aggregation cannot be 
interpreted for one individual. Regression models were fit to all 
data sets and also to data sets where singletons were removed. 
Differences in parameter estimates were determined by t tests 
using Microsoft Excel (Microsoft Corp., Redmond, WA). 

A covariance analysis was conducted on the data sets using the 
GENMOD procedure in SAS to determine the effect of the factors 
‘cultivar’, ‘region’, and ‘year’ on the slope and intercept param-
eters of the binary power law as described previously (33). To 
conduct the covariance analysis equation 3 was expanded to 
include the factors (class variables). The continuous variable 
ln )]ˆ1(ˆ[ ppn − was included in the model first, and then each of the 
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three factors was added individually as an intercept term and then 
as an interaction term with the slope. The analyses were con-
ducted on each year, and then a separate analysis was conducted 
to determine the effect of year on estimates of ln(Ax) and b. A 
factor was considered significant if inclusion of the factor as a 

covariate significantly reduced the sum of square error (SSE) as 
compared to the null (binary power law) model without the factor. 
The significance level for the difference between SSE of the 
models was determined by an F test in which F = (factor SSE/df 
factor)/(model SSE/df model) and df = degrees of freedom. 

 

Fig. 1. Frequency distribution of the beta-binomial distribution parameters p̂  (A and B) and θ̂  (C and D), the index of dispersion D (E and F) for the incidence 
of hop powdery mildew on leaves sampled from hop yards from 1999 to 2007 (A, C, and E) or 2000 to 2007 (B, D, and F). Data sets in A, C, and E were derived 
at the row scale, and data sets in B, D, and F were derived at the yard scale. Vertical dashed lines are the median value for the indicated statistic, with the
numerical value given on the figure. 

TABLE 1. Mean and standard error (in parentheses) of the incidence ( p̂ , the estimate of the probability of disease) of powdery mildew on hop leaves sampled at 
the yard level from hop yards in Oregon and Washington (Lower Valley, Moxee, and Yakima Indian Reservation [YIR]) 

   Washington   

 Oregon Lower Valley Moxee YIR Total 

Year p̂  T a  p̂  T p̂  T p̂  T p̂  T 

2000 0.01 (0.002) 38 0.02 (0.004) 41 0.06 (0.026) 20 0.12 (0.035) 20 0.04 (0.008) 119 
2001 0.01 (0.003) 35 0.11 (0.034) 12 0.08 (0.027) 13 0.15 (0.044) 19 0.07 (0.014) 79 
2002 0.005 (0.0005) 91 0.08 (0.015) 51 0.01 (0.005) 20 0.08 (0.016) 50 0.04 (0.006) 212 
2003 0.03 (0.008) 43 0.05 (0.010) 8 0.01 (0.002) 18 0.04 (0.013) 17 0.03 (0.005) 86 
2004 0.03 (0.006) 37 0.03 (0.014) 7 0.12 (0.032) 16 0.01 (0.003) 4 0.05 (0.010) 64 
2005 0.01 (0.005) 37 0.05 (0.012) 33 0.12 (0.030) 23 0.18 (0.039) 35 0.09 (0.014) 128 
2006 0.004 (0.001) 12 0.16 (0.023) 12 0.02 (0.012) 8 0.06 (0.016) 13 0.07 (0.012) 45 
2007 0.02 (0.007) 9 0.07 (0.014) 18 0.02 (0.013) 4 0.09 (0.032) 6 0.06 (0.010) 37 
Total 0.01 (0.002) 302 0.06 (0.006) 182 0.06 (0.009) 122 0.11 (0.012) 164 0.05 (0.004) 770 

a Number of data sets assessed. 
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Sample size analyses. The effect of changes in ln(Ax) and b on 
sample size as determined by fixed and sequential sampling 
models were quantified for the yard-level analyses from all years 
combined, as well as 2004 and 2006 since b varied the most 
between these years. Statistical methods for sample size deter-
mination were based on, and fully described in, Madden and 
Hughes (15) and Madden et al. (17). 

Fixed sampling curves were developed to predict the number of 
sampling units necessary to estimate the incidence of hop 
powdery mildew on leaves with varying levels of precision. The 
number of sampling units (N) needed to estimate p with a 
coefficient of variation of the mean, C = 0.2 was calculated by 

N = 2ˆ2ˆ
/)ˆ1(ˆˆ Cppa bb −−  (4) 

where C = se[ p̂ ]/ p̂ , se p̂ = Nppa b /)]ˆ1(ˆ[ˆ ˆ− , 2ˆˆˆ −= b
xnAa  and 

xÂ  and b̂  are parameters estimated from the binary power law 
from all years, 2004, or 2006 (9). 

For sequential estimation, the se of p̂  was expressed in terms 
of the binary power law parameters as 

Nppa b /)]ˆ1(ˆ[ˆ
ˆ−  (5) 

where â  and b̂ are as defined previously. Since heterogeneity 
was systematically related to disease incidence, stop lines were 
derived numerically by the formula 

γN = 1ˆ22ˆ22ˆ2ˆ
)ˆ/()( −−− =− bbb

N
b

N NnaCTnNT  (6) 

A Mathcad (Mathsoft Inc., Cambridge, MA) worksheet developed 
previously (30) was used to solve equation 6 iteratively for TN 
when N = 1 to 500 and C = 0.2. 

RESULTS 

Disease incidence and distributional analyses. Disease 
incidence varied among years and regions, with no discernable 
trends for an overall increase or decrease in disease incidence 
among row or yard-level data sets (Table 1). The region where the 
greatest mean disease incidence was observed varied each year, 

TABLE 3. Slope and intercept parameter estimates of the binary power law for the incidence of leaves with powdery mildew from data sets collected from hop
yards in Oregon and Washington 

  All data setsb Without singletonsb t valuec 

Year T a  )ˆln( xA  se b̂  se R2 T )ˆln( xA  se b̂  se R2 )ˆln( xA  b̂  

Row level               
1999 44 0.342 0.036 1.104 0.020 0.986 42 0.343 0.037 1.116 0.023 0.983 –0.027 –0.383 
2000 370 0.266 0.189 1.063 0.007 0.985 315 0.268 0.021 1.065 0.009 0.978 –0.011 –0.151 
2001 164 0.458 0.030 1.113 0.013 0.977 150 0.463 0.031 1.122 0.017 0.967 –0.130 –0.420 
2002 362 0.529 0.027 1.131 0.010 0.971 302 0.544 0.030 1.146 0.014 0.957 –0.370 –0.892 
2003 157 0.502 0.036 1.120 0.013 0.978 138 0.511 0.040 1.127 0.017 0.969 –0.173 –0.334 
2004 112 0.719 0.044 1.173 0.018 0.975 100 0.728 0.047 1.184 0.023 0.965 –0.137 0.376 
2005 231 0.521 0.031 1.115 0.013 0.971 202 0.520 0.033 1.114 0.017 0.954 0.013 0.061 
2006 81 –0.086 0.054 0.931 0.024 0.950 74 –0.104 0.056 0.900 0.029 0.928 0.234 0.809 
2007 85 0.162 0.055 1.016 0.026 0.949 79 0.153 0.058 1.004 0.030 0.933 0.106 0.287 
All 1,606 0.415 0.012 1.097 0.005 0.970 1,402 0.418 0.013 1.100 0.006 0.957 –0.156 –0.434 

Yard level                
2000 119 0.418 0.027 1.092 0.009 0.993 119 0.418 0.027 1.092 0.009 0.993 – – 
2001 79 0.490 0.041 1.100 0.017 0.982 79 0.490 0.041 1.100 0.017 0.982 – – 
2002 212 0.653 0.037 1.146 0.013 0.975 191 0.665 0.040 1.156 0.016 0.967 –0.220 –0.002 
2003 86 0.583 0.041 1.134 0.015 0.986 79 0.605 0.045 1.149 0.018 0.981 –0.361 –0.002 
2004 64 0.861 0.068 1.175 0.028 0.967 62 0.864 0.071 1.178 0.030 0.962 –0.031 –0.002 
2005 128 0.667 0.038 1.139 0.014 0.981 114 0.672 0.041 1.147 0.018 0.973 –0.089 –0.002 
2006 45 0.127 0.078 0.983 0.032 0.957 44 0.123 0.079 0.978 0.033 0.954 0.036 –0.001 
2007 37 0.166 0.084 0.994 0.036 0.956 36 0.156 0.086 0.984 0.040 0.946 0.083 –0.001 
All 770 0.554 0.018 1.117 0.007 0.975 724 0.557 0.019 1.119 0.007 0.969 –0.115 –0.001 

a T = number of data sets. Row and yard level refers to the scale of the analysis (33). 
b “Singletons” are defined as data sets where only one diseased leaf was observed among all sampling units assessed in a yard. The parameters b̂ and )ˆln( xA are 

slope and intercept estimates, respectively. se = standard error of the mean. 
c t values are for a test that slope or intercept estimates of the regression for data sets with and without singletons are equal. Values greater than |1.645| indicate

significance at P = 0.05. 

TABLE 2. Mean and standard error (in parentheses) of the beta-binomial parameter θ̂  for incidence of hop leaves with powdery mildew sampled at the yard-level 
from hop yards in Oregon and Washington (Lower Valley, Moxee, and Yakima Indian Reservation [YIR]) 

   Washington   

 Oregon Lower Valley Moxee YIRa Total 

Year θ̂  T a  θ̂  T θ̂  T θ̂  T θ̂  T 

2000 0.03 (0.005) 38 0.02 (0.004) 41 0.02 (0.006) 20 0.05 (0.013) 20 0.03 (0.003) 119 
2001 0.04 (0.008) 35 0.05 (0.010) 12 0.07 (0.025) 13 0.08 (0.010) 19 0.05 (0.006) 79 
2002 0.12 (0.087) 91 0.10 (0.017) 51 0.05 (0.019) 20 0.07 (0.009) 50 0.10 (0.038) 212 
2003 0.06 (0.010) 43 0.05 (0.018) 8 0.03 (0.008) 18 0.03 (0.009) 17 0.05 (0.006) 86 
2004 0.14 (0.025) 37 0.09 (0.046) 7 0.13 (0.023) 16 0.01 (0.011) 4 0.13 (0.017) 64 
2005 0.06 (0.017) 37 0.09 (0.017) 33 0.17 (0.052) 23 0.07 (0.015) 35 0.09 (0.012) 128 
2006 0.03 (0.011) 12 0.09 (0.054) 12 0.02 (0.014) 8 0.03 (0.011) 13 0.04 (0.015) 45 
2007 0.08 (0.044) 9 0.03 (0.015) 18 0.00 (0.002) 4 0.03 (0.012) 6 0.04 (0.013) 37 
Total 0.08 (0.027) 302 0.07 (0.007) 182 0.07 (0.012) 122 0.06 (0.006) 164 0.07 (0.011) 770 

a T = number of data sets. 
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but was highest in hop yards assessed in Yakima Indian Reser-
vation for 5 of the 8 years. Mean disease incidence was lowest in 
yards in Oregon for 6 of the 8 years. 

For row level data sets, p̂  ranged from 0.001 to 0.9 and was 
positively skewed with mean 0.064 (se = 0.003) and median 0.013 
(Fig. 1A). The beta-binomial distribution parameter θ̂  ranged 
from 0 to 0.758 with mean 0.046 (se = 0.002) and median 0.01, 
indicating a low degree of aggregation (Fig. 1C). A log-likelihood 

ratio test indicated that the beta-binomial distribution provided a 
better fit to the data in 497 of 1,606 data sets (30.9%) than the 
binomial distribution. Similarly, D ranged from 0.4 to 9.17, with 
mean 1.34 (se = 0.015) and median 1.11 (Fig. 1E), and was 
significantly greater than 1 in 607 data sets (38.9%). 

The distribution of p̂ , θ̂ , and D also was positively skewed 
for yard-level data sets (Tables 1 and 2; Fig. 1B, D, and F). The 
distribution of p̂  ranged from 0.0003 to 0.73 with mean 0.054  

 

Fig. 2. Relationship between the logarithms of the observed variance and binomial variance for the incidence of hop powdery mildew on leaves sampled from
2000 to 2007 (A to H in ascending order). The solid line is the least squares regression fit to the data, and the dashed line is the line for a binomial distribution. 
Slope and intercept parameters are given in Table 4 for yard-level data sets. Data from 1999 are not presented since only one row (transect) was assessed per yard.
Solid circles are data sets collected in Oregon, and open circles are data sets collected in Washington. 
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Fig. 3. Relationship between the logarithms of the observed variance and binomial variance for the incidence of hop powdery mildew on leaves sampled from
2000 to 2007. Slope and intercept parameters are given in Table 3 for yard-level data sets. 

TABLE 4. Covariance analysis of the effect of cultivar and geographic region on intercept )ˆln( xA  and slope ( b̂ ) parameters of the binary power law for the 
incidence of hop powdery mildew on leaves sampled at the row level 

   )ˆln( xA  b̂  

Factor and year df modela df factora SSEb Diff.c Fd P SSE Diff. F P 

1999           
Power law 42  2.009 – – – 2.009 – – – 
Region 40 2 1.895 0.113 1.200 0.312 1.864 0.145 1.559 0.223 
Cultivar 39 3 2.004 0.005 0.031 0.992 1.986 0.023 0.153 0.927 

2000           
Power law 368  14.821 – – – 14.821 – – – 
Region 365 3 14.646 0.175 1.450 0.228 14.806 0.015 0.126 0.945 
Cultivar 365 3 14.697 0.124 1.027 0.381 14.779 0.042 0.346 0.792 

2001           
Power law 162  13.138 – – – 13.138 – – – 
Region 159 3 12.773 0.366 1.517 0.212 13.067 0.072 0.292 0.831 
Cultivar 159 3 13.055 0.084 0.341 0.796 13.037 0.101 0.411 0.745 

2002           
Power law 360  34.048 – – – 34.048 – – – 
Region 357 3 31.858 2.190 8.182 0.000 33.164 0.885 3.174 0.024 
Cultivar 358 2 32.748 1.300 7.106 0.001 33.444 0.605 3.235 0.040 

2003           
Power law 155  9.750 – – – 9.750 – – – 
Region 152 3 8.368 1.382 8.370 0.000 9.169 0.581 3.211 0.025 
Cultivar 153 2 8.790 0.960 8.356 0.000 9.389 0.361 2.937 0.056 

2004           
Power law 110  10.846 – – – 10.846 – – – 
Region 107 3 10.537 0.309 1.046 0.375 10.635 0.211 0.708 0.549 
Cultivar 108 2 10.296 0.550 2.885 0.060 10.730 0.116 0.582 0.560 

2005           
Power law 229  27.027 – – – 27.027 – – – 
Region 226 3 23.379 3.647 11.753 0.000 26.761 0.265 0.747 0.525 
Cultivar 227 2 26.507 0.520 2.226 0.110 26.992 0.034 0.144 0.866 

2006           
Power law 79  10.529 – – – 10.529 – – – 
Region 76 3 10.410 0.118 0.288 0.834 9.709 0.820 2.139 0.102 
Cultivar 77 2 10.269 0.260 0.974 0.382 10.418 0.111 0.409 0.666 

2007           
Power law 83  10.267 – – – 10.267 – – – 
Region 80 3 9.463 0.804 2.266 0.087 9.899 0.368 0.991 0.401 
Cultivar 82 1 9.748 0.519 4.368 0.040 10.250 0.018 0.140 0.709 

a df model = degrees of freedom for the model; df factor = degrees of freedom for factor. 
b SSE = sum of square error for the covariance model. 
c Diff. = difference between the SSE of the binary power law model versus the binary power law model with each factor included in the analyses first as an

intercept and then as a slope. 
d Significance level for the difference between SSE of the binary power law model versus binary power law model with each factor as determined by an F test, 

where F = (factor SSE/df factor)/(model SSE/df model). 
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(se = 0.003) and median 0.012. The parameter θ̂  ranged from 0 
to 0.862 with mean 0.046 (se = 0.002) and median 0.028, again 
indicating a low degree of aggregation of disease incidence. The 
mean θ̂  varied considerably among regions and years (Table 2), 
and trends in mean θ̂  over time were not apparent. The region 
where the greatest value of θ̂  was observed also varied among 
years, being highest in yards in Oregon for 5 of the 8 years. A log-
likelihood ratio test indicated the beta-binomial distribution fit 
425 of 770 data sets (55.2%) better than the binomial distribution. 
D ranged from 0.5 to 9.08 with mean 1.473 (se = 0.026) and 
median 1.25. D was significantly greater than 1 in 367 data sets 
(47.7%). 

Binary power law analyses. The binary power law provided a 
good fit to all data sets collected at the row and yard level, with R2 
values ranging from 0.933 to 0.993 (Table 3; Figs. 2 and 3). 
Comparison of the full data sets and data sets without singletons 
indicated that estimates of ln(Ax) and b did not differ significantly 
(P = 0.05). Therefore, herein results are presented only for the full 
data sets. 

At the row level, the intercept parameter ln(Ax) was >0 for 
years 1999 to 2005 (P < 0.0001) and 2007 (P = 0.005), but was 
not significantly greater than 0 in 2006 (P = 0.125). The slope 
parameter b was significantly greater than 1 for all row-level data 
sets collected from 1999 to 2005 (P = 0.05), indicating that 
heterogeneity changed systematically with disease incidence. 
However, in 2006, b was <1 (P = 0.005) indicating a more regular 
pattern (underdispersion) of disease. In 2007, b was not signifi-
cantly different from 1 (P = 0.540), indicating heterogeneity was 

not systematically related to disease incidence in this year. The 
factor ‘region’ significantly affected ln(Ax) (i.e., height of the line) 
in 2002, 2003, and 2005, and b in 2002 and 2003 (Table 4). 
‘Cultivar’ had a significant effect on ln(Ax) in 2002, 2003, and 
2007, and b in 2002. 

At the yard level, ln(Ax) was significantly greater than 0 for 
2000 to 2005 (P < 0.0001). In 2006 and 2007, ln(Ax) was not 
significantly different from 0 (P = 0.112 and 0.055, respectively), 
indicating a random pattern of disease incidence (Table 3). The 
slope parameter b was significantly greater than 1 for 2000 to 
2005, but was not significantly different from 1 in 2006 (P = 
0.598) and 2007 (P = 0.869). 

Covariance analysis of the binary power law models at the yard 
scale indicated that the factor cultivar significantly affected ln(Ax) 
in 2002, 2003, and 2004. ‘Cultivar’ also significantly affected b in 
2004. The factor ‘region’ affected ln(Ax) in 2002, 2003, and 2005 
(Table 5; Fig. 4). A covariance analysis of the effect ‘year’ 
indicated that this factor had a strong effect on ln(Ax) in both  
the row- and yard-level analysis (Table 6). ‘Year’ did not sig-
nificantly affect estimates of b at either scale in the covariance 
analysis. 

Sample size analyses. Typical fixed sampling curves were gen-
erated from equation 4 depicting that greater numbers of sampling 
units are needed to determine p (at a constant C) as p decreases 
(Fig. 5). The height of the sampling curves varied considerably 
depending on the year (2004 or 2006) or years (pooled data) from 
which a and b were selected. For C = 0.2, the differences between 
the sampling curves with parameters from 2004 and 2006 were 

TABLE 5. Covariance analysis of the effect of cultivar and geographic region on intercept ])ˆ(ln[ xA and slope ( b̂ ) parameters of the binary power law for the 
incidence of hop powdery mildew on leaves sampled at the yard level 

   )ˆln( xA  b̂  

Factor and year df modela df factora SSEb Diff.c Fd P SSE Diff. F P 

2000           
Power law 117  2.716 – – – 2.716 – – – 
Region 114 3 2.567 0.149 2.203 0.092 2.633 0.083 1.195 0.315 
Cultivar 114 3 2.658 0.058 0.835 0.477 2.673 0.043 0.610 0.610 

2001           
Power law 77  5.012 – – – 5.012 – – – 
Region 74 3 4.787 0.225 1.159 0.331 4.812 0.200 1.024 0.387 
Cultivar 74 3 4.796 0.216 1.108 0.351 4.770 0.242 1.249 0.298 

2002           
Power law 210  19.824 – – – 19.824 – – – 
Region 207 3 18.726 1.099 4.048 0.008 19.455 0.370 1.311 0.272 
Cultivar 208 2 19.219 0.605 3.274 0.040 19.542 0.283 1.505 0.225 

2003           
Power law 84  3.889 – – – 3.889 – – – 
Region 81 3 3.480 0.409 3.173 0.029 3.472 0.417 3.240 0.026 
Cultivar 82 2 3.331 0.557 6.859 0.002 3.688 0.200 2.225 0.115 

2004           
Power law 62  8.252 – – – 8.252 – – – 
Region 59 3 7.500 0.752 1.971 0.128 3.472 4.780 27.076 0.000 
Cultivar 60 2 4.887 3.365 20.652 0.000 3.688 4.564 37.120 0.000 

2005           
Power law 126  12.172 – – – 12.172 – – – 
Region 123 3 10.936 1.236 4.635 0.004 11.893 0.280 0.965 0.412 
Cultivar 124 2 11.844 0.329 1.722 0.183 12.000 0.173 0.893 0.412 

2006           
Power law 43  6.101 – – – 6.101 – – – 
Region 40 3 5.291 0.811 2.043 0.123 5.711 0.390 0.910 0.445 
Cultivar 41 2 5.936 0.166 0.572 0.569 5.982 0.119 0.409 0.667 

2007           
Power law 35  4.627 – – – 4.627 – – – 
Region 32 3 4.085 0.541 1.413 0.257 4.219 0.408 1.031 0.392 
Cultivar 34 1 4.267 0.360 2.866 0.100 4.597 0.029 0.217 0.644 

a df dev. = degrees of freedom for the model; df factor = degrees of freedom for factor. 
b SSE = sum of square error for the covariance model. 
c Diff. = difference between the SSE of the binary power law model versus the binary power law model with each factor included in the analyses first as an

intercept and then as a slope. 
d Significance level for the difference between SSE of the binary power law model versus binary power law model with each factor as determined by an F test, 

where F = (factor SSE/df factor)/(model SSE/df model). 
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nearly as great as the difference between the curve from 2004 and 
assuming a binomial distribution of disease incidence (Fig. 5A). 
Assuming p = 0.05, 0.1, or 0.2, the sampling curve with param-
eter estimates from 2004 indicated that 99, 53, or 26 sampling 
units, respectively, would be needed to estimate p with precision 
C = 0.2. With parameter estimates from 2006, 55, 26, or 12 
sampling units were required to estimate p at the specified level of 
precision. Assuming parameter estimates from 2004 represented 
the true heterogeneity of disease incidence, sampling 55, 26,  
and 12 sampling units when p = 0.05, 0.1, and 0.2 would result  
in an achieved C of 0.25, 0.27, and 0.28, respectively. There- 

fore, the specified precision of C = 0.2 would not be achieved 
(Fig. 5C). 

Similarly for sequential estimation, the stop lines varied de-
pending on the year from which binary power law parameters 
were selected (Fig. 5B and D). As expected, the stop lines gen-
erated with data from 2004 and 2000 to 2007 were higher than the 
stop line with a binomial distribution of disease incidence. The 
stop line with parameters from 2006 was slightly higher than the 
binomial stop line, and this difference was most pronounced at 
large N because the binary power law regression line for 2006 did 
not the cross the binomial line (Figs. 2G and 3). 

 

Fig. 4. Variability of mean values of the slope )ˆ(b  and intercept ])ˆ(ln[ xA parameters of the binary power law for the incidence of hop powdery mildew on leaves at
the scale of individual rows (A and C) or hop yards (B and D) over time and four production regions. The open boxes are mean values of parameter estimates for
each year. Only five rows were sampled from the Yakima Indian Reservation (YIR) in 1999, and one observation was identified as highly influential in the 
regression (Cook’s D = 2.715). When this observation is removed from the analysis b̂  = 2.038. 

TABLE 6. Covariance analysis of the effect of year on intercept ])ˆ(ln[ xA  and slope ( b̂ ) parameters of the binary power law for the incidence of hop powdery 
mildew on leaves 

   )ˆln( xA  b̂  

Factor and scale df SSEa df factora SSEb Diff.c Fd P SSE Diff. F P 

Row level           
Power law 1,604  157.950 – – – 157.950 – – – 
Year 1,596 8 144.267 13.683 18.921 0.000 156.959 0.991 1.259 0.261 

Yard level           
Power law 768  75.440 – – – 75.440 – – – 
Year 761 7 68.290 7.150 11.382 0.000 74.631 0.809 1.178 0.313 

a df SSE = degrees of freedom for the model sum of squares error; df factor = degrees of freedom for factor. 
b SSE = sum of squares error. 
c Diff. = difference between the SSE of the binary power law model versus the binary power law model with year included in the analysis. 
d Significance level for the difference between SSE of the binary power law model versus binary power law model with year as determined by an F test, where F = 

(factor SSE/df factor)/(model SSE/df model). 
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DISCUSSION 

The binary power law provides a convenient means to describe 
and quantify spatial patterns of disease incidence (18) and sum-
marize the spatial dynamics of disease over the course of an epi-
demic (8). This study provides quantification of the long term 
spatial and temporal stability of the binary power law parameters 
in a managed agroecosystem. Similar to previous reports (4,33) 
which utilized some of the same data, the incidence of powdery 
mildew on leaves was largely random at the row and yard scale as 
evidenced by relatively small values of θ̂ , D, and parameter 
estimates of the binary power law. 

Taylor and Woiwod (27) provided empirical evidence that vari-
ance and population density are systematically linked and 
spatially stable. Results of the covariance analysis for the 9 years 
of data in the current study indicated that b also is relatively 
constant with disease incidence data, similar to other studies with 
plant diseases (16,30,31). However, in many studies of spatial 
patterns of plant disease data sets often are collected over a period 
of 2 to 3 years for practical reasons, such as resource availability. 
In the case of hop powdery mildew on leaves, if one were to rely 
on the information gathered during 2006 and 2007, 2 years in 
which the parameters showed substantial variation compared with 
other years considered in this study, the binary power law param-

eter estimates and, perhaps, conclusions on processes associated 
with the observed patterns could be substantially different than 
data collected from, say, 2004 and 2005, or 1999 and 2000. 

Comparison of b (estimated at the yard level) in 2004 to years 
2006 and 2007 by t tests indicates that b was significantly greater 
in 2004 (t statistic = 4.52 and 3.97, respectively). Differences in b 
among years were large enough to have practical implications for 
sample sizes and precision of fixed and sequential sampling, with 
nearly twice as many sampling units being required to achieve the 
specified C depending on whether parameter estimates from 2004 
or 2006 were used to derive the fixed sampling curves. This dif-
ference would result in the greatest differences in sampling costs 
when p is small (less than 0.1), which typically is where sampling 
would be needed most to determine the need for a control 
measure with a polycyclic disease (18). Differences in sample 
size and costs also would be most pronounced with sequential 
sampling when disease incidence was low. These results reinforce 
the need for proper validation of a sampling plan over a range of 
disease incidence, cultivar, and geographic regions to ensure the 
sampling plan performs as designed (1). 

Similar to other studies with count data (26,29), the intercept 
parameter of the binary power law did vary significantly among 
years. Covariance analysis indicated that ln(Ax) varied among 
regions and cultivars in 3 of 9 years and 3 of 8 years in the row- 

 

Fig. 5. A, Sample size required to estimate the incidence ( p̂ ) of hop leaves with powdery mildew based on parameter estimates of the binary power law derived
from yard-level analyses from pooled data from 2000 to 2007 (solid line), 2004 (dot dash), and 2006 (short dash) with coefficient of variation of the mean C = 0.2. 
The sampling curve for a binomial distribution is presented for reference as a dotted line. B, Sequential estimation stop lines with binary power law parameter 
from pooled data from 2000 to 2007, 2004, or 2006 with C = 0.2. C, Fixed sampling curves with binary power law parameters from 2004 with C = 0.2 and 0.3 and 
2006 with C = 0.2. D, Mean disease incidence at critical TN (the point where the cumulative number of diseased leaves crosses the model TN curve in B) in relation 
to number of sampling units (N). 
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and yard-level analyses. The factors that affected parameter esti-
mates did vary somewhat between the row- and yard-level scales. 
Row-level parameter estimates also tended to have small standard 
errors, which were expected because of the greater number of 
data sets available for the analysis. However, inclusion of single-
ton data sets did not affect parameter estimates at the row or yard 
level. Such data sets may affect parameter estimates when few 
data sets are used, but were not important with the sample sizes 
used in this study. 

Results of this study lead to several recommendations for the 
use of the power law. First, although it is desirable to have 
multiple years of data to estimate the parameters of the power 
law, it is recognized that only 2 or 3 years of data may be avail-
able. Therefore, the parameters should be estimated from the 
combined data set. Second, a statistically significant year factor 
should not be looked at as unfavorable but rather as part of the 
variability that is expected in a complex system. Third, it would 
be prudent to reassess sampling plans in agricultural systems 
periodically over time given that cultivars, disease management 
programs, and other factors may change. Agricultural systems are 
often the subject of abrupt changes, such as introductions of new 
cultivars or fungicide programs, which could impact the spatial 
dynamic of the pathogen or disease under study. 

An interesting question that arises in association with the col-
lection of new data is, should the new spatial data be added to or 
analyzed separately from older data? As long as the data are 
collected in the same manner, there would be no statistical reason 
not to join data sets, thus, the first inclination would be to 
ultimately join the data sets. However, it is important to carefully 
scrutinize how a particular subset may differ from the full data set 
and to note the effect of outliers and high influence observations 
on parameter estimates derived from the smaller subsets com-
pared to the full data set. This is particularly important since 
differences in parameter estimates may significantly alter the 
number of sampling units needed to achieve a desired level of 
precision (3–5,15). A reasonable approach may be that if a given 
factor is manageable (e.g., cultivar), then its effect should be in-
cluded in the overall model if it is found that the effect is not due 
to highly influential or outlying data points. If the effect is un-
manageable (e.g., year), the factor should not be included in the 
full model and parameters estimates will simply average the effect 
and lead to larger standard errors of the parameters. 

This research demonstrated that although the binary power law 
parameter tends to be relatively stable, spatial and temporal vari-
ability of parameters may have practical consequences for samp-
ling. Collection of data sets collected over multiple geographic 
locations, years, and a range of disease incidence may be needed 
to observe the range of a and b in managed agricultural systems. 
Such data sets also would be robust to rare observations and 
improve the power of covariance analysis. 
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