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Developments in crop insect 
pest detection techniques
Richard W. Mankin, USDA-ARS, USA

1  Introduction

To meet the challenges agriculture faces now on a planet buffeted by climate 
change (Skendžić et al., 2021) requires organized efforts across its production 
and research sectors (Botha et al., 2014; Xia et al., 2022) to minimize food 
scarcity and reduce environmental and human health impacts (Frye et al., 
2012) while conserving dwindling resources (Jordon et al., 2021). Part of this 
effort involves early detection and identification of targeted pests (Fedor et al., 
2009; Lima et al., 2020) to avoid increases in pre- and post-harvest losses and 
economic harm expected from global warming (Deutsch et al., 2018). Problems 
of food scarcity are exacerbated because humans have higher metabolic rates 
than most animals of the same size (Gibbons, 2022) and thus must consume 
relatively more high-energy food.

An ideal insect-detection system for integrated pest management (IPM) 
accurately identifies and spatially targets pests early in their life cycles (Thenmozhi 
and Reddy, 2019; Liu and Wang, 2020) and is affordable relative to the value of 
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the crop being protected, especially when considering the economic needs of 
the farmer, the impacts of management practices on neighboring and regional 
farms, and regulatory requirements at local and regional levels (Dara, 2019; 
Singerman and Rogers, 2020). Because cropland management units have 
different sizes, the distances over which insect pests are detected by a particular 
technology can affect their relevance to the data collection needs of farmers 
and pest managers, as well as government officials who have responsibility for 
regulatory and conservation oversight in regions adjacent to the croplands. 
There remains a considerable need for research on conservation in landscape 
habitats surrounding crops (Karp et al., 2018), especially with respect to edge 
effects in fragmented habitats (Laurance et al., 2018). A better understanding of 
predator and parasitoid abundance and behavior in such areas can help resolve 
uncertainties about best management practices. Fortunately, as discussed in 
different sections later, growers and pest managers have access to increasingly 
affordable, complementary insect-detection technologies, i.e. physical- and 
biochemical-energy detection tools augmented by artificial intelligence (AI) 
(Partel et al., 2019; Cheng et al., 2022) that makes use of machine learning 
and deep learning methods (LeCun et al., 2015; Karar et al., 2021; Roch 
et al., 2021) incorporating convolutional neural networks (Thenmozhi and 
Reddy, 2019; Spiesman et al., 2021) to quickly recognize patterns in images, 
acoustic recordings, and other detected signals which enable identification 
of pest insects. For purposes of this chapter, applications of complementary 
technologies to insect detection in agriculture first became available with the 
development of remote visual and radar sensing after the 1940s (Riley, 1989; 
Reynolds et al. 2005) and accelerated after 1983 when the Global Positioning 
System was made available for public use (Comparetti, 2011).

Traditional field surveys of pest insects by farmers and scouts, as well as 
observations of search activities by insect predators and parasitoids that can 
serve as survey proxies, are being combined with input from recently developed 
insect behavioral and sensory detection technology, computer-based pest 
identification, and rapidly improving knowledge of pest-insect host-seeking 
and feeding behaviors to enhance the effectiveness of pest management 
activities (Table 1). An example of such combinations is the inclusion of 
electronic sensors in pheromone traps. Pheromones and other semiochemicals 
such as kairomones, allomones, and antifeedants (Norin, 2007; Murali-Baskaran 
et al., 2018) are volatile organic chemicals (VOCs) or contact chemicals 
which influence behaviors of insects and other animals that sense them. 
Physiological correlates of such behaviors have been explored by examining 
neurophysiological signals in the insect central nervous systems antennae, 
eyes, and mechanoreceptor sensory organs. Of particular interest with  
respect to insect behavior, electroantennograms (EAGs) (Olsson and Hansson, 
2013; Martinez et al., 2014) detect insect antennal electronic responses to  
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volatiles. Electroretinograms (ERGs) (Yinon, 1971; Stowasser et al., 2015) detect 
retinal electronic responses to light of different wavelengths. Mechanoreceptors 
(Tuthill and Wilson, 2016) detect substrate vibrations and insect movements.

The combined usage of traditional methods and complementary 
technology is expanding rapidly. Attractant-baited ‘smart’ automated traps 
(Jiang et al., 2008) are now easily fitted with digital red/green/blue ((RGB) 
wavelength) cameras and piezoelectric or fiber optic acoustic/vibration sensor 
systems that enable rapid wireless transmission of information to remote data 
sites. Internet of things (IoT) technology (Potamitis et al., 2017; Rigakis et al., 
2021a) connects and analyzes information collected by these sensor networks, 
enabling rapid processing and delivery of the sensor data back to farmers and 
other pest managers (Karar et al., 2022). The data they collect can be organized 
into easily interpreted formats that are superimposed on real-world displays, 
i.e. augmented reality (Huuskonen and Oksanen, 2018), helping farmers and 
managers interpret the data collected. Other technologies are used primarily in 
research at this time but may be adapted for field use in the future.

Typical detection ranges of traditional methods and complementary 
technology can be subdivided spatially along nano-, micro-, meso-, and macro-
scales (Table 2). Nano-scale technology utilizes multiple biochemical tools and 
nanobionic sensors (Ang and Lew, 2022) operating internally in insect organs, 
including genetic marker-based analyses which can help distinguish among 
strains of a pest insect species that have similar morphologies but different 
host preferences and different levels of pesticide resistance, e.g. Nagoshi et al. 
(2017). Detection ranges in the micro-scale region include those of visual, 
auditory, vibrational, and olfactory sense organs which operate from a few 
millimeters to a few meters distance from the pest insect. In this range, sensors 
can be used for the detection of insects on individual crop plants or trees.

Several methods used to detect crop insect pests in the micro-scale range 
also have been applied in the detection of fruit damage during harvesting and 
later stages of the food supply chain (Mahanti et al., 2022). Such technologies 
have also been applied to assess the structural characteristics and health of 
plants (Mankin et al., 2018) and to detect disease vectors like mosquitoes or 
pollinators through wingbeat detection (Chen et al., 2014; Jakhete et al., 2017).

The meso-scale (Table 2) corresponds to the detection range of several 
radars, typically 2.5 km for individual insects or up to 10 km or more for insect 
swarms at dense concentrations (Riley, 1989). Vertical-entomological radars are 
regularly monitored in the United Kingdom (Chapman et al., 2010; Hu et al., 
2016) to determine the timing and sizes of large-scale migrations. Meso-scale 
technology also includes weather radar, which Stepanian et  al. (2020) used 
to detect airborne mayfly swarms. Drones and small airplanes with digital 
cameras are deployed to detect insects or insect-initiated damage over meso-
scale ranges and, depending on height, can detect 1–10 cm-width objects 
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on the ground (Huuskonen and Oksanen, 2018; Iost Filho et al., 2020). Lidar 
(Brydegaard and Jansson, 2019; Tauc et al., 2019) and similar devices using 
near-infrared light-emitting diodes (LEDs) (Rydhmer et al., 2022) operate at 
micro- and meso-scale detection ranges. The LED systems can be used as 
pseudo-acoustic sensors to reflect light from the wings of flying insects and 
analyze the time-varying reflections from beating wings (Chen et. al., 2014; 
Rydhmer et al., 2022). These have become useful tools for electronically 
collecting information from pheromone traps (Table 1).

The macro-scale encompasses landscapes that can be examined by 
satellites, which resolve objects on the ground with dimensions of 30 m 
(Huuskonen and Oksanen, 2018; Bright et al., 2020). Insects cannot be 
individually resolved at this scale, but satellites provide a series of Landsat 
images of specific regions that can be analyzed to identify areas of crops 
impacted by insect damage (Bright et al., 2020). Meso- and macro-scale 
technologies are two of the several methods for the remote detection of insect 
pests Riley (1989).

Traditional methods of insect monitoring continue as important pest 
management tools (Tables 1 and 2), but the accuracy of population forecasts 
is often dependent on dwindling expert knowledge (Zhang et al, 2019; Furuya 
et al., 2021). Farming operations could benefit from additional data obtained 
using newer insect-detection, AI, and IoT technologies (Osco et al., 2022) 
although concerns over ownership (Yu et al., 2021) and security (Alahmadi 
et al., 2022) of obtained data remain to be clarified. Moreover, traditionally 
developed knowledge of VOCs, visual, and auditory stimuli that affect feeding 
and mating behaviors of crop pests has been applied to augment pest control 
measures (Foster and Harris, 1997; Čokl and Millar, 2009; Davis et al., 2013; Silva 
et al., 2021). Recent improvements in technologies associated with formulation 
and dissemination of VOCs, and additionally, technologies associated 
with molecular biology, nanobionics, electronics, acoustics, and computer 
technology have benefited understanding of how pest insects detect and use 
VOCs and vibrational signals, and how these stimuli can be co-opted for pest 
management. Examples of recent applications of such technology are listed in 
Table 3. It should be noted for the last entry of Table 3, however, that care must 
be exercised in the broadcasting of sounds that disrupt mating to ensure that 
the signals remain below levels of urban noise pollution implicated as one of 
the potential causes for declines in nonpest invertebrate populations (Goulson, 
2019; Raboin, 2021).

This chapter is arranged approximately according to sensory modality 
(visual, acoustic, vibration, olfaction, etc.) with consideration of how each 
modality is used in insect pest detection and management activities at different 
scales of detection.
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2  Camera systems for pest detection at micro-scale 
ranges

Moth pheromone traps were initially expected to selectively capture a single 
species, but experience demonstrated that some pheromones captured insects 
of multiple, closely related species depending on the geographical region. 
Camera systems were later incorporated to send images of trapped insects 
to remote locations where individuals of each caught species were identified 
and counted by computer analyses or by human identification (Guarnieri et al., 
2011). However, it became apparent that fully automated approaches were 
needed to discriminate among the large numbers of different species captured 
in multiple regions where trapping was used as a detection tool. In addition, 
general scouting operations could benefit from the automated identification 
of insects photographed during surveys. Consequently, collections of multiple 
datasets with large numbers of images of different insect species and stages, 
including the Indian Council of Agricultural Research and the National Bureau 
of Agricultural Insect Resources dataset (Karar et al., 2021) were analyzed for 
specific features to distinguish among species. Machine learning algorithms 
were developed (Karar et al., 2021) that identified images of important insect 
crop pests independently of orientation (Deng et al., 2018: Thenmozhi and 
Reddy, 2019). Similar collections were developed for other pests worldwide, 

Table 3 Examples of complementary technology in pest management activities that involve 
sensing and/or co-opting of stimuli used by pest insects for communication

Technology/Application References

Enhanced use of volatile organic chemicals for pest 
insect mating disruption

Miller and Gut (2015); Preti et al. 
(2021); Higbee and Burks (2021); 
Gavara et al. (2022)

Seasonal monitoring of regional nonpest species 
co-attracted to pheromone traps detecting Plusiine 
pests

Shaw et al. (2021)

Kairomones for biological control Martini et al. (2014); Murali-Baskaran 
et al. (2018); Da Silva et al. (2022)

Kairomone-enhanced pheromone lures Walgenbach et al. (2021)

Floral scent real-time sampling Kim et al. (2022); Zheng and Zhang 
(2022)

Electroantennograms and single olfactory cell 
recordings to determine the temporal patterns of 
emission and active spaces of natural or synthetically 
produced volatile organic chemicals

Mayer et al. (1987); Suckling et al. 
(2007); Mankin et al. (1991); Yang 
et al. (2022)

Broadcast of sound or vibrations for insect pest mating 
disruption

Polajnar, et al. (2015); Lujo, et al. 
(2016); Laumann et al. (2018); 
Takanashi et al. (2019); Mazzoni et al. 
(2019); Avosani et al. (2022)
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including VisDrone-VDT2018 with 80 000 drone-collected images of insect 
pests (Zhu et al., 2019), PlantDiseaseNet, with 79 275 pest images collected 
under various meteorological conditions (Liu and Wang, 2020), IP102 (Wu 
et al., 2019), with 75 000 images belonging to 102 pest categories, Xie2 (Xie 
et al., 2018) with 4000 images of different pest species, and APHID-4K with 
4000 images of aphids (Du et al., 2021), who also developed machine learning 
methods to detect images of aphid clusters. The individual aphids could not 
be distinguished from each other due to the limited resolution of the camera. 
Kasinathan et  al. (2021) combined several machine learning techniques to 
classify and detect insects in digital camera images collected in corn, soybean, 
and wheat fields.

Deep learning methods usually require access to more data than machine 
learning due to a larger number of neural network layers that must be calibrated. 
However, they have been used successfully with several of the largest data sets 
above to classify crop insect pest species. Li et al. (2021), for example, describe 
the use of deep learning methods to analyze images collected from immatures 
and adults of ten crop pest species obtained from Bing, Pest24, TPest, and 
AgriPest.

Several camera-based pest insect detection systems are listed in Table 1. 
When applying such technology to insect detection, there is a need to recognize 
the variability of insect morphological characteristics of the same species in 
different orientations at different life stages. When trapped insects are imaged, 
discoloration by liquid trapping agents, loss of legs, insect clumping, and debris 
introduce specific features that cannot be incorporated into the identification 
process unless such images are also included in the training dataset (Nanni 
et al., 2022).

Complementary technologies that have been tested but are not yet in 
common usage include a guarded electrical probe developed by Thomas et al. 
(2021) to measure electrical impedance. The device was used in experiments 
to noninvasively identify stalks of maize, Zea mays L., that had been partially 
hollowed out by Ostrinia nubilalis Hübner (Lepidoptera: Pyralidae) larvae. In an 
earlier approach, Labatte et al. (1992) applied X-ray imaging methods to map 
cavities produced within maize plants by O. nubilalis feeding behaviors.

3  Drone/camera systems for pest detection at meso-
scale detection ranges

Uses of small drones for IPM in a variety of crop pest insect applications 
are reviewed by Iost Filho (2020). Drone systems are particularly useful for 
preparing digital maps of pest insect ‘hot spots’ that can be precisely targeted 
for treatment. One example of RGB-camera-based technology to detect crop 
insect pests (Kalischuk et al., 2019) involved assessments of insect pest damage 
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that caused increases in plant disease severity and plant stress. Testing was 
conducted in watermelon fields comprising 15–38 ha, using DJI Z3 digital 
camera operated from a Matrice 100 quadcopter drone (Da-Jiang Innovations 
Science and Technology Co., Shenzhen, China).

4  Landsat systems for detection of pests at macro-scale 
detection ranges

Landsat satellite technology has been in operation since 1984, providing the 
capability for long-term analyses of changes in forest coverage over time (e.g. 
Senf et al., 2017). Multiple image processing algorithms have been developed 
to make the data for such analyses easily accessible to researchers (Kennedy 
et al., 2018). Because crop insect pests are not large enough to be directly 
detectable at Landsat-scale detection ranges, this technology is not yet widely 
used by farmers and researchers, although there is potential that future 
generations of Landsat satellite cameras with higher resolution may enable 
development of such capabilities.

5  Sound- and vibration-sensors for pest detection

In cropland environments, the weak sounds and vibrations produced by insects 
in air, soil, or plant tissues are embedded in soundscapes (Pijanowski et al., 
2011) and vibroscapes (Šturm et al., 2022) containing varying levels of human-
produced background noise, often more audible than the pests targeted for 
detection. Insects that produce sufficiently audible airborne sounds are easily 
recorded by currently available, portable passive acoustic monitoring (PAM) 
systems (Sugai et al., 2020). Acoustic signal analyses and machine learning 
toolkits have been developed to process the recorded signals, filter out 
background noise, and identify important features by which different sound-
producing animals and insects can be compared. Ulloa et al. (2021) developed a 
toolkit that can scan large audio datasets and find regions of interest containing 
specific features that are user-programmable. Wu et  al. (2022) developed a 
kit that contains features and sounds collected from multiple PAM databases 
to which the user can compare their own acoustic signals. Roch et al. (2021) 
reviewed supervised and unsupervised forms of machine learning that are most 
widely used to identify features of relevance to bioacoustics, oceanography, 
and music.

When targeted insect pests move and feed in soil, plant tissue, or other 
opaque substrates, the effects of airborne background noise can be reduced 
by connecting customized piezoelectric attachments or waveguides directly 
to the substrates (Mankin et al., 2011; Rigakis et al., 2021a). A similar effect 
occurs when pest-generated vibrations inside a tree are transferred onto 
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a substrate such as an optical fiber that is wrapped around the tree trunk 
(Ashry et al., 2020). Vibrations produced by insect larvae as they move and 
feed inside a tree intermittently alter the effective refractive index of fiber 
wrapped around the tree and, when optical pulses are transmitted at one end 
of the fiber, the Rayleigh backscattered traces of the pulses show intermittent 
intensity fluctuations (speckles) that can be monitored and interpreted. Also, 
the behavior of sapsucking hemipteran insects can be detected by means of 
electrical penetration graphs, which can be used to guide the development of 
treatments that reduce feeding (Maluta et al., 2022) or identify mechanisms of 
plant resistance (Willet et al., 2016; Mercer et al., 2021).

Air- and substrate-borne signals collected at both meso- and micro-scale 
ranges typically are processed further to reduce background noise (Mankin 
et al., 2021). As with camera-produced images, machine learning or similar 
automated analysis tools (Romano et al., 2013; Jordan and Mitchell, 2015; 
Phung et al., 2017; Dong et al., 2018; Rathore et al., 2019; Bianco et al., 2019; 
Roch et al., 2021) can be applied to identify and compare salient features of 
the collected signals, including bursts of impulses from sliding, tapping, and 
snapping behaviors that distinguish between pest and nonpest insect larvae 
and also discard background noise (Mankin et al., 2008a,b). The behaviors of 
adult hemipteran pests that transmit vibrational signals along stems or tree 
branches can be monitored using vibration sensors assisted by traditional 
and machine-learning-based signal processing methods (Mankin et al., 
2020b). In addition, the capability to disrupt mating communications has been 
demonstrated in multiple insect species that utilize vibrational signals during 
mating (Lujo et al., 2016; Zaffaroni Caorsi et al., 2021). The use of sensors that 
detect airborne or vibrational signals has been enhanced by the concomitant 
development of inexpensive amplifiers and user-friendly computer interfaces 
(Mankin et al., 2009a,b, 2010; Potamitis et al., 2009 Potamitis, 2013; Potamitis 
and Rigakis, 2014).

The instrument used most frequently to record insect vibrational signals 
in field environments before 2020, the AED-2010 (AEC, Inc. Fair Oaks, CA, 
USA), ceased production in 2019. Current replacements include Tree Vibes 
(Insectronics, Crete, Greece), used for detection of insect pests in trees (Rigakis 
et al., 2021a; Karar et al., 2022) and stored products (Mankin et al., 2021), and 
the Postharvest Insect Detection System (Custom Engineered Solutions, W 
Hempstead, NY, USA), used for stored product insect detection Mankin et al. 
(2020a). Other potential pest insect detection devices for which no scientific 
reports are yet available are listed in Table 4. Background information about 
the pseudo-acoustic sensor and signal processing technology used for the 
FarmSense device is provided in the studies by Batista et al. (2010), Katzanek 
(2020), and Mercer et al. (2021).
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It should be noted that several of the systems described earlier, including 
the Smart Palm system for the detection of Rhynchophorus ferrugineus (Olivier; 
Coleoptera: Dryophthoridae) larval vibrations in trees (Koubaa et al., 2020), 
also employ sensors that detect temperature, humidity, and pH in addition to 
vibration and sound. Such sensors provide additional, cost-effective information 
to farmers and pest managers, which can enable ‘smart farming’ (De Alwis et al., 
2022) technologies to play a broader role in agriculture in the future.

6  Case studies: augmenting traditional pest detection 
and biological control with nano-scale- and micro-
scale-sensor technologies

Combinations of traditional pest management methods and complementary 
technologies can provide broadscale sensing tools which improve 
understanding of pest behavior over macro- to nano-scale detection ranges 
(Table 2). An example is the macro-scale modeling of yearly migrations of 
multiple strains of Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae) 
within North America. Early generations are first seen in overwintering areas 
in southern Texas and Florida. In late winter, first and later generations follow 
warming temperatures and prevailing winds through spring and summer, 
causing crop damage in locations as far north as Canada (Westbrook et al., 
2019). Two strains of S. frugiperda have been identified, one found primarily 
on grasses, including rice, and one primarily on corn (Nagoshi et al., 2007b). 
Adults captured by pheromone traps were tested by genetic marker analysis 
to distinguish between rice and corn strains. The corn strains were subdivided 
further into four haplotype subgroups using cytochrome C oxidase subunit I 
markers and single nucleotide polymorphisms (Nagoshi et al., 2007a, 2017), 
sensing in the nano-scale detection range (Table 2). The combinations of 
such technologies in the study provided fine-grained information about the 
migration pathways of each strain for geostatistical dispersal models that 
Westbrook et al. (2019) developed to predict the magnitudes and times of pest 
dispersal. It should be noted also that plots of insect population distributions 
obtained by Spatial Analyses by Distance Indices and other geostatistical 
analyses can similarly provide important information for targeting crop pest 
infestations (Mankin et al., 2007).

Traditional biological control efforts also benefit from the complementary 
use of ERG and EAG electrophysiological tools, as well as three-dimensional 
printing of specially designed visual and pheromone traps to improve 
understanding of how insect pests employ visual and chemical cues to orient 
to their host crops. Combined behavioral and electrophysiological studies of a 
devastating citrus pest, Diaphorini citri (Hemiptera: Liviidae) (Allan et al., 2020), 
have enabled a better understanding of D. citri attraction to differently colored 
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sticky traps, for example. It was determined that traps coated with magnesium 
oxide and/or barium sulfate were more attractive due to the attraction of D. citri 
to ultraviolet light, which is strongly reflected by such coatings (George et al., 
2020). Diaphorina citri orientation to light was affected by both wavelength 
and polarization (Paris et al., 2017). George et al. (2016) discovered also that 
two degradation products of citrus tree VOCs, formic and acetic acid, play a 
role in D. citri attraction to host trees. Similarly, using EAG methods, Yang et al. 
(2019) identified four highly active VOCs produced by soybean (Glycine max 
(L) Merrill. and kudzu (Pueratia montana (Lour.) Merr. var. Lobata (Willd.) plants 
that were strongly attractive to the invasive Kudzu bug, Megacopta cribraria 
(Fabricius) (Hemiptera: Platispidae) in olfactometer bioassays. Additional 
studies of insect pests physiological and behavioral responses may lead to 
further improvements in trapping systems.

Three-dimensional-printed traps have been developed to improve the 
detection of the bacterium causing huanglongbing (citrus greening disease, 
HLB) that causes the death of citrus trees (Singerman and Rogers, 2020). The 
bacterium is vectored by an invasive citrus pest, D. citri Kuyayama (Hemiptera: 
Liviidae). Diaphorina citri were trapped in laboratory, greenhouse, and field 
environments (Snyder et al., 2022) by three-dimensional traps that contain a 
liquid preservative which does not quickly degrade the disease pathogen. Such 
traps not only detect the presence of D. citri in citrus groves but also determine 
whether they are vectors of the bacterium that produces HLB. Management 
of citrus in areas where HLB is not yet endemic is strongly dependent on how 
rapidly the disease is spread. The three-dimensional traps can be printed and 
deployed rapidly to monitor quickly the spread of HLB in a small area and 
remove infected trees.

For silverleaf whitefly, Bemisia tabaci (Biotype B) (Gennadius) (Hemiptera: 
Aleyrodidae) and other pests that have developed increased resistance to 
insect growth regulators and neonicotinoids (Dennehy et al., 2010; Perring 
et al., 2018), there is a need to maintain the presence of predators, parasitoids, 
and other ecosystem services that would normally reduce pest populations 
(Bradshaw et al., 2021). Areas with high insecticide usage would benefit from 
improved habitat manipulation and other biological control techniques to 
reduce economic losses (Naranjo, 2001). ‘Push-pull’ strategies have been 
tested in different ecological contexts, some of which yielded successful 
results (Oji and Mohamed, 2005; Li et al., 2014). Habitat manipulation and 
ecosystem engineering (Zhong et al., 2022) that provide or eliminate visual 
and olfactory cues could facilitate improvements in ‘push-pull’ effectiveness 
(Potting et al., 2005), and improved VOC technology and behavioral bioassays 
have fostered such progress. Recently, mustard plants and oils were found 
to repel B. tabaci (Legaspi et al., 2016) and thus could be used as part of a 
‘push-pull’ strategy welcomed by organic crops growers (Allan 2018; Khan 
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et al., 2014a,b; Tyler-Julian et al., 2018). Plant surface repellency combined 
with VOC repellency has been successful against B. tabaci in studies applying 
limonene-scented kaolin to tomato crops (Johnston et al., 2022). Natural 
enemy refuges have been of continued interest for biological control in 
studies such as those by Corbett and Rosenheim (1996), Meagher et al. (2019), 
Juliano and Gratton (2020), and Clem and Harmon-Threatt (2021). Increased 
technological capability to monitor populations of natural enemies in refuges 
can benefit refuge maintenance efforts. Mechanical barriers such as exclusion 
screening to keep crop plants free of specific insect pests have been cost-
effective where a few pests can vector diseases over large areas (Ebert et al., 
2020) and may be used increasingly in areas where the plants would benefit 
from reductions in solar radiation or increases in relative humidity (Mahmood 
et al., 2018). Crops within such exclusion barriers benefit from traditional or 
complementary methods of detecting pest insects that may have evaded 
barriers to entry.

A recent focus in biological control is the development of a better 
understanding of the effects of host-associated differentiation (HAD) of pest 
strains or biotypes on their natural enemies (Thompson et al., 2022). A crop 
pest may experience HAD when it begins to mate preferentially on a particular 
host crop, recognizing highly specific tactile, olfactory, and taste cues of the 
host. Advances in knowledge of chemical cues that affect natural enemy 
foraging behavior have led to the recognition that, when crop pests evolve 
through HAD, their natural enemies may be affected in ways that cause them 
to exhibit HAD as well (Harrison et al., 2022). The adaptation process may be 
more rapid than previously thought, as recent studies have demonstrated that 
continuous adaptation to rapid environmental change occurs in Drosophila 
melanogaster Meigen (Diptera: Drosophilidae) (Rudman et al., 2022), which 
has a relatively short 10-day generation time. Better knowledge of HAD and 
the associated differences that occur in herbivore-induced plant volatiles 
(HIPVs) can help researchers select natural enemies that target the insect 
pest more precisely. Technological improvements in the detection, analysis, 
and manipulation of HIPVs thus are assisting the process of selecting natural 
enemies with greater capacity to reduce pest insect populations (Stelinski 
et al., 2019).

7  Conclusion

Physical energies and processes that can be used to detect pest insects in 
agricultural settings include electromagnetic energy (light, infrared, radar, 
etc.), sound and vibration energy, and biochemical reactions and syntheses. 
All of these are used singly and in combination to complement traditional 
information from human sensory modalities of vision, audition, touch and 
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vibration, olfaction, and taste. Examples of modern sensor technology are 
described that enable pest insect detection over a greater range (scale) of 
distances, often with greater precision than human sensory systems provide. 
The use of electronic sensors also enables real-time data collection, storage, 
and analyses by computer systems. Machine learning and deep learning 
software algorithms have been developed that enable the identification and 
use of important features of the detected signals to precisely identify pests 
and distinguish pest species from each other. A goal is to target applications 
of control treatments to locations where the pest insects are present, thereby 
reducing treatment costs and reducing harm to nontarget organisms. The costs 
of purchasing and using the new technology in agricultural environments are 
decreasing, especially when sensors that detect temperature, humidity, pH, 
and other environmental conditions important to crops are included together 
in systems that relay information to farmers and managers. In addition, 
enhanced knowledge of pest distributions obtained from the use of these 
sensors enables more effective use of ‘push-pull’ technologies and other 
biological control methods.

8  Future trends in research

Deep learning is not the ‘Amulet of Yendor,’ but much of the upcoming effort 
to distinguish among insect species by use of data stored as images, sounds, 
and/or vibrations is likely to apply deep learning or similar methods to assist 
in crop insect pest detection unless they are quickly supplanted by even more 
precise methods. If such methods are developed, they are likely to incorporate 
signal features that entomologists have already identified to be singularly 
important for pest identification. Exclusion screening or screenhouses may 
become more important in regions that have become hotter and drier due 
to climate change, especially if the excluded insects are important pests or 
vectors of plant disease and have become resistant to pesticides. Out of sight 
out of mind, soil invertebrates may slowly gain in interest to pest managers, 
as their significant roles in crop ecosystems become more apparent (Johnson 
et al., 2007; Inyang et al., 2019; Veen et al., 2019; Helmberger et al., 2022 
Mankin, 2022).

Finally, the arms race between crop insect pest resistance and pesticide 
manufacturer ingenuity is likely to continue, as noted by Sparks et al. (2019), 
complicated by the effects of climate change that may benefit the pests while 
harming crops and increasing farmer costs of controlling and monitoring pests 
with higher metabolic rates (Deutsch et al., 2018; Skendžić et al., 2021). A 
standoff is the most likely result, although an improved understanding of the 
bioactivity of commercially developed insecticides and natural products may 
tip the balance in favor of the farmer.
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Table 5 Locations of crop pest detection research centers by region

Region Institution References

Europe

 Slovenia Univ. Ljubljana, Slovenia Virant-Doberlet et al. (2019)

 Greece Hellenic Mediterranean Univ., Chania, 
Crete; Univ. West Attica, Athens, Greece

Potamitis et al. (2019); Rigakis 
et al. (2021b)

 Italy Univ. Trento, Italy Avosani et al. (2021)

 Switzerland ETH, Zurich Maeder et al. (2022)

 France CNRS, Paris Šturm et al. (2022)

 Germany, UK Hoch. Geisenheim Univ. Geisenheim; 
Univ. York, York; Oxford Univ., Oxford

Görres and Chesmore (2019); 
Mortimer (2019)

North America

(Western to UCLA, Los Angeles, CA Montgomery et al. (2021)

Eastern centers) USDA, Parlier, CA; Adair, OK Higbee and Burks (2021)

UC Riverside, CA, Univ. BC, Vancouver, 
Canada, Northern Ariz. Univ., Flagstaff, 
AZ, Univ.; Canterbury, NZ

Liao et al. (2022)Bedoya et al. 
(2021)

U. Missouri, Columbia, MO Kollasch et al. (2020)

Univ. Toronto, Toronto, ON; NAFRO, 
Tsukuba, Japan

Nakano and Mason (2018)

Carleton, Univ., Ottawa, ON Low et al. (2021)

USDA, Gainesville, FL; FAMU, 
Tallahassee, FL

Inyang et al. (2019)

Argonne Nat. Lab., Binghamton, NY; 
Cornell Univ., Ithaca, NY

Zhou et al. (2022)

Stevens Inst., Hoboken, NY Sutin et al. (2019)

South America EMBRAPA, Sao Paulo, Brazil Laumann et al. (2018)

Asia

 India Janta Vedic College, Baraut, India Banga et al. (2020)

 Sri Lanka Rinzen Lab., Rattanapitya, Sri Lanka Siriwardena et al. (2010)

 Australia Macquarie Univ., Sydney, AU; La Trobe, 
Univ., Melbourne, AU

Wignall and Taylor (2011); 
Lubanga et al. (2021)

 New Zealand Massey Univ., Auckland, NZ Wignall and Herberstein 
(2022)

 Japan NAFRO, Hiroshima; Kyoto Univ. Kyoto Kawakita and Ichikawa (2019)

 China Shaanxi Normal Univ. Xi’an; Chinese 
Acad. Sci, Beijing

Sun et al. (2018); Wu et al. 
(2022)

While looking forward, it is worthwhile to think back 50 years to the 
partially fulfilled promise of the Green Revolution (Vandervoet, 2022). One 
can only hope that scientists, engineers, and governments also can develop 
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improved methods to reverse the ongoing decline of ecosystem services 
including clean air, potable water, and high-quality soil (Bradshaw et al., 
2021) as human populations and consumption increase and the frequencies 
of occurrence of hotspots of acute food insecurity continue to escalate (WFP 
and FAO, 2022).

9  Where to look for further information

Centers where arthropod acoustic or vibrational studies of practical interest are 
conducted frequently include those listed in Table 5, arranged geographically 
along with references to relevant publications.

Recently, many studies have focused on the development of computer 
methods to identify digital images of insect pests due to the decreased costs 
of collecting images. Such studies are discussed in other chapters of this 
book.
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