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ABSTRACT

An automated, computer-based system was designed to quantify infestation
of internally feeding larvae in a grain sample by obtaining data correlated
with the location of sound sources. Information related to the relative arri-
val times of insect feeding sounds to an array of acoustic sensors is obtained
despite the low signal to noise ratios and the differential distortion induced
by sound propagation through the non-uniform grain medium to the differ-
ent sensors. This is achieved by employing parallel acquisition of all sensor
outputs and cross-correlation analyses of all adjacent sensor pairs in the
vicinity of the sensor with the largest signal. The peak location times of the
resulting cross-correlograms cluster together for multiple sounds produced
by the same insect but otherwise are more broadly distributed. A cluster
analysis algorithm was developed to group sounds with similar ‘fingerprints’
(i.e. patterns of peak locations across several cross-correlograms). Each
sufficiently large group of matching sounds indicates the presence of an
insect. Published by Elsevier Science Ltd

Keywords: insect detection, stored-grain, sample inspection.

INTRODUCTION

The presence of insects in stored grain is a major factor in the determination
of quality under current mandated industry standards. Currently, grain
inspection involves manually counting the insects sieved from a defined
sample, usually 1kg. This procedure limits detection to externally feeding
larvae and adults. However, larvae of some economically important species,
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such as the rice weevil, Sitophilus oryzae (L.), and lesser grain borer,
Rhyzopertha dominica (F.), feed inside kernels of grain and are not detected.
If adults are not present, because they either have not yet emerged from
infested kernels or have been removed by cleaning or other manufacturing
processes, grain internally infested may be mistaken for uninfested grain.
Current laboratory methods for the detection of internal feeders (e.g. X-ray,
carbon dioxide production, resonance spectroscopy, and ELISA testing) are
costly, time-consuming, and generally are not implemented (X-ray technol-
ogy, which is unable to differentiate between live and dead insects, is some-
times employed by the milling industry). There is a need for a rapid,
quantitative, and economical method for detecting both adults and larvae of
major insect pests in grain,

Detection of insects in fruits and grain by amplifying their feeding and
movement sounds was suggested by Brain,! but technical difficulties preven-
ted the development of practical systems.> Recent technological advances
(sensitive detectors, suitable band-pass filters, and inexpensive computers)
have stimulated studies®>® directed at the development of practical acoustic
detection systems for stored-product insects.® Although the latter studies
have demonstrated a strong correlation between the number of insects in a
sample and total acoustical activity, it is not sufficiently accurate for the
rapid grading of an unreplicated grain sample. Insect size and distance to the
transducer also strongly influence infestation estimates based on the mea-
sured acoustical activity.!® A system that endeavored to minimize the influ-
ence of these factors by determining the number of loci within a sample from
which sounds were originating was developed by Shuman er al.'! This first-
generation prototype was named the Acoustic Location Fixing Insect
Detector (ALFID) system.

The ALFID principle of operation is that the transit time of a sound is
directly proportional to the distance traversed. The prototype incorporated a
linear array of 16 acoustic sensors mounted in one wall of a rectangular grain
sample container. By employing amplitude threshold detection of the ampli-
fied sensor outputs, it attempted to identify the first and second adjacent
sensors in the array to receive a particular sound and to determine the time-
delay between these two detections. This would ideally localize the sound
source to a (hyperbolic) surface in the grain container. The success of this
method was dependent upon detecting corresponding single points on the
sensors’ output waveforms. However, the differences in the signal levels as a
function of different source to sensor distances, the low signal to noise ratios
and the differential distortion induced by propagation of the feeding sounds
through the non-uniform medium to the different sensors in the array, made
the time-delay data unusable due to its large variability. As a result, only the
identities of the first and second adjacent sensors in the array to receive a
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particular sound were used. Owing to the large acoustic attenuation of the
grain, sometimes a sound was only threshold detected by one sensor which,
at best, localized the sound’s source within a volume twice as wide as the
distance between sensors. This coarse resolution made differential detection
of multiple insects or between an insect and grain settling sounds difficult.
Even so, the performance of the system demonstrated conceptual feasibility
and led to the development of a second-generation ALFID system whose
design is described in this paper. Weaver et al.'? compares the performance
of the two ALFID prototypes.

SECOND-GENERATION ALFID SYSTEM DESIGN

Overview

The main intent of the redesign of the ALFID system was to obtain
improved sound propagation time-delay data in order to increase its resolu-
tion of sound source locations. The technique of cross-correlation is well
suited for extracting this time-delay information when the signals are con-
taminated with uncorrelated noise.!? It involves shifting two sensor output
waveforms relative to each other along the time axis until a best fit occurs.
The magnitude of the shift is the sought time-delay and is based on entire
signal waveforms and not just a single point on each waveform as is the case
with amplitude threshold detection. This technique has been widely used for
locating sound-producing organisms in noisy environments with inhomoge-
neous sound media.'* This mathematically intensive approach necessitated
the acquisition of the amplified sensor outputs and the subsequent computer
processing of the sound data. Acquiring data from all 16 sensors, even when
the output signal from only one sensor exceeds the (trigger) threshold level,
reduces the problems previously associated with the large acoustic attenua-
tion of the grain. This is because a subset of the sensors near the sound
source will usually have low level but discernible information that can be
extracted by the cross-correlation analysis. As will be seen, it was not neces-
sary (or practical) to locate the insects but only to discriminate and match
time-delay ‘fingerprints’ unique to individual sound source locations in order
to determine the number of sound-producing insects. This matching of rela-
tive time-delay data eliminates errors due to absolute but consistent changes
to acoustic signals introduced by the non-uniform medium (e.g. propagation
velocity and multi-path distortion), as well as mismatches in the phase—fre-
quency responses of the 16 sensor channels. Hence, the name of the ALFID
system was changed from the first-generation prototype’s ‘Acoustic Location
Fixing Insect Detector’ to the second-generation’s ‘Acoustic Location Fin-
gerprinting Insect Detector’.
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Acoustic sensors and amplifiers

The second-generation ALFID system uses a highly sensitive piezoelectric
microphone element (Kobitone 25L.M022, Mouser Electronics, Mansfield,
TX). This sensor has a bandwidth of 3.5-5kHz with a resonant peak at
4kHz, which is a good match to the spectral content of the larval feeding
sounds. A fine wire mesh over the face of the sensor helps keep grain dust
out of the sound apertures in its aluminum casing. To minimize the lengths
of its high impedance leads, and thus reduce electromagnetic pickup, each
sensor is mounted on its own amplifier circuit board. The amplifier is an
impedance matching, low noise design with 85dB of gain and some bandpass
filtering (1-10 kHz).

Grain sample container

The ALFID system still uses a 1-kg grain sample container with an array of
16 sensors,!! but it is now designed to maximize sensitivity throughout the
volume based on the sensor’s measured spatial sensitivity. It achieves this by
use of a PVC cylindrical tube with an inner vinyl sound barrier layer and two
rows of eight sensors mounted directly across from each other (Fig. 1). This
configuration also permits computation of relative time-delays in two
orthogonal directions, from pairs of sensors across the tube as well as from
pairs of sensors along its length. Theoretically, this would localize a sound
source in the grain container to a line formed by the intersection of two
hyperbolic surfaces. During sample testing, the container is oriented hori-
zontally with the sensors on the sides to equalize the grain pressure on the
sensors. For field use, the grain container is housed in a sound attenuation
box to reduce the effects of ambient noise.!> Four additional acoustic sensors
are mounted on the outside of the container to provide a noise-masking
function discussed later.

Sound data acquisition

The amplified sensors’ output signals are sampled and acquired by a 16-
channel, I MHz, D/A board (Flash-12 Model 1, Strawberry Tree, Sunnyvale,
CA) installed into a PC computer (Fig. 2) and controlled by a custom-
designed software driver. The insect sounds occur randomly and can last up
to 20 ms (due to grain ringing). A larva (fourth instar) will typically produce
less than five detectable sounds/min. For this reason, in order to not fill the
PC’s memory with incoming background noise, the D/A board is configured
to transfer data being acquired into its own ring buffer memory to the PC’s
memory only when the board is triggered by a sufficiently loud sound. The
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Fig. 1. Mechanical drawing of the ALFID grain container.
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trigger threshold level, adjusted to be above the noise level, corresponds to a
sound pressure level of about 23dB (+6dB due to the range of the sensor/
amplifiers’ gain within the band of predominant insect sound spectral
energy). Since the identity of the sensor channel with a signal large enough to
cause triggering is unknown, a trigger generation circuit was designed to
logically ‘OR’ the output of all the amplified sensors’ outputs. A generated
trigger signal that rises above the board’s trigger amplitude threshold level
initiates the transfer of all 16 sensors’ acquired output signals, including
channels with signals that may remain below this threshold level (Fig. 3), to
the PC’s memory. Once triggered, the board’s trigger input is disabled so
that subsequent peaks of a sound’s received waveforms (as manifest in the
trigger signal) do not initiate further data transfers to the PC’s memory until
the system is ready for a new sound.

The grain sample test duration is an input variable for the custom software
driver that controls the data acquisition operation of the ALFID system. A
longer test duration increases the probability that an insect will be detected
but slows down the throughput of grain samples. The durations for tests
with rice weevil larvae typically range from 10 to 30 m.

A noise-masking feature (Fig. 2) was designed to reduce the possibility of
loud ambient sounds not sufficiently blocked by the sound attenuation box
from being interpreted as an insect sound. If the outputs of any of four

Channel

Amplitude (1V/div)

0
Time (mS)

Fig. 3. Typical signal waveforms from a single insect sound as seen on the amplified outputs
of different sensors. The stored data begins 2 ms before, and ends 2 ms after, the triggering of
acquisition occurred.
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acoustic sensors mounted on the outside of the grain container exceed an
amplitude threshold, an inhibit signal is generated which blocks the transfer
of the acquired ambient sound data (in the D/A board’s ring buffer) to the
PC’s memory.

The first few cycles of sound waveforms are the most important segments
of the sensors’ output signals for determining the propagation time-delay
because they are less likely to be contaminated by multipath and reflected
waves or the lower frequency resonant ‘ringing’ of the grain. To insure
acquisition of these first few cycles, the D/A board is configured to provide
pretrigger data. It is continuously acquiring sampled sensors’ output signal
data into a ring buffer memory so that new data is overwriting recently (as a
function of sampling rate and memory size) acquired data. When a trigger
occurs, an additional 2ms of sampled signal data is written into the ring
buffer memory. The board then transfers 4ms of this sampled data to the
PC, beginning with sampled data that was written into the ring buffer 2ms
before the time that the trigger occurred (time=0 in Fig. 3). The sampling
rate of the D/A board is set to 62.5 kHz/channel to provide a 16 us time shift
resolution for the cross-correlation analysis. Therefore an acquired 4ms
block of data fills 4k samples of buffer memory. To insure no loss of data
due to the relatively slow transfer rate of data from the A/D board’s buffer
memory to the PC’s memory in the event of a burst of insect sounds, the A/D
board hardware was custom-modified to segment its 64 k sample ring buffer
into sixteen 4 k sample ring buffers, each independently addressable and able
to store a full 4 ms block of data. The A/D board hardware was also custom-
modified to re-enable its trigger input only after 7ms have elapsed since the
last time the trigger signal exceeded its threshold level. This feature prevents
a single long sound whose generated trigger signal stays below the trigger
amplitude threshold level for short durations (less than 7ms) from being
interpreted as multiple sounds.

In the present ALFID system implementation, the sound analysis phase
does not begin until after data acquisition is completed. The analysis can
continue for several minutes depending upon the number of sounds collected
and the power of the PC computer used. Since the sound data acquisition
software is driven by interrupts generated by the trigger signal, future ver-
sions of the system could potentially begin analysis of the data during the
PC’s relatively idle periods between insect sounds.

Culling and cross-correlation analysis
The cross-correlation of two sensors’ output signals in discrete (digitized)

form, A(I) and B(I), where I is the sample number, is described by the
equation
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N
Raxs() =) A(K)B(k +))
k=1

where j is the number of shifts of A4 relative to B, and N is the total number
of samples of each signal. The range of j depends on the extent of time-delay
that needs to be considered. For the sensor spacing in the grain container
and the speed of sound propagation in the grain, the j values required are
only from —32 to 32 shifts corresponding to —512 to 512 us. The value of N
is 250 samples for the 4 ms interval of acquired sound. Digitized signal values
for sample numbers outside the range of 1-250 were zero-padded. The direct
method of calculating the cross-correlation with this equation (as opposed to
the ‘short’ FFT method) is more efficient for the small values of N and j. The
plot of this equation is referred to as the cross-correlogram (Fig. 4) and the
time location of its peak indicates the time-delay for a best fit of the sound
waveforms. With 16 sensors arranged in two lines of eight sensors, there are
36 possible contiguous pairs of sensors, including adjacent (14), across (8),
and diagonal (14) pairs, for which cross-correlations can be calculated
(Fig. 5). These cross-correlations provide information related to a sound’s
source location in only two dimensions, but the redundancy of the diagonal
pairs can help with fingerprinting in this low signal/noise context.

100

Relative Amplitude

-150
250 -150 -50 50
Time Delay (ps)

150 250

Fig. 4. Cross-correlograms calculated using the signal waveforms from a single insect sound
shown in Fig. 3. The full time-delay window used in the cross-correlation analysis (—512 us to
512 us prior to imposing the time-delay boundaries) is not shown.



Quantifying larval infestation 287

Acoustic

Sensor_|
2
3
4 12
Largest @ Largest
RMS / Side RMS / Side

Fig. 5. Depiction of different contiguous sensors pairs for which cross-correlations are calcu-

lated, including adjacent, across, and diagonal pairs. To cull potentially error-producing data,

only the sensors with the largest RMS signal outputs on each side (for each acquired sound),

and those adjacent to them, determine the subset (e.g. the 11 pairs shown of the 36 possible
pairs) of cross-correlations to be considered.

Ideally, samples of all 16 sensors’ output signals would be obtained
simultaneously to prevent time-skew errors in the cross-correlograms. How-
ever, the A/D board chosen uses sequential sampling with a 1-us sampling
period. For the 36 possible contiguous pairs of sensors used, the maximum
cross-correlation time-skew error is 9 us (e.g. for 2x11). With a cross-cor-
relogram resolution of 16 us, the resulting maximum absolute error in peak
time locations is one data point or 16 us. However, the error would be
consistent for multiple sounds from the same source location, and so it
would not effect the matching of these sounds.

The cross-correlograms usually have two to four peaks (Fig. 4) within their
—512 us to 512 us time-delay window due to the periodic nature and spectral
content of insect sound waveforms. The true peak, having a time location
corresponding to a sound source’s true location, does not necessarily have
the largest amplitude because of differences in waveform shapes (from a
single sound emanation) on the outputs of different sensors (Fig. 3). For this
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reason the two largest peaks are considered, to increase the probability that
at least one of them will match in time-delay with a peak on subsequent
sounds produced by the same insect. It is because of these multiple peaks
that the true source location is indeterminate. That is, if all the unculled (see
below) peaks in all the cross-correlograms resulting from a sound were used
in an attempt to establish its source location (by a mathematical analysis
similar to triangulation), the result would be a multiplicity of virtual loca-
tions. However, the consistency of cross-correlogram peak time locations
across sounds produced by one insect (Fig. 6), especially when observed for
several different sensor pairs, supports the methodology of using a finger-
print for each acquired sound consisting of two peak time-delay locations for
each sensor pair cross-correlation. It is for these reasons that the original
goal of ‘fixing’ a sound source’s location to be compared with the locations
of other sounds was aborted in favor of establishing a ‘fingerprint’ related to
a sound source’s location to be compared to the fingerprints of other sounds,
all for the purpose of matching sounds that are from the same source. An
overview of the ALFID system algorithm (subsequently described) for
reducing the raw acquired data to sound fingerprints that are then compared
by a clustering analysis is presented in Fig. 7.

When the output of a sensor that is mostly or entirely noise is used in an
cross-correlation calculation, the result is a cross-correlogram with peaks in
random locations. With a large collection of sounds, some of these random
peak locations could erroneously match different sounds’ fingerprints together,

.
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Fig. 6. Cross-correlograms calculated from the outputs of a single pair of sensors (5x6) for
multiple sounds produced by the same insect. The peaks tend to be aligned with each other.
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Fig. 7. ALFID system algorithm flowchart.

giving an incorrect assessment of insect infestation. To reduce this occurrence,

various methods of culling potentially problematic data are incorporated.
Two methods of culling a subset of sensor channels are employed prior to

the cross-correlation analysis. Insect sounds generally reach only a few of the
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nearby sensors and so, for the eight sensors on each side of the grain con-
tainer, only the sensor with the largest RMS amplitude signal and its two
adjacent sensors are considered for a maximum of six out of 16 sensor
channels or 11 out of 36 contiguous pairs of sensors (Fig. 5). Also, for any
one of these six sensor channels to be used, its output signal must first pass a
check for an acceptable signal to noise ratio. This is accomplished by speci-
fying a minimum acceptable value (e.g. 1.4) for the ratio of the RMS ampli-
tude of a later segment of the waveform, where the sound would be expected
to be found, to the RMS amplitude of an initial pretrigger segment of the
waveform where only the channel’s noise output would be present (Fig. 3).
The location of these segments and the minimum RMS ratio value can be
adjusted to empirically optimize the system’s performance for a given hard-
ware implementation.!?

After the cross-correlation analysis is performed, cross-correlogram peaks
are culled based on their amplitudes and time-delay values. Peaks with
amplitudes below a specified absolute threshold value, indicating a ques-
tionable best fit of shifted waveforms, are culled. Also, for each acquired
sound, cross-correlogram peaks with amplitudes below a specified percen-
tage of the largest cross-correlogram peak amplitude obtained with that
sound are culled. This effectively is adjusting the culling threshold for the
loudness of a sound, which is beneficial because the cross-correlation of a
large sound signal on one channel with a purely noisy output on another
channel can still result in substantial peak amplitudes. These absolute and
relative peak amplitude culling thresholds can also be adjusted to empirically
optimize the system’s performance for a given hardware implementation.'?
Cross-correlogram peaks are also not used if their time-delay values are
greater than what is physically possible, given the distances between sensors
and the speed of sound propagation in the grain. By substituting the next
smaller peak for one known to be false, this time-delay boundary (which is
empirically determined independently for adjacent, across, and diagonal
sensor pairs) increases the probability that one of the two peaks used is the
true peak and, therefore, provides a more reliable fingerprint of the sound. It
has also been observed that if the number of peaks in a cross-correlogram is
greater than 5, it is a good indication that one of the employed sensor chan-
nel outputs is predominantly noise and this cross-correlogram is therefore
culled.

Cluster analysis and fingerprint grouping algorithm
The cross-correlation analysis provides a fingerprint for each acquired sound

that consists of up to two peak time-delay values for a subset of the 36 pos-
sible cross-correlations. Each cross-correlation is treated as an independent
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dimension. For the fingerprints of any two individual sounds to be consid-
ered a match (meaning they emanated from the same source location), their
peak time-delay values should match (within some amount of variability)
within several different cross-correlation dimensions. A number of sounds
from the same source location should form clusters within these cross-cor-
relation dimensions. A cluster analysis and fingerprint grouping algorithm
was developed on the premise that the matching of individual sounds
can be inferred from their peak locations being members of the same
clusters.

The first step in the algorithm is the plotting of the cumulative peak dis-
tribution (CPD) for each cross-correlation dimension (Fig. 8). To determine
whether a resulting scattering of peaks is due to sounds emanating from
different source locations (and should not be clustered together) or due to the
inherent experimental variability from a single source location (and should
be clustered together), an approach based on a potential field density method
for delineating clusters (Massart and Kaufman'®) is employed. To perform
this discrimination, the method incorporates the peaks’ inherent experimen-
tal variability in ‘smoothing’ the peak data by replacing each peak with a
potential function (based on this experimental variability).

To generate the potential function, a distribution of cross-correlogram true
peak locations was empirically derived from 2200 sounds acquired with
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single insects [fourth instars of the rice weevil, Sitophilus oryzae (L.)] at var-
ious locations in a grain sample container filled with wheat. Individually
obtained discrete distributions were aligned (to compensate for different
insect locations) along centroids that most evenly split their areas, and then
summed. The shape of the resulting composite discrete distribution can be
observed as the (scaled) data points in Fig. 9. This composite discrete distri-
bution (representing the expected variability) can be used as a discrete
potential function except that the discrete points are not necessarily at the
relative time-delay values needed (i.e. the peak of the potential function
normalized to 1 at O us, and additional potential function points at +16 us,
+ 32 us, etc.) for proper operation. To derive this discrete potential function,
the empirically derived composite discrete distribution was used with Table-
Curve 2D automated curve fitting software (Jandel Scientific, San Rafael,
CA) under the constraints of symmetry and 0 asymptote. The best fitting
curve was a Gaussian Lorentzian Cross Product distribution that was sub-
sequently normalized (shown with its algebraic expression in Fig. 9). The

SINGLE INSECT CROSS-CORRELATION PEAK DISTRIBUTION
Gaussian Lorentzian Cross Product Distribution (+/- 99% prediction intervals)
y=1/((1+b*(x/a)2*exp((1-b)*0.5*(x/a)2))

”=10 F = 4820
a=17.878 b=0.993

1.2

0.8-

06 F . |

Normalized Potential

0.4 - -
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Y — oo
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Fig. 9. Empirically derived normalized distribution of cross-correlation true peaks consoli-

dated from tests with single insects. Values taken from the curve of best fit (shown with its

99% prediction intervals) taken at 16-us intervals (nine values centered around ¢=0) are used
as the discrete potential function.
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needed discrete potential function is then this curve evaluated at 16-us
intervals centered around its peak. To reduce computations, the potential
function is truncated to encompass only nine discrete sample points since
more than 90% of the correlogram true peak locations from single insects
are within this range (a window that is eight sample periods or 128 us wide).

A potential field contour (PFC) is constructed by replacing each peak in a
CPD with this discrete potential function and summing the results at each
discrete time-delay value (Fig. 10). Each valley of a PFC is checked for
validity as a cluster boundary based on a set of rules involving the valley’s
ordinate value relative to the ordinate values of adjacent PFC peaks. If a
resulting cluster domain (delineated by a pair of cluster boundaries) contains
outliers and is therefore excessively wide, it could bridge with other clusters
and erroneously link sounds emanating from different source locations. Such
a wide cluster domain could result from noise or from a very large number of
sounds produced by one insect. To prevent this, a maximum allowed cluster
width is imposed to cull outliers. A window of this maximum width is placed
on any wide cluster domains and moved along the Relative Time-delay axis
of the PFC to encompass the maximum number of (peak) data points
(Fig. 11). The width of this window can be adjusted to empirically optimize
the system’s performance, a trade-off between false positives and false nega-
tives in detecting insects.'? Finally, only clusters that contain some minimum
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Fig. 10. A typical potential field contour (PFC), derived from the CPD shown in Fig. 8 and

repeated here for clarity. The relative potential value at a given time-delay value is the sum of

the weighted (by the discrete potential function) ordinate values of the nine CPD elements
within + four sample periods of that time-delay value.
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cluster centered about —192 us were set using a maximum cluster-width window of 128 us.

number of sounds (that are expected from each insect) are considered
valid and therefore this number is proportional to the grain sample test
duration.

Remembering that each acquired sound’s fingerprint is a subset of an array
of two peak time-delay locations in each cross-correlation dimension, a
matching matrix is created to summarize quantified matches of fingerprints
for every pairing of sounds (Fig. 12). After all the valid clusters in all the
cross-correlation dimensions and their constituent sounds have been identi-
fied, each pair of sounds is assigned a fingerprint matching value equal to the
number of clusters (a maximum of one per cross-correiation dimension)
within which both are members. A pair of sounds that has a fingerprint
matching value equal or greater than the (adjustable) matching value
threshold'? are considered to have emanated from the same source location
and are therefore grouped together. This grouping process is continued until
it reduces the matching matrix to a set of groups where each sound is present
in only one group and a group can have any number of sounds. The final
output of the ALFID algorithm is the number of individual larvae present in
the sample as determined by the number of groups containing some mini-
mum number of sounds. This minimum group size is adjustable'? and its
optimal value varies with test duration since an insect generally will produce
more sounds over time.
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a
VKRG Sk T RE S axETTXE S e
sound (identifying)
number
cross-correlation dimension
Sound Numbers
1 2 3 4 5 6
b)
g1 - ® 231 1
g 2 -1 ® 11
3 -1 190
b4
o |4 - 1‘0\ﬁngerprint matching value
S5 0 (of sounds 3 and 5)
8le :

If Matching Value Treshold = 3,
Then Group =1, 2, 4.

If Minimum Group Size = 3,
Then 1 Insect Present.

Fig. 12. Example of the fingerprint matching algorithm with six acquired sounds. In (a),

clusters with their constituent sounds (sounds’ identifying numbers encircled) are displayed

for a sample of three (out of 36 considered) cross-correlation dimensions. In (b), the derived

matching matrix shows three pairs of sounds with sufficiently large matching values for

grouping. They form a single group of sounds that meets the minimum group size criterion,
thus indicating the presence of an insect in the sample.

STATUS

The ALFID system described here has a number of parameters whose values
were initially selected to provide an operational baseline and then were
empirically adjusted to optimize performance.'> Future research will focus
on further tuning of the system, establishing performance abilities in the
laboratory, and field testing it at a commercial grain elevator.
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