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ABSTRACT 

Molecular modeling techniques were used to establish relationships between the molecular properties of 45 

substituted phenylureas and their octanol/water partition coefficient (log P) and soil sorption normalized to 

organic carbon (Koc). Log P and Koc values were obtained from the literature. The molecular properties were 

calculated using MOPAC-MNDO molecular orbital methods. The OSAR models based on van der Waals 

volume, dipole moment, and energy of lowest unoccupied molecular orbital produced estimates of log P and 

Koc that correlate well with experimental values. The QSAR models appear to be specific to structurally 

similar chemicals. 
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INTRODUCTION 

The octanol/water partition coefficient is defined as the ratio of chemical concentration in the octanol phase 

to its concentration in the aqueous phase and is expressed as the logarithm of partition coefficient (log P). 

Log P is a measure of solute hydrophobicity or lipophilicity. The soil sorption coefficient (Koc) is the ratio 

between the concentrations of a chemical sorbed by the soil and dissolved in the soil water normalized to soil 

organic carbon. Log P and Koc are among the several fate constants used to assess the transformation and 

transport potential of a chemicalJ The United States Federal Drug Administration requires log P values for 

a drug to be registered and the United States Environmental Protection Agency (EPA) uses log P values to 

estimate the environmental fate and bioaccumulation of pesticides and other chemicals released to the 

environment. Fate constants may not be needed for all of the millions of chemicals listed in the Chemical 

Abstract Services Registry, but many of the 70,000 manufactured chemicals on the EPA's inventory will be 

evaluated for their potential environmental impact in the near future. 1 The experimental determination of log 

P and Koc values of all organic pollutants is often time consuming and/or cost prohibitive. On the other hand, 
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chemical industries are faced with higher costs of experimentation and the costs associated with disposal of 

unwanted materials synthesized during the product development. Consequently, the chemical industries are 

increasingly relying on predictive models to estimate log P and other solution properties of chemicals as a pre- 

screening tool. By pre-screening hundreds or even thousands of compounds, valuable time and resources are 

saved. 

Mathematical models that relate some physical, chemical, biological, or environmental activity to some 

quantitative structural descriptors or physicochemical properties are collectively known as quantitative 

structure activity relationship (QSAR) models. The basic assumption is that the variations in the activity within 

a series of similar structures can be correlated with changes in parameters which reflect molecular properties. 

The QSAR models are usually developed for a group of compounds with similar structure. The primary 

objective of QSAR modeling is to predict the activities of untested, structurally similar compounds. The 

statistical procedure used to derive QSAR models is linear regression analysis. This procedure can be 

univariate or multivariate, depending on the number of structural descriptors used in a particular analysis. 2 

The QSAR models have been used to study the mechanism of action of pesticides, 3"6 as well as to design and 

develop new compounds. 7 

Several models based on molecular properties such as molecular volume, dipole moment, hydrogen bond 

acceptor basicity, hydrogen bond donor acidity, 811 molecular surface areas and volumes, 12,t3 solvent accessible 

surface area, 14 and molar polarizability 15 have been reported to predict log P of several chemical classes. 

Water solubility and log P of chemicals have been used as parameters for describing and predicting soil 

sorption coefficients. 16'17 Several workers believe that water solubility and log P are not accurate predictors 

of Koc .18"2° Molecular connectivity models which are based on chemical structure have been shown to 

outperform traditional empirical models based on water solubility and log P in predicting Koc. 18,2°'24 Recently, 

there was one study which examined models based on molecular properties (molar volume and self- 

polarizability) to predict Koc of 50 carboxylic acids, esters, amines, and amides. 25 However, information on 

QSAR models based on molecular properties calculated by molecular orbital methods to predict Koc is 

limited. In this paper we describe and discuss QSAR modeling techniques to predict log P as well as Koc 

based on molecular properties of 45 substituted phenylureas. 

MATERIALS AND METHODS 

1. Molecular Properties 

Chem-X (Chemical Design Limited, Oxford, United Kingdom) molecular modeling software was used to build 

3-dimensional chemical structures and to compute various molecular properties (descriptors) of phenylurea 

and its analogues. The method of computation of molecular properties has been published recently by 

Naodihalli et al. 4-6 A brief description of methods used to compute molecular descriptors in this study is given. 

The 3-dimensional structure of phenylurea (Table 1) was built using urea and benzene fragments available 

in the molecule fragment library of the Chem-X software. The structures of other analogues (Table 1) were 

built on phenylurea structure using the standard atoms, functional groups, and fragments. The structures were 

subjected to full geometry optimization via MOPAC (Quantum Chemistry Exchange Program 560, version 6.0, 
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Department of Chemistry, Indiana University, Bloomington, Indiana) using MNDO (modified neglect of 

diatomic overlap) parameterization. Ground electronic states were obtained as dosed-shell molecular orbital 

wave functions in the restricted Hartree-Fock framework. 

The van der Waals molecular volume (VDWv) and surface area maps depict the overall size and shape of 

the molecule. The VDW v maps were calculated using Chem-X, which displays the surface of the molecule 

at the VDW radius. The surface is based on the radius of the various atom types stored in the Chem-X energy 

parameters. To calculate the map, Chem-X uses a continuous function, instead of a step function to describe 

the transition across the molecular surface. 

The molecular electrostatic potential (MEP) is the interaction energy of a point positive unit charge with the 

atoms of the structure. There are two contributions to the value of the electrostatic potential at any point: a 

nuclear contribution and a contribution from the electrons within their molecular orbitals. Chem-X treats the 

charge on each atom in a molecule as a point charge positioned at the center of the atom. For calculating 

MEP, positive unit charge equivalent to that of a proton is placed at each grid point, and the electrostatic 

interaction between the atoms of the structure and the unit charge is then calculated. When calculations are 

completed, a map showing positive and negative isopotential contour lines is drawn. The levels of potential 

energy as defined by contour levels were + 10 and -10 keal mol "1 for positive and negative energy potentials, 

respectively. 

The superdelocalizability (S) of an atom is a measure of its available electron density. It is the ratio of orbital 

density to orbital energy summed over all orbitals. The S of highest occupied molecular orbital (SHoMO) and 

lowest unoccupied molecular orbital (SLuMO) along with the orbital energy of HOMO (eHOMO) and LUMO 

(eLUMO) were computed. The electrophilic S (SE) and nucleophilic S (SN) based on occupied and unoccupied 

orbitals, respectively, were also computed. 

2. Log P and log Koc 

Octanol-water partition coefficient (log P) and soil sorption normalized for organic carbon (Koc) values for 

substituted phenylureas were collected from the literature (Table 1). The majority of data quoted is from the 

comprehensive study of Briggs. 16 The soil sorption normalized for organic matter (Kom) in the Briggs study 

was converted to Koc using the relationship Koc = 1.724 Kom. The log P values for karbutilate and 

chloroxuron were from the Pesticide Manual 26 and Koc values for siduron and chloroxuron were from a 

database reported by Wauchope et al. 27 

3. QSAR Analysis 

The quantum mechanical calculations generated several molecular properties (Table 2) representing bulk, 

steric, and electronic descriptors. Molecular properties were considered as independent variables and log P 

and Koc as two dependent variables. Pearson correlation matrix was performed for molecular descriptors using 

SAS software (SAS Institute Inc., Cary, NC). The descriptors which showed significant correlations (P _< 0.05) 

with log P or Koc were used to build the QSAR models. Siduron was excluded in log P models and karbutilate 

excluded in log Koc models for lack of experimental values. 



Table 2. Molecular properties used in QSAR models. 
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Type Descriptors 

Whole molecule properties: 

Bulk descriptors 

Electronic descriptors 

Energy descriptors 

Atom centered properties: 

Electronic 

van der Waals molecular volume (VDWv) 

van der Waals molecular area (VDWA) 

Total dipole moment (t~) 

Molecular electrostatic potentials: 

+ and - volumes and areas 

(+ MEPv, -MEPv, + MEPA, and -MEPA) 

Superdelocalizability (S): 

SHOMO and SLUMO 
Electrophilic S (SE) 

Nucleophilic S (SN) 

energy (e) of HOMO (eHOMO) and of LUMO (eLUMO) 

MOPAC energies: Total (eT), Electronic (eE), and 

Nuclear (eN) 

Atomic charges, S E and S N for atoms C1, 02, N3, N4, 

and 6 carbon atoms of phenyl ring attached to N4. 

Note: HOMO, highest occupied molecular orbital; LUMO, lowest unoccupied molecular orbital. 
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RESULTS AND DISCUSSION 

Pearson correlation analysis of 51 molecular descriptors of substituted phenylureas revealed that van der 

Waals molecular volume (VDWv) was most sitmifieanfly correlated with log P (r = 0.65) and log Koe (r = 

0.66). The van der Waals surface area was the second most siotmificantly correlated descriptor with log P (r 

= 0.61) and log Koc (r = 0.63). Since molecular volumes and surface areas calculated on van der Waals radius 

are highly inter-correlated (r = 0.98), only the molecular volume was used to build regression models. The 

simple regression equations based on VDW v did not account for variation (differences between observed and 

predicted) greater than 42% in log P and 45% in log Koc. Thus, multiple regression analysis was performed 

to study the potential contribution to the model from other molecular properties. For both log P and Koc, the 

most significant model was that involving the three descriptors, VDW v, total dipole moment (/~), and eLUMO 

(Table 1). The other molecular properties such as various superdeloealizabilities, energy of the highest 

occupied molecular orbitals, electrostatic potentials, and partial atomic charges (Table 2) did not contribute 

significantly to regression models. The relevant multiple regression equations for log P and Koc are given 

below. 

log P = 

log Koc = 

0.2859 + 0.0134 (VDWv) - 0.5816 (/~) + 0.10569 (/~)2.0.8928 (eLUMO) 

r 2 = 0.59; n = 44; F = 14.0 [1] 

3.6424 - 0.0306 (VDWv) + 0.00013 (VDWv) 2 - 0.3116 (~) + 0.05009 (/~)2.0.5716 (eLUMO) 

r 2 = 0.70; n = 44; F = 17.4 [2] 

Graphical representation of log P predicted from equation 1 as a function of log P observed and log Koc 

predicted from equation 2 as a function of log Koc observed are shown in Figure 1. The equation predicting 

log Koc (r 2 = 0.70) values explained more of the variability than the equation for log P (r 2 --- 0.59). The 

moderate relationships shown by these regression equations could be due to narrow range of experimental 

data (0.80 to 3.48 logarithmic units) and/or structural differences among substituted phenylureas in terms of 

substitution on atom N3 (Table 1). 

The substituted phenylureas can be divided into five general classes based on substitution on atom N3 as: 

phenylureas, phenyl-l-methylureas, phenyl-l,l-dimethylureas, phenyl-l-methyl-l-methoxyureas, and phenyl-1- 

cycloalkylureas. The multiple regression analysis within each of these five chemical classes gave equations with 

r 2 from 0.70 to 1.00 (Table 3). The same three molecular properties, VDW V, #, and eLUMO appeared to be 

determinants of log P and log Koe in the five chemical classes. Log P and log Koc predicted from equations 

3 to 10 as a function of log P and log Koc observed are shown in Figure 2. Equations for log Koc had a higher 

r 2 than log P. For phenyl-l-cycloalkylureas equation 11 based on three molecular properties, VDWv, #, and 

eLUMO explained 100% variation in log P (Table 3). However, only VDW v produced a significant model 

(equation 12) which explained 86% variation in log Koc (Table 3). 

The molecular properties such as molecular cavity, molecular polarity, hydrogen bond accepter basieity, and 

hydrogen bond donor acidity are known to affect oetanol/water partition process. 8-10 The molecular cavity, 

represemed by molar volume 8 (molecular weight divided by density at 25 C), could be replaced by an intrinsic 
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Figure 1. Predicted log P (Eq. l) and Ko¢ (Eq. 2) plotted as a 

function of observed log P and Koc of substituted phenylurcas. 
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Figure 2. Predicted log P and Koc plotted as a function of observed log P and Koc for 

phenylureas (PU) from Eq. 3 and 4, phenyl-l-methylureas (PMU) from Eq. 5 and 6, phenyl- 

1,1-dimethylureas (PDMU) from Eq. 7 and 8, and phenyl-l-methyl-l-methoxyureas 

(PMMOU) from Eq. 9 and 10. 
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molecular volume represented by van der Waals volume 9,10 as a measure of the cavity term in linear solvation 

energy relationships. The VDW v, Z, and eLUMO in our models represent molecular bulk, molecular polarity, 

and reactivity (hydrogen bond donor acidity). Recently, models based on VDW V, ~, and eHOMO derived from 

MOPAC-MNDO molecular orbital calculations have been reported to predict log p.11 The eHOMO represents 

the electron donating power of the molecule and is thus related to hydrogen bond acceptor basicity s'11 while, 

the eLUMO in our equations represents the electron accepting power of the molecule and thus related to 

hydrogen bond donor acidity. 8 

A molecule with a larger VDW v and a smaller Z and eLUMO could encounter greater hydrophobic 

interactions resulting in higher log P and log Koc. The repulsive interactions of a molecule with the water 

present in the solution would drive the molecule away from water to a non-polar organic phase such as 

octanol (log P) or organic carbon (Koc). 

CONCLUSIONS 

The QSAR models based on three molecular properties, van der Waals volume, dipole moment, and energy 

of lowest unoccupied molecular orbital together accounted for 59 and 70% of the variation in log P and Koc, 

respectively. When phenylureas were broadly divided into five chemical classes based upon the substitution 

on atom N3 of phenylurea, the same three molecular properties explained 70 to 100% of the variation in log 

P and Koc within these chemical classes. The present models based on molecular properties produce estimates 

that correlate well with experimental values. These models can accurately predict not only Koc but also log 

P. Moreover, these models do not require measured or estimated log P values to predict Koc, unlike several 

existing models. The above analysis supports the basic assumption of QSAR model that the variations in log 

P and log Koc within a series of structurally similar compounds can be correlated with changes in parameters 

which reflect molecular properties. The models presented here are not necessarily an alternative to currently 

available models for predicting either log P or Koc. Nevertheless, these models can provide a useful starting 

point for predicting the potential environmental contamination of new compounds even before they are 

synthesized. Furthermore, these models can be used to create priority lists for testing, so that time, money, 

and effort can be focused on the potentially most hazardous chemicals. 
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