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Abstract

Acoustic technology has been applied for many years in studies of insect communication and in the

monitoring of calling-insect population levels, geographic distributions and species diversity, as well

as in the detection of cryptic insects in soil, wood, container crops and stored products. Acoustic

devices of various sizes and power levels have been used successfully to trap insect pests that

exhibit phonotaxis or other orientation behaviours, including mosquitoes, midges, mole crickets,

field crickets, moths, cockroaches and Tephritid fruit flies. The attractiveness of traps depends on

the behaviour, physiological state and age of the target insect, and varies with several environ-

mental factors, including temperature and light level. Widespread adoption of acoustics for

trapping has been limited by the costs of instrumentation and the relatively small segments of

insect populations (e.g. mate-seeking adults of a limited age-range) that are attracted to a sound

source, but trapping effectiveness often can be improved by adding swarm markers, chemical

attractants or black lights, and by precisely timing temporal and frequency patterns to match the

natural communication signals. There remains potential for using ultrasonic bat-cry signals to

disrupt behaviour of night-flying insects, but ultrasonic signals have little effect on insects that are

not normally preyed upon by bats. Potential areas for growth in the use of acoustic technology in

pest management include the production of signals that disrupt vibrational communication, par-

ticularly in the Hemiptera, and the development of control treatments that combine pheromones

and precisely patterned sonic or vibrational signals.
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Review Methodology: Searches were performed in CAB Abstracts, Agricola, WorldWideScience.org and Google using keywords

search terms (acoustic, insect, trap), names of researchers who have participated in acoustic and vibrational studies with insects. In

addition, the author’s personal library on acoustics, vibration, mosquitoes and fruit flies was inspected.

Introduction

Acoustic recording and playback technologies have been

employed for insect detection and monitoring since the

early 1900s [1] and the study of acoustic behaviour has

developed into one of the prominent areas of insect

ethology [2–5]. To consider applications for insect pest

management, acoustic studies have been conducted to

attract and trap insects [6, 7], and to manipulate their

behaviours or interrupt intraspecific communication using

either sound [8] or vibrational signals transmitted within

host plants [9].

Traps using sound to attract insects were first reported

in 1949 in studies where male Anopheles albimanus

Wiedemann mosquitoes were captured in experiments

with loudspeakers [10, 11]. Subsequently, acoustic meth-

ods were developed in field and laboratory studies to trap

other mosquitoes [12–16], Chironomid midges [17–20],

Scapteriscus spp. mole crickets [7, 21], gryllid field crickets

and their tachinid parasitoids [22, 23], Achroia and Galleria

moths [24, 25], Blattella germanica (L.) cockroaches [26]

and tephritid fruit flies [27–29]. In addition, chemoster-

ilization of acoustically attracted male Culex quinque-

fasciatus Say was conducted with moderate success [30],

and male Aedes albopictus (Skuse) populations were

reduced 76% by attraction to loudspeakers producing

400Hz tones at the centre of insecticide-treated black

polyethylene sheets [31].
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In several studies, acoustic traps have been deployed

not just to capture, sterilize, or kill insects, but to collect

live specimens for biological studies [32, 33] and biological

control programmes [34, 35]. Acoustic methods also have

been used in surveys to monitor insect diversity [36, 37],

population levels [38–40] and geographic distributions

[41].

Given the urgent need of regulatory agencies and pest

managers to obtain improved tools to detect and manage

growing numbers of invasive insect species, e.g. [42–44],

it is worthwhile to reflect on the current usage of acoustic

technology in integrated pest management programmes,

as well as the potential for additional applications in the

future. Recent reviews on the evolution and function of

insect auditory systems [45] and the physiological, behav-

ioural, ecological and evolutionary context of insect

communication [46], and several recent studies on mos-

quito audition and mating behaviour [47–54] and para-

sitoid acoustic organs [55] provide helpful background

information for this discussion.

Currently Available Sound and Vibration

Production Technology

Sonic sources of different dimensions and power levels

have been tested in trapping studies, population surveys

and behavioural manipulation bioassays, including general-

purpose loudspeakers [7, 15], large piezoplastic sheets on

foam boards [14], acoustic lasers [28], small tweeters [55]

and even tuning forks [15]. Harmoniums [56] and MP3-

player speakers [57, 58] have been used to produce air-

borne sounds that excited vibrations within plants or

other substrates containing targeted insects. Caged

insects [22, 59], tethered flying insects [48], electro-

dynamic shakers [60] and piezoceramic actuators [61]

have been used to produce sounds and vibrations in

behavioural manipulation studies. The speakers with large

dimensions and the acoustic laser were constructed to

broadcast long-range, loud (>100 dB at 1m) signals, based

on findings that increased signal levels resulted in

increased signal attractiveness and trap capture rates [62,

63]. Speakers with small dimensions have been used to

produce spatially divergent sound fields to facilitate

directional orientation [15, 55, 64, 65]. Some of the signals

produced have been playbacks of original recordings [10,

57, 64], others have been synthesized [8, 14, 24, 66, 67].

In several studies [21, 49, 52], the responses to live or

recorded signals were compared with responses to syn-

thesized signals.

Relatively high costs of broadcasting over large areas

compared with the costs for chemical attractants and

pesticides have hampered development of acoustic tech-

nology for insect management until now. Frequency-

dependent attenuation reduces the effective range of

airborne and structural vibration signals greater than 100–

200Hz [1, 60, 68]. High-amplitude speakers can extend

the range of sonic broadcasts, but sufficiently powerful

energy sources have not always been readily available in

the field [6, 7].

Attraction and Trapping Devices

Insects of different species attracted to sound have been

trapped by a variety of devices, including electrically

charged screens [10, 11, 69], fans or vacuums [64] with

collecting bags or cones with nets [66], adhesive cylinders

[12, 70–72] and boards [14], funnel and bucket traps [73],

or wood-and-screen silt traps [74]. The preferred trap-

type depends partly on the size of the insect and its

locomotory behaviours, i.e., flight or walking up or down

a surface, preferences for crevices or holes, rough or

smooth surfaces, etc. [75–78]. Frequently the trap cap-

tures are strongly affected by moonlight levels, wind and

other factors [16]. In addition, the attractiveness of a trap

is context-dependent [7, 22, 58], varying over time and

over different segments of the population. For example,

the calling sound of a male cricket can attract females, but

at high intensities it can inhibit female locomotion or

cause other males to move away [61].

The rates of captures in traps often are improved sig-

nificantly by adding black cloth or other swarm markers,

black light or other visual attractants [69, 79], or chemical

attractants, depending on the target insect [7, 77, 78]. In

the case of mosquitoes, live hamsters and dry ice were

used to attract females in addition to the males that were

attracted by sound [67].

The sound sources and traps currently in use are

mature technology, not likely to change in the near future,

but potential avenues for cost-reductions and for

enhancements of the effectiveness of behavioural manip-

ulations may be found in the design and implementation of

controllers that set beginning and ending times and other

temporal patterns of sound production to match the

patterns of the targeted species [7]. Also, incorporation

of automated counting and identification of the captured

or detected insects [40, 80–82] into trapping and mon-

itoring systems may improve their effectiveness in field

experiments and integrated pest management pro-

grammes. Automated counting and identification is of

benefit particularly in environments where servicing of

traps might be difficult or dangerous, or when trapping

data need to be collected in a timely manner.

Repulsion/Exclusion, Interference with

Communication and Other Potential Applications

of Acoustic Signals

It has been well documented that many species of insects

subject to predation by bats will dive to the ground ormove

away when they detect ultrasonic signals that resemble

echolocation calls [5, 7, 83]. Studies of ultrasonic signals

on several moth pest species were conducted [84–87]. In
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the latter study [87], a light trap containing an ultrasonic

speaker was placed in a maize field containing Heliothis zea

(Boddie) and Ostrinia nubilalis (Hübner). The speaker deliv-

ered 1ms, 25 kHz pulses at rates of 1–10 /s, simulating a

range of pulse rates and durations emitted during echolo-

cating cries by local insectivorous bats [88]. In this field

study [87], high pulse rates decreased light-trap catches

more effectively than low pulse rates, and the O. nubilalis

were affected more strongly than H. zea. The results

from these and related studies suggested that the effects of

habituation and sound shadows rendered ultrasonic

repellent signals ineffective for reducing oviposition or

for reducing economic damage. It was proposed that the

effects of habituation might be reduced by: (1) reducing

the signal intensity, (2) presenting the pulses at unpredict-

able intervals, (3) varying the pulse duration irregularly, or

(4) moving the signal source or imparting apparent motion

to the signal source [88]. Thus, it may be instructive to

revisit ultrasonic treatments in the future for crops where

sound shadows can be minimized.

It is important to note also that capability to detect

ultrasound to ultrasonic signals has evolved primarily in

insects that are preyed upon by bats. Consequently, it is

not surprising that none of the popularly marketed

ultrasonic repellers has ever been shown to be cost-

effective against insects such as cockroaches, mosquitoes,

fleas and dragonflies that typically are not bat prey

[89–92].

Potential applications of acoustic or vibrational signals

for trapping of hemipteran insects or behavioural manip-

ulation of their communication [56, 93–96], as well as for

repelling ants or otherwise interfering with their colony-

maintenance activities [58] have been considered but not

yet implemented in field environments. In addition, there

is potential for behavioural manipulation of predator–prey

interactions [97] and acoustic mimicry [98]. Finally, sev-

eral studies have been conducted with insects that use

both sound and pheromone during courtship [24, 25, 99–

103], as well as on insects that exhibit increased sensitivity

to acoustic or olfactory stimuli after pre-exposure to the

alternate stimulus [104, 105].

The precise control of timing and frequency of signals

enabled by modern computer technology has consider-

able potential to enhance the trapping efficiency and

effectiveness of behavioural manipulations in the future.

Precise control of timing can be of value in the disruption

of vibrational communication of duetting insects [106],

especially pests such as Diaphorina citri (Kuwayama), the

Asian citrus psyllid [107]. Similarly, there is potential that

dynamic control of broadcast frequency may enhance

capture efficiency of mosquitoes [49–54].

Conclusions

Until now, acoustic technology has an uneven record of

success in insect pest management applications. The range

of acoustic stimuli is limited in comparison with the

transmission distances of pheromones and other chemical

attractants. The responses to attractive or repellent

acoustic stimuli habituate rapidly and are variable among

different segments of a given target species.

As with pheromone technology, however, acoustic

methods have proven useful in a number of insect man-

agement applications, particularly for trapping of mos-

quitoes and midges, and enterprising entomologists are

likely to develop additional beneficial uses of acoustic

technology for insect management in the next few dec-

ades. Certainly, acoustic and vibrational signals can serve

both long- and short-range functions, and the signals can

be patterned easily to transmit several different signals

using the same signalling organs and receptors, as has

been demonstrated by the observed diversity of cricket

acoustical communication [108]. It has been proposed

that a diversity of airborne sound signals [46] and struc-

tural vibration signals [60, 109] remain to be discovered in

insects. Modern digital signal processing technology now

enables broadcast of a diversity of sonic and vibrational

signal frequencies of different temporal patterns for a

wide range of yet undiscovered, customizable insect

behavioural management opportunities.
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