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ABSTRACT: Nitrate leaching in the unsaturated zone poses a risk to groundwater, whereas nitrate in
tile drainage is conveyed directly to streams. We developed metamodels (MMs) consisting of artificial
neural networks to simplify and upscale mechanistic fate and transport models for prediction of nitrate
losses by drains and leaching in the Corn Belt, USA. The two final MMs predicted nitrate
concentration and flux, respectively, in the shallow subsurface. Because each MM considered both tile
drainage and leaching, they represent an integrated approach to vulnerability assessment. The MMs
used readily available data comprising farm fertilizer nitrogen (N), weather data, and soil properties as
inputs; therefore, they were well suited for regional extrapolation. The MMs effectively related the
outputs of the underlying mechanistic model (Root Zone Water Quality Model) to the inputs (R2 =
0.986 for the nitrate concentration MM). Predicted nitrate concentration was compared with measured
nitrate in 38 samples of recently recharged groundwater, yielding a Pearson’s r of 0.466 (p = 0.003).
Predicted nitrate generally was higher than that measured in groundwater, possibly as a result of the
time-lag for modern recharge to reach well screens, denitrification in groundwater, or interception of
recharge by tile drains. In a qualitative comparison, predicted nitrate concentration also compared favorably with results from a
previous regression model that predicted total N in streams.

■ INTRODUCTION
Nitrate is pervasive in groundwater and has been the focus of
numerous water-quality studies at various spatial scales.1−5

Water-quality models are useful tools that enable prediction of
nitrate contamination in unsampled areas for the purpose of
assessing aquifer vulnerability. Statistical models typically are
used at large spatial scales.6−11 Such models are data-driven and
have comparatively few parameters, but their capability to
simulate processes is limited. In contrast, mechanistic models
are physically based, simulate controlling processes, and can
have many parameters but typically are applied at the smaller
scales. The Root Zone Water Quality Model (RZWQM2) is a
field-scale systems model that simulates nitrogen (N) cycling
processes, the fate and transport of agricultural chemicals, and
crop growth.12 The model provides a detailed accounting of N
losses, additions, and transformations in the unsaturated zone
and simulates N transport to artificial drains and groundwater.
The model has been used in a variety of N studies, primarily in
the Midwestern USA.13−18 Thorough accounting by RZWQM2
of key processes can yield more accurate predictions, but
application at large spatial scales is difficult because of the
numerous parameters. In this research, we upscaled RZWQM2
using a metamodel (MM) for application to the Corn Belt
region, USA. Metamodels are simplified representations of
mechanistic models and exploit relations between model inputs

and outputs (Figure 1). Although less complex, they retain
some of the flexibility and process capability of more physically

based simulation models.19 The main advantage of the
approach is reduced data requirements, which enable
application at large spatial scales through geographic
information systems (GIS). MMs may also be an effective
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Figure 1. Metamodel concept based on Root Zone Water Quality
Model (RZWQM2) inputs and outputs.
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means of incorporating important processes, such as plant
uptake of N, into regional water-quality models. Previous
regression models have focused on factors amenable to
mapping at large spatial scales, such as N sources, soils, and
aquifer type,20 but not plant processes.
Prior researchers have used various statistical approaches for

metamodels. Stenemo et al.19 developed an artificial neural
network (ANN) to relate MACRO model outputs to inputs for
prediction of pesticides leaching in Sweden. ANNs are pattern-
recognition tools that consist of simple processing elements
(neurons) connected to a network by a set of weights.9 ANNs
have been widely used to model groundwater quality,9,10,21−25

and the reader may consult the literature for detailed discussion
of the method.26 MACRO is a dual porosity mechanistic model
that simulates the influence of preferential flow on water and
solutes in soil.27 Stenemo et al. trained ANNs to predict
MACRO-simulated 80th percentile pesticide concentration at 1
m for an experimental grid in a 30-ha agricultural field. Overall
R2 for the second of two MMs tested was 0.98, although R2

varied from 0.22 to 0.98 depending on the class of the target
variable (<0.01, 0.01−1, and >1 μg L−1 pesticides concen-
tration). Other MMs have used a MACRO model emulator to
predict pesticides risk in England and Wales,28 multiple linear
regression of EuroPEARL output for European scale prediction
of pesticides concentration,29 and nonlinear regression of
LEACHM output to predict pesticides leaching in a watershed
in eastern Maryland, USA.30

Previous MMs focused on pesticides leaching and most did
not attempt to evaluate model predictions against measured
data. In the current study, we developed two MMs to predict
nitrate concentrations and fluxes, respectively, in the shallow
subsurface (≤10 m). Whereas previous vulnerability models in
the region considered groundwater and surface water as
separate resources,6,11,31 the MMs used an integrated approach.
Each MM considered both leaching and drainage through
aggregation of predictions from RZWQM2 models previously
calibrated to data from Maple Creek, Nebraska (NE), Walnut
Creek, Iowa (IA), and Morgan Creek, Maryland (MD)32,33 (see
the Supporting Information, SI, for site descriptions). The NE
and MD sites were dominated by leaching and the IA site was
tile drained. We evaluated the nitrate concentration MM by
comparing predictions with measured nitrate in groundwater
samples from the U.S. Geological Survey’s National Water
Quality Assessment (NAWQA) Program and qualitatively
through comparison with previous regression results for total
N in streams.31

Study objectives were (1) to develop neural-network MMs to
predict nitrate concentrations and fluxes based on RZWQM2
predictions; (2) to evaluate the nitrate concentration MM by
comparison with measured groundwater nitrate data and
previous regression results; and (3) to extrapolate both MMs
to assess the vulnerability of streams and groundwater in the
Corn Belt.

■ METHODS
The MMs comprised ANNs that related RZWQM2 outputs
(ANN response variables) to RZWQM2 inputs and other
quantities estimated by the model (ANN explanatory variables)
(Figure 1). We used ANNs because linear regression has
several limiting assumptions, including linear relation of the
response variable to the explanatory variables, and the
independence and normality of model residuals.34 The
modeled system in the current study is highly nonlinear, and

the observations were not independent because they were all
generated by RZWQM2. In contrast, ANN is less restrictive
because it does not rely on hypothesis testing.
Explanatory variables for MMs consisted of driving variables,

selected RZWQM2 parameters and outputs, and measured soil
properties (see Table SI-1). Soil hydraulic parameters, N
inputs, irrigation, and climatic variables were systematically
varied by the SENSAN utility in PEST parameter estimation
software.35 Other explanatory variables such as measured soil
properties were constant at each field site. Soil hydraulic
parameters consisted of water content at field capacity (WFC),
saturated hydraulic conductivity (Ks), and bulk density (BD) of
the predominant soil layer at each site. Predominant soil layers
were identified based on sensitivities of the soil hydraulic
parameters as determined during previous analyses conducted
with PEST.33,36 Weather and soil hydraulic parameters were
varied by less than a single standard deviation of their ranges so
as not to cause numerical instability of RZWQM2. RZWQM2
outputs included plant and N cycling quantities (potential
evapotranspiration, plant N uptake, N mineralization, and N
fixation) obtained from each SENSAN model run. These
outputs, referred to here as “plant variables”, represented
processes not commonly found in statistical models applied at
large spatial scales. Reliable estimates of such variables are
difficult to obtain at regional scales, and RZWQM2 provides a
potential alternative means for their estimation. We generated a
total of 3,643 RZWQM2 runs for the three sites, resulting in
wide ranges of explanatory variables meant to encompass
regional conditions.
Metamodel response variables comprised RZWQM2-pre-

dicted nitrate-N fluxes and concentrations in tile drains and
lateral flow in the case of IA or in soil water in the unsaturated-
zone simulation profile at NE and MD. Unsaturated-zone fluxes
are referred to in this study as “leaching”. We emphasized
nitrate because RZWQM2-predicted N losses by volatilization
and denitrification were negligible at all three field sites,32,33

and because nitrate was the dominant N species in unsaturated-
zone samples from NE and MD.2 Nitrate flux was expressed on
a per-year basis (kg N ha−1 yr−1) and nitrate concentration
(mg L−1) was calculated as (nitrate flux/water flux) × 10.
Nitrate concentrations and fluxes predicted by RZWQM2 are
referred to here as “observations” in the context of MM
training.
We used the “newff” function in R’s Amore package37 to

develop multilayer feed-forward ANNs for the two response
variables (nitrate concentration and flux) as described in the SI.
Metamodel development proceeded in two phases. First, we
evaluated up to four MMs for each response variable,
designated the “full model”, “base model”, “no plant variables”
(NPV), and the “simple” model (Table 1). Each response
variable for a particular type of MM used the same explanatory
variables. The objective was to deconstruct the MMs by
eliminating selected variables at each step (full, base, and so
on), to see at what point the model performed poorly. The full
model segregated fertilizer, irrigation, precipitation, and
temperature data by crop (corn or soybean). The base model
did not distinguish between crop type and aggregated or
averaged (in the case of temperature) these amounts over the
entire simulation. The NPV model further excluded RZWQM-
simulated plant variables, and the simple model further
excluded soil hydraulic parameters. In this phase, 70% of the
cases were used for training and the remainder for model
evaluation. Second, we tested the base and NPV MMs using the

Environmental Science & Technology Article

dx.doi.org/10.1021/es202875e | Environ. Sci. Technol. 2012, 46, 901−908902



combined data to identify final MMs for spatial extrapolation.
Metamodel fit criteria included the mean square error (MSE)
and the coefficient of determination (R2) for observations and
predictions.
We performed sensitivity analyses with the base and NPV

nitrate concentration MMs as described in the SI. The objective
of the sensitivity analysis was to determine the influence of
variables on MM output and to identify potential surrogates for
plant variables to facilitate spatial extrapolation.
We compared predictions from the final nitrate concen-

tration MM to measured nitrate in 38 wells sampled by the
NAWQA Program during 1993−2003. The wells were
identified through classification and regression tree (CART)
analysis and represented recently recharged groundwater in
intensively cropped areas (see the SI). Limitations to the
verification approach include the fact that the MM represented
the shallow subsurface, but the nitrate samples were from the
underlying aquifer. The RZWQM2 simulations did not extend
to the water table at NE and MD. However, in lieu of lysimeters
which were not available at these sites, the shallow groundwater
data are the best available for the MM evaluation. Because the
MMs represent drainage as well as leaching, spatial patterns of
predicted nitrate were qualitatively compared with patterns of
total N in streams from a previous regression model.31

Predictions by the final MMs were mapped in a GIS to show
the vulnerability of streams and groundwater in the study area.
The Corn Belt was delineated by identifying areas with >50%
corn, >50% soybean, or >20% each of corn and soybean based
on GIS classification38 of 1997 Census of Agriculture crop
data.39 We emphasized 1990s land use data because they are
current with the 1993−2003 period of groundwater sampling.

Separate GIS layers were developed at 1 km2 resolution for
each explanatory variable in the NPV model in Table 1,
resulting in over 900,000 grid cells for which predictions of
nitrate concentration and flux were made (see the SI).

■ RESULTS AND DISCUSSION
Metamodel Development and Testing. In phase 1, we

deconstructed the nitrate concentration MM by eliminating
selected variables at each modeling step to see at what point the
model performed poorly. The main objective was to see if the
MM could perform adequately without plant data, which are
difficult to obtain regionally. The base MM for nitrate
concentration (R2 = 0.984, MSE = 0.00197) slightly out-
performed the full MM (R2 = 0.983, MSE = 0.00209) (Table

2). Thus, model fit was not improved by segregating input data
by crop type. The NPV model fit the data only slightly less well
(R2 = 0.966, 0.00405) than the base model, suggesting that the
MM can perform adequately without specifying plant variables.
Variables such as plant N uptake could possibly be estimated
from Census of Agriculture crop yield data.40 For example,
prior researchers showed that annual RZWQM-estimated corn
yield was correlated with total N uptake (R2 = 0.60).41

However, Census of Agriculture data are compiled at the
county level, which would introduce spatial error because crops
typically vary within counties. Although plant variables were not
explicitly included in the NPV MMs, they are reflected in the

Table 1. Descriptions of Neural Network Metamodelsa

model

explanatory variable full base
no plant
variables simple

water content at field capacityb,
cm3 cm−3

X X X

saturated hydraulic conductivityb,
cm h−1

X X X

bulk densityb, g cm−3 X X X
total fertilizer, kg N ha−1 yr−1 X X X

corn only X
soybean only X

total irrigation, cm yr−1 X X X
corn only X
soybean only X

average temperature, °C X X X
corn only X
soybean only X

total precipitation, cm yr−1 X X X
corn only X
soybean only X

potential evapotranspiration, cm yr−1 X X
plant N uptake, kg N ha−1 yr−1 X X
mineralization, kg N ha−1 yr−1 X X
N fixation, kg N ha−1 yr−1 X X
ratio of sand to silt, layer 1 X X X X
organic matter content, average,
percent

X X X X

aEach response variable (nitrate concentration, nitrate flux) used all
indicated variables for a particular type of metamodel. bOf
predominant soil layer.

Table 2. Metamodel Fit Criteria for Both Phases of Testing

R2

model
training
MSE

training (n =
2,429)

verification (n =
1,083)

Phase 1 − Training and Verificationa

nitrate concentration,
mg L−1 as N

full model 0.00209 0.983 0.969
base model 0.00197 0.984 0.978
no plant variables 0.00405 0.966 0.958
simple model 0.0483 0.616 0.605

R2

training (n =
2,429)

verification (n =
1,203)

nitrate flux, kg N ha−1 yr−1

base model 0.00282 0.983 0.936
no plant variables 0.00764 0.914 0.905

Phase 2 − All Observationsb (n = 3,055)
nitrate concentration,
mg L−1 as N

base model 0.000755 0.996 NA
no plant variables 0.00248 0.986 NA

nitrate flux, kg N ha−1 yr−1

base model 0.00269 0.986 NA
no plant variables 0.0189 0.911 NA

aHigh observations (i.e., RZWQM2 predictions) of nitrate concen-
tration (>130 mg L−1) and/or flux (>300 kg N ha−1 yr−1), which
occurred at NE, were excluded from the metamodels. The nitrate value
was more than twice the maximum concentration in the shallow
lysimeter at the field site.33 bLow or high RZWQM2 predictions of
nitrate flux (≤10 or >100 kg N ha−1 yr−1) and low estimates of N
fixation (≤70 kg N ha−1 yr−1) were excluded in keeping with
conditions typical of the three field sites (NE, IA, MD). RZWQM2-
predicted fluxes were 27−59 kg N ha−1 yr−1 and fixation rates were
79−131 kg N ha−1 yr−1 at these sites.32,33
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RZWQM2 predictions on which these MMs are based;
therefore, the NPV MMs indirectly incorporate the effects of
plant uptake and other N cycling processes.
The fit of the simple nitrate concentration MM was

comparatively poor (R2 = 0.616, MSE = 0.0483), indicating
the importance of soil hydraulic properties (and by extension,
water fluxes) to the modeling (Table 2). In RZWQM2, WFC
and BD are used in a subroutine that scales built-in water-
retention functions, θ(h), representing different soil types.12 Ks
and θ(h) are used to estimate the unsaturated hydraulic
conductivity function, K(h), which is part of Richards’ equation
for water flow in unsaturated soils.
We evaluated predictions of nitrate flux by the base and NPV

MMs to check the performance of the latter. The NPV MM
had a moderate decrease in performance (R2 = 0.914, MSE =
0.00764) compared with the base version (R2 = 0.983, MSE =
0.00282), suggesting that plant variables are more critical to
nitrate flux than nitrate concentration (Table 2). This is
reasonable, because nitrate fluxes at all three sites were
previously shown to be dominated by plant N uptake and
fixation, according to RZWQM2-derived mass balances. At NE
and MD, estimated contributions of N by fixation (131 and 99
kg N ha−1 yr−1, respectively) exceeded those by N fertilizer (73
and 37 kg N ha−1 yr−1, respectively).33 The time-averaged
fertilizer amounts represent both corn and soybean years; corn
received 84 to 160 kg N ha−1 yr−1 in our modeling scenarios,
and soybean received 0 to 15 kg N ha−1 yr−1. Estimates of plant
N uptake at NE and MD (237 and 176 kg N ha−1 yr−1,
respectively) were 3−4 times those lost by leaching (56 and 59
kg N ha−1 yr−1, respectively). At IA, N fixation estimates (79−
80 kg N ha−1 yr−1) slightly exceeded time-averaged fertilizer N
(75 kg N ha−1 yr−1) for all three treatments, which comprised
fall or spring fertilizer applications or side-dress in conjunction
with the late season nitrate test (LSNT).32 Estimated plant
uptake of N at IA (212−224 kg N ha−1 yr−1) was up to 11 times
greater than N loss to tile drains (20−27 kg N ha−1 yr−1).
The performance of all MMs was about the same for training

and verification data sets (Table 2). For example, the nitrate
concentration NPV MM yielded R2 values of 0.966 and 0.958
for training and verification, respectively. Because these
differences were consistently small, in phase 2 we tested the
MMs using the combined data set (n = 3,055).
Phase 2 objectives were to confirm the influence of plant

variables when all of the data were considered, and to identify
final MMs for spatial extrapolation. As before, the nitrate
concentration MM saw only a slight decrease in performance
when plant variables were excluded; R2 = 0.996 and 0.986 with
and without plant variables (Table 2), and mean square error
increased by a factor of 3.3. The nitrate flux MM saw moderate
degradation of R2 when plant variables were excluded (0.986
with plant variables and 0.911 without), and MSE was 7 times
greater. The model fit criteria were corroborated by scatterplots
of observed and predicted values. The nitrate concentration
MM without plant variables had only slightly more scatter than
the base version (Figure 2A-B). Although the nitrate flux MM
without plant variables had more scatter (Figure 2C-D), it fit
the data reasonably well (R2 > 0.90). Therefore we considered
both the nitrate concentration and flux NPV MMs as final
models suitable for spatial extrapolation.
We constructed partial dependence plots to ascertain the

direction of influence of explanatory variables, including plant
variables, on nitrate flux (see Figure SI-1). N source terms
(fertilizer, mineralization, and fixation) had a positive effect on

nitrate flux, while plant N uptake had a negative effect. The
effect of N sources was consistent with prior regression studies
encompassing the region.6,11 Among soil hydraulic variables, Ks
had a positive effect, which is consistent with N transport tied
to unsaturated zone water fluxes. WFC had a negative effect,
which is reasonable because high values of this variable (>0.25)
are associated with silts and clays. Water inputs such as
precipitation and irrigation had a positive effect, which is
reasonable. In a previous study, precipitation was positively
correlated with groundwater recharge,42 which is directly
related to unsaturated-zone nitrate flux; and other researchers
showed that significantly higher N leaching occurred with less
efficient irrigation practices consisting of multiple irrigations.43

Sensitivity Analysis. Sensitivity analyses were conducted
for both the base and NPV versions of the nitrate concentration
MM to assess the influence of plant variables and their potential
surrogates. The four most sensitive variables in the base MM in
order of decreasing sensitivity were N mineralization > plant N
uptake > sand-silt ratio > N fixation, according to Sobol’s main
effect index (see Figure SI-3A). Mineralization and fixation are
important sources of N and along with plant uptake directly
affect nitrate accumulation in the shallow subsurface. The four
most sensitive variables in the NPV MM were organic matter
content > precipitation > water content > sand-silt ratio (see
Figure SI-3B). Normalizing the main effect indices by the
maximum value resulted in sensitivity values of 0.034 and 1.00,
respectively, for organic matter content in the base and NPV
MMs. The normalized sensitivity of this variable increased by a
factor of 29.7 in the NPV MM. Organic matter evidently
functioned as a surrogate for key aspects of the N cycle, such as
organic N pools and mineralization (organic matter is the
source of mineralized N). This provided evidence that the more
parsimonious NPV models (i.e., the final MMs) can effectively
substitute for the base versions in spatial extrapolation.

Metamodel Evaluation. We evaluated the final nitrate
concentration MM with measured nitrate data from a subset of
NAWQA wells identified by CART (see the SI). An additional,

Figure 2. Comparison of observed and predicted values for base and
no plant variable (NPV) metamodels of nitrate concentration (A-B)
and nitrate flux (C-D) in RZWQM2 simulation profiles. Observed
values are RZWQM2 predictions at Nebraska, Iowa, and Maryland.
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qualitative evaluation involved comparison with previous
regression results and is discussed below. The 38 wells
represented recently recharged groundwater beneath inten-
sively cropped areas of the Corn Belt. Median depth of the
wells was 5.6 m, and median open interval width was 1.5 m.
Predicted nitrate in the shallow subsurface was significantly and
positively correlated with measured groundwater nitrate
(Pearson’s r = 0.466, p = 0.003) (Figure 3). Although a fair

amount of scatter is evident, we viewed the evaluation as
favorable for several reasons. Most of the predictions are above
the 1:1 line in Figure 3, and nitrate concentrations in the
shallow subsurface, which includes the unsaturated zone, would
be expected to exceed those in the aquifer. The groundwater
samples reflect a mixture of ages at the well screen, with older
groundwater more likely to have low nitrate concentration. It is
also possible that some of the 38 wells had travel times and
redox conditions favorable for denitrification, which prior
researchers observed in portions of a sand and gravel aquifer in
eastern NE.44 Despite the positive bias between predicted and
measured nitrate, the slope of a linear fit line (1.39) is not
significantly different from the 1:1 line (p = 0.380 as
determined by a t-ratio test).
Spatial Extrapolation. Regional maps of shallow subsur-

face nitrate concentration and flux were prepared from MM
predictions for inputs compiled in GIS. Predicted nitrate
concentration was greater in the northern part of the region
and corresponded to the spatial distribution of sensitive
variables in that MM (Figure 4A). For example, organic matter
content was the most sensitive variable (Figure SI-3B), and
STATSGO values of this parameter were higher in the northern
part of the Corn Belt (data not shown). High values of organic
matter occur in the Des Moines Lobe in north-central IA, a
prominent high nitrate area in Figure 4A. The Des Moine Lobe
is an area of recent glaciation (12,000 yrs) consisting of poorly
sorted glacial till. Precipitation was the second most sensitive
variable in the nitrate concentration MM and a GIS map of this
variable shows a distinct north−south gradient, with higher
values in the south (data not shown). Higher precipitation is
associated with higher predicted water fluxes, and the predicted
nitrate concentrations are inversely proportional to water flux.

Because the MM integrates the effects of leaching and
drainage, predictions of nitrate concentration in the shallow
subsurface differ from groundwater nitrate risk predicted by
previous statistical models in the region. A logistic regression
(LR) model developed for the glacial aquifer system in the
northern USA predicted low probability of nitrate in ground-
waters of north-central IA and also for large areas of Illinois
(IL), Indiana (IN), Michigan (MI), and Ohio (OH).11 These
areas are extensively tile drained, which restricts nitrate
transport to groundwater but results in N transport to streams.1

Additionally, the median depth of private wells used in the
study was 23 m, which is well below the depth of tile drains. In
contrast, the MM predicted nitrate concentration in drainage as
well as by leaching in the shallow subsurface; therefore, areas
such as north-central IA are shown as high risk in Figure 4A. An
analysis of farm drainage in the USA showed that subsurface
drains are extensive in northern IA, IL, IN, MI, Minnesota
(MN), and OH.45 This was further corroborated by a map of
farmed areas in tile drains developed by researchers at the U.S.
Department of Agriculture46 (see Figure SI-5).
Another difference from previous aquifer vulnerability

models6,11 is that in the current study, significant amounts of
nitrate in drainage and leachate are attributable to unsaturated
zone organic matter, which is a surrogate for mineralization.
RZWQM2-estimated mineralization rates at NE and MD (88
and 93 kg N ha−1 yr−1, respectively) exceeded time-averaged
fertilizer application rates (73 and 37 kg N ha−1 yr−1,

Figure 3. Comparison of metamodel (version without plant variables)
predictions of shallow subsurface nitrate concentration with measured
nitrate in groundwater wells.

Figure 4. (A) Shallow subsurface nitrate concentration (mg L−1) and
(B) nitrate flux (kg N ha‑1 yr‑1) predicted by metamodels without plant
variables. The predictions represent leaching, tile drainage, and lateral
flow in the soil profile. Subsurface nitrate in ≥33% tile-drained areas is
more likely to impact streams, and nitrate in the remaining areas is
more likely to leach to groundwater.
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respectively).33 Similarly, mineralization estimates at IA (113−
116 kg N ha−1 yr−1) exceeded fertilizer inputs (75 kg N ha−1

yr−1). The effect of organic matter is consistent with previous
research that showed an average increase in organic N
concentration of 8.8% (320 kg N ha−1) following soybean
growth on various soils in IA.47 The organic N concentrations
represented the potential amount of N mineralized during the
growing season.
The MM predicted high nitrate concentration in south-

eastern NE (Figure 4A), which is not extensively tile drained
according to Figure SI-5. These areas have coarse textured soils
that commonly are irrigated and receive high N input, factors
that combine to promote nitrate leaching to groundwater. This
is consistent with results of a national groundwater vulnerability
model that included variables for fertilizer N, water input, and
soil texture.6

Spatial patterns of nitrate concentration predicted by the
MM generally are consistent with total N concentrations in
streams predicted by CONDOR, a multiple linear regression
model developed at national scale.31 Total N comprises nitrate,
nitrite, ammonia, and organic N, but nitrate is the primary form
of N in streams and groundwater.1 CONDOR predicted high
total N concentration (>5 mg L−1) in the same areas of the
Corn Belt shown as high risk in Figure 4A, namely eastern NE,
southern MN, and all but the southern portions of IA, IL, IN,
and OH. Excluding eastern NE, these areas are extensively tile
drained. Total N concentrations predicted by CONDOR were
less than nitrate concentrations predicted by the MM, likely
because of dilution by precipitation and overland flow in basins
with low N input.31 Precipitation and overland flow both had
negative signs in the CONDOR model. The MM indicated
high nitrate concentration for some areas of the Corn Belt that
were predicted by CONDOR to have comparatively low total
N (e.g., northern Missouri (MO) and southern MI). Such
disparities suggested areas where leaching, rather than drainage,
is the predominant N loss pathway. Both MO and MI are less
extensively tile-drained than IA, IL, IN, and OH according to
Figure SI-5. Additionally, northern MO has high values of
organic matter content according to STATSGO data, which
suggested increased N input from mineralization. Southern MI
has high organic matter content and high sand content, which
can promote nitrate leaching. Overall, CONDOR results
corroborated predictions by the nitrate concentration MM
and underscored the effect of tile drainage on streams in the
Corn Belt.
Following verification, we used the metamodel to estimate

nitrate concentration and flux for drained and undrained areas
of the Corn Belt. We separated the region into areas likely to be
tile drained (grid cells with percent drained areas ≥33%, which
is the 75th percentile of drainage extent for all 1 km2 grid cells
in the region; see the SI) and unlikely to be drained (grid cells
with percent drained areas <33%), and calculated mean
predicted nitrate concentration for each area. Mean predicted
nitrate concentration was 26 mg L−1 in likely tile drained areas
and 24 mg L−1 in areas unlikely to have drains. Predicted nitrate
concentration in tile drained areas is less than that reported for
drains in corn-soybean areas of Indiana (39 mg L−1).48

However, that study reported higher N fertilization rates on
corn and soybean than considered here (168 kg N ha−1).
Predicted nitrate fluxes generally were greater in the eastern

portion of the study area (Figure 4B), which reflected regional
patterns of precipitation and shallow subsurface water fluxes.
The latter generally were higher in the southeastern Corn Belt

(data not shown). Predicted annual nitrate mass in kg N km−2

was summed for all grid cells in the likely drained and
undrained areas. In areas where leaching predominates, the
shallow subsurface contained an estimated 4.1 × 106 metric
tons of nitrate, and areas likely to be tile-drained contained an
estimated 1.4 × 106 metric tons of nitrate. Because the drain
locations are uncertain, we repeated the analysis using the
median drained area (20%) of Midwestern states substantially
within the study area, derived from previous estimates.45,46 This
yielded estimates of 3.5 × 106 metric tons of nitrate in the likely
undrained areas and 2.0 × 106 metric tons of nitrate in the
likely drained areas. Based on these calculations, an estimated
1.4−2.0 × 106 metric tons of nitrate impacts streams annually
via drains in the Corn Belt, and an estimated 3.5−4.1 × 106

metric tons leaches beyond the root zone annually.
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