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Abstract
The total available water in the soil root zone (TAW​r), which regulates the plant transpiration, is a critical parameter for 
irrigation management and hydrologic modeling studies. However, the TAW​r was not well-investigated in current hydro-
logic or agricultural research for two reasons: (1) there is no direct measurement method of this parameter; and (2) there 
is, in general, a large spatial and temporal variability of TAW​r. In this study, we propose a framework to improve TAW​r 
estimation by incorporating the crop water stress index (CWSI) from canopy temperature into the Food and Agriculture 
Organization of the United Nations (FAO) paper 56 water balance model. Field experiments of irrigation management were 
conducted for maize during the 2012, 2013 and 2015 growing seasons near Greeley, Colorado, USA. The performance of 
the FAO water balance model with CWSI-determined TAW​r was validated using measured soil water deficit. The statistical 
analyses between modeled and observed soil water deficit indicated that the CWSI-determined TAW​r significantly improved 
the performance of the soil water balance model, with reduction of the mean absolute error (MAE) and root mean squared 
error (RMSE) by 17 and 20%, respectively, compared with the standard FAO model (with experience estimated TAW​r). The 
proposed procedure may not work under well-watered conditions, because TAW​r may not influence the crop transpiration 
or crop water stress in both daily and seasonal scales under such conditions. The proposed procedure potentially could be 
applied in other ecosystems and with other crop water stress related measurements, such as surface evapotranspiration from 
remote sensing methodology.

Introduction

The agriculture sector is the major water consumer of lim-
ited fresh water resources. Thus, efficient agricultural water 
use is critical to improve irrigation water management and 
sustain agricultural production. It is important to predict the 
root zone soil water deficit (SWD) accurately to maximize 
water use efficiency under limited irrigation water supplies 

(Fereres and Soriano 2007). In the past 30 years, the FAO-56 
(Food and Agricultural Organization, Paper 56, Allen et al. 
1998) dual crop coefficient approach, with a water balance 
model, has been one of the most common approaches for 
soil water deficit prediction as well as for irrigation schedul-
ing (Allen et al. 1998; Jensen and Allen 2016; Pereira et al. 
2002; Raes et al. 2006). Compared with other modeling 
approaches, this FAO method needs fewer data inputs and 
provides acceptable SWD estimation (Kite and Droogers 
2000; Rallo et al. 2011).

The performance of the FAO-56 model depends on the 
accuracy in determining the in situ basal crop coefficient 
(Kcb) and total available water in the root zone (TAW​r) (Cam-
pos et al. 2016; Hsiao et al. 2009; Steduto et al. 2009). Kcb 
is defined as the ratio between potential (i.e., “unstressed”) 
crop transpiration and reference evapotranspiration (ETo). 
The TAW​r is the total water available for plant use in the 
root zone, and it is used to determine crop water stress in 
the case of deficient water and amount of deep percola-
tion in the case of excess water. Kcb is mainly influenced 
by crop phenology, crop ground cover, crop variety, crop 
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height, environmental conditions and management (Allen 
and Pereira 2009), while TAW​r is influenced by the crop 
root development, soil hydraulic properties and crop type 
(Campos et al. 2016). Both parameters (Kcb and TAW​r) have 
strong temporal and spatial variability and are difficult to be 
determined accurately.

With the development of real-time monitoring tech-
nology, it is possible to better estimate Kcb and TAW​r to 
improve the performance of the FAO-56 water balance 
model. Some researchers have found good relationships 
between Kcb and crop ground cover or vegetation indices 
(Allen and Pereira 2009; Bryla et al. 2010; Hunsaker et al. 
2003, 2005; Neale et al. 1990; Trout et al. 2008). Using the 
Kcb calculated from ground crop cover or vegetation indices 
has improved the FAO-56 model in ET and SWD estimation 
(Er-Raki et al. 2007; Toureiro et al. 2017). Besides calculat-
ing Kcb directly, other studies have integrated the informa-
tion from remote sensing (Irmak and Kamble 2009; Santos 
et al. 2008), such as using actual evapotranspiration (ETa) 
estimated from remote sensing energy balance models into 
the FAO-56 model (Crow et al. 2008; Er-Raki et al. 2008; 
Geli 2012; Neale et al. 2012). However, in these studies, 
TAW​r was derived from the prior knowledge of root depth 
and soil moisture measurements. Fewer efforts were made 
to estimate TAW​r to improve SWD prediction in the FAO-
56 model. Recently, crop water stress index (CWSI) from 
canopy temperature has been successfully applied as a direct 
crop water stress measurement to determine actual transpira-
tion (Kullberg et al. 2016; Taghvaeian et al. 2014a; Zhang 
and Wang 2013). Assuming that canopy temperature-based 
CWSI is the best proxy of crop water stress, the development 
of TAW​r could be inversely estimated via an optimization 

procedure, which minimizes the difference between the crop 
water stress coefficient in the FAO-56 model (Ks) and CWSI. 
Thus, TAW​r can be estimated without the prior knowledge 
of rooting depth and soil hydraulic properties. The proposed 
approach is assumed to be closer to the true TAW​r value.

In this study, we propose a framework that incorporates 
CWSI from canopy temperature measurements into the 
FAO-56 model by inversely estimating TAW​r. The FAO-56 
water balance model SWD, with estimated TAW​r, was then 
compared with SWD measurements from a 3-year irrigation 
study in Greeley, Colorado, USA.

Materials and methods

Field experiment

A field experiment was conducted on maize (Zea mays L.) at 
the United States Department of Agriculture—Agricultural 
Research Service (USDA-ARS) Limited Irrigation Research 
Farm (LIRF), in Greeley, Colorado, USA (40°26′57″N, 
104°38′12″W, elevation 1427 m). The alluvial soils of the 
study field are predominantly sandy and fine sandy loam 
of Olney and Otero series. During the three seasons evalu-
ated, maize was planted on 1 May, 15 May, and 1 Jun in 
2012, 2013, and 2015, respectively. The plant density was 
80,000–82,000 seeds ha−1. During the three growing sea-
sons, twelve levels of growth stage based deficit irrigation 
treatments (Table 1, Column 1) were arranged in a rand-
omized block design with four replications. The crop was 
given adequate water to avoid stress during the early vegeta-
tive growth, for crop establishment, and during reproductive 

Table 1   Total irrigation and 
precipitation amounts for each 
treatment in different growth 
stage

En dash (–) indicates no treatment in that season
TR treatment
† In year 2015, TR5 was replaced by TR13

Treatment (%vegetative 
ET/%maturity ET)

Late vegetative stage Reproductive stage Maturity stage

2012 2013 2015 2012 2013 2015 2012 2013 2015†

TR1 (100/100) 305 228 242 169 127 139 181 254 200
TR2 (100/50) 302 228 242 152 122 113 47 165 34
TR3 (80/80) 245 180 203 168 128 131 145 217 147
TR4 (80/65) 245 181 203 163 128 121 68 196 88
TR5 (80/50) 243 180 – 160 128 – 44 165 –
TR6 (80/40) 243 180 202 158 128 133 41 137 1
TR7 (65/80) 200 136 161 173 149 134 136 217 160
TR8 (65/65) 199 136 161 167 149 135 68 196 70
TR9 (65/50) 197 136 161 165 150 135 56 165 25
TR10 (65/40) 197 136 161 164 150 137 41 138 1
TR11 (50/50) 157 101 130 173 158 136 57 165 25
TR12 (40/40) 129 83 117 169 158 136 41 137 1
TR13 (40/80) – – 116 – – 134 – – 150
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growth to avoid significant yield loss. The deficit irrigation 
was applied during the late vegetative growth stage and/or 
the maturity growth stage. Each treatment targeted a per-
cent of maximum non-stressed crop ET during late vegeta-
tive and maturity growth stages, respectively (e.g., 100/50 
treatment would target 100% of maximum ET during the 
late vegetative stage and 50% of maximum ET during the 
maturity stage). Each treatment plot was 9 by 43 m with 12 
rows at 0.76 m spacing. All the measurements were taken 
from the middle six rows to reduce border effects. Sum of 
actual irrigation amounts and precipitation for each treat-
ment by growth stage are shown in Table 1. During the 
growing seasons, water was applied using 16 mm diameter 
drip irrigation tubing, which was placed next to each row of 
maize. Fertilizers were applied at planting and via chemi-
gation to avoid nutrient deficiencies on all the treatments 
(DeJonge et al. 2015). Meteorological data were acquired by 
the on-site Colorado Agricultural Meteorological Network 
GLY04 weather station (CoAgMet, http://ccc.atmos​.colos​
tate.edu/~coagm​et/). The measurements included hourly 
air temperature, relative humidity, incoming shortwave 
solar radiation, horizontal wind speed at 2 m above a grass 
reference surface, and daily precipitation. Seasonal average 
climate factors in each year were shown in Table 2.

Soil water content measurement

A neutron moisture meter (CPN-503 Hydroprobe, InstroTek, 
San Francisco, CA1) was used to measure SWC at depths 
of 300, 600, and 900 mm in the middle row (6th or 7th of 
12) of each plot. SWC at the 0–150 mm layer was measured 
by a portable time domain reflectometer (MiniTrace, Soil 
moisture Equipment Corp, Santa Barbara, CA). The SWC 
measurements were taken two to three times a week, from 
middle of the vegetative stage to end of the crop growth 
season. Field capacity was estimated for each soil layer from 
SWC measurements following large irrigation or rainfall 

events, obtained during the field experiment since 2008. 
The SWC measured by neutron attenuation was assumed to 
represent the soil profile within 150 mm of the measurement 
depth (e.g., measurement taken at 300 mm was assumed as 
a homogeneous representation of the soil profile between 
depths of 150 and 450 mm). Because there was no evidence 
of water uptake from deeper soil layers, the observed SWD 
in each plot was calculated by adding soil water deficits from 
0 to a depth of 1050 mm. More detailed information about 
soil water measurement and soil deficit calculation can be 
found in DeJonge et al. (2015).

Canopy temperature measurement

Canopy temperature of maize was continuously measured 
by thermal infrared radiometers (IRT, model: SI-121, Apo-
gee Instruments, Inc., Logan, Utah, USA). The IRT meas-
urement error (bias) was ± 0.2 °C. IRTs were installed on 
a fixed stand and pointed in an oblique fashion to ensure 
viewing primarily crop canopy. The IRT angle was set 23° 
below the horizon and 45° from north (looking northeast). 
During the vegetative growth stage, the height of IRT was 
adjusted twice per week to keep it at 0.8 m above the top of 
the crop canopy. Treatments on which canopy temperature 
was measured each season are shown in Table 3. Averaged 
IRT measurements were recorded by data-loggers (model: 
CR1000, Campbell Scientific Inc., Logan, Utah, USA), on 
30 min intervals. More details about IRT measurements and 
calibration could be found in (DeJonge et al. 2015).

IRT canopy temperature measurements and vapor pres-
sure deficit (VPD) from Treatment 1 (fully irrigated) follow-
ing irrigation events on 14, 21 and 11 sunny days in 2012, 
2013 and 2015, were used to establish a non-stress baseline 
for maize. The canopy temperature, air temperature and 
VDP at 11:00, 12:00, 13:00 and 14:00 Mountain Standard 
Time (MST) from each selected day were used (Idso et al. 
1981; Taghvaeian et al. 2014b). The net radiation and air 
temperature at 11:00, 12:00, 13:00 and 14:00 MST from 
each selected day were used to calculate the seasonal average 
net radiation and temperature. The seasonal average aero-
dynamic and potential canopy resistances were calculated 
based on the slope and intercept of the non-stress baseline, 
using Eqs. (23 and 24) (from “Appendix 1”).

Table 2   Average daily weather 
conditions during the growing 
season (from seeding to harvest) 
in 2012, 2013 and 2015

Tmean is the mean daily temperature (°C), Tmax is the maximum daily temperature (°C), Tmin is the minimum 
daily temperature (°C), VPD is the vapor pressure deficit (kPa), RHmax is the maximum relative humidity 
(%), RHmin is the minimum relative humidity (%), u2 is the daily averaged wind speed from 2 m height 
(km day−1), Rn is the average daily net radiation (MJ m−2); P is sum of the seasonal precipitation (mm)

Year Tmean Tmax Tmin VPD RHmax RHmin Rn u2 P

2012 20 30 11 1.06 0.88 0.19 23 175 124
2013 20 30 12 1.28 0.92 0.25 22 184 192
2015 19 28 8 1.24 0.96 0.25 20 144 129

1  Mention of trade names or commercial products in this publication 
is solely for the purpose of providing specific information and does 
not imply recommendation or endorsement by the U.S. Department 
of Agriculture.

http://ccc.atmos.colostate.edu/~coagmet/
http://ccc.atmos.colostate.edu/~coagmet/
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Hourly CWSI values at 11:00, 12:00, 13:00, and 14:00 
MST were calculated using Eq. (13) and the theoretical 
model in “Appendix 1” (Clawson et al. 1989; Jalali-Farahani 
et al. 1993) during the IRT measurement period for each 
year. Daily CWSI was then obtained by averaging the CWSI 
values over 4 h in each day. CWSI for each growth stage was 
calculated by average measured daily CWSI values in each 
growth stage.

Model and parameter determination

FAO‑56 soil water balance model

According to Allen et al. (1998), the root zone soil water 
balance, at daily time steps, is given by the Eq. (1) below.

where SWDri is the root zone soil water deficit on day i, 
SWDri−1 is soil water deficit on day i−1, Ti is actual plant 
transpiration on day i, Ei is soil evaporation on day i, DPi is 
deep water percolation from the root zone on day i, Pi and 
Ii are gross precipitation and net irrigation (that infiltrates 
into the soil), respectively, on day i, ROi is the runoff from 
soil surface on day i, and CRi is the capillarity rise from 
the ground water. The units of the above components are 
in mm day−1.

In this study, we assumed there was no surface runoff 
(ROi) in the field (drip irrigation system, low slope and 
moderately high soil infiltration, with no observed runoff 
events due to high rainfall), and the capillarity rise (CRi) 
was assumed to be nonexistent considering the 6 m deep 
water table. The maximum effective maize root zone depth 

(1)
SWDr

i
= SWDr

i−1 + T
i
+ E

i
+ DP

i
− (P

i
− RO

i
) − I

i
− CR

i
,

observed in this field was around 1.05 m (Comas et al. 
2013).

The SWDri is limited by the total plant available water 
in the root zone, and the minimum value of SWDri is zero, 
when soil water content is at field capacity. Deep percolation 
only occurred when calculated SWDri is less than zero, fol-
lowing a large rain or irrigation event (projected soil water 
content (SWC) exceeds field capacity in the soil root zone). 
In this case, the SWDri will be reset to zero and the excess 
of water will be assigned to deep percolation (Allen et al. 
1998).

According to Allen et al. (1998), actual transpiration (Ti) 
and actual soil evaporation (Ei) in Eq. (1) are determined by 
the dual coefficient method:

where, Ks,i is the water stress coefficient, which ranges from 
0 to 1 and decreases crop transpiration based on soil water 
availability (more details in Sect. “Water stress coefficient, 
Ks,i”). Kcb,i is the basal crop coefficient, which is the ratio of 
crop potential transpiration to reference crop evapotranspi-
ration. ETo,i is the reference crop evapotranspiration (either 
alfalfa or grass, in this study is grass based) on day i, and Ke,i 
is soil water evaporation coefficient on day i.

Water stress coefficient, Ks,i

The water stress coefficient is affected by TAW​r, SWDr, and 
potential transpiration rate. Colaizzi et al. (2003) found that 
Ks determined by the approach (Eq. 4) suggested by Jensen 
et al. (1970) had a better correlation with CWSI than the Ks 
from the FAO-56 approach (Allen et al. 1998). Thus in this 
study, the Ks was defined as (Colaizzi et al. 2003; Jensen 
et al. 1970):

where the fDEPi−1 is the ratio of current root zone soil water 
deficit on day i−1 (SWDri−1) and root zone total available 
water on day i (TAW​ri):

where RIniDeepi is the initial soil water deficit in deeper soil 
layers that does not affect plant transpiration at the beginning 
of simulation, before root system is developed.

At the beginning of the simulation, only the observed 
initial soil water deficit at the 0–150 mm depth was used in 
the soil water balance model. As roots develop, initial soil 
water deficit in the eventual root zone below the initial root 

(2)T
i
= Ks,i × Kcb,i

× ET0,i,

(3)Es,i = Ke,i × ET0,i,

(4)Ks,i =
ln[(1 − fDEP

i−1) × 100 + 1]

ln(101)
,

(5)fDEP
i−1 =

SWDr,i−1 + RIniDeep
i

TAWr
i

,

Table 3   Treatments on which canopy temperature was measured in 
2012, 2013, and 2015

Treatment (%vegetative 
ET/%maturity ET)

2012 2013 2015
6/20–9/3 7/2–9/10 7/14–9/20

TR1 (100/100) x x x
TR2 (100/50) x x x
TR3 (80/80) x
TR4 (80/65)
TR5 (80/50)
TR6 (80/40) x x
TR7 (65/80)
TR8 (65/65) x x x
TR9 (65/50) x
TR10 (65/40) x x
TR11 (50/50) x
TR12 (40/40) x x x
TR13 (40/80) x
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zone (from 150 to 1050 mm) was linearly added to the soil 
water balance model as the increase of TAW​r, by:

where IniDeep is the observed initial soil water deficit in 
deeper soil layers (150–1050 mm in this study), TAW​ri is 
the current total available water in root zone for crop uptake. 
TAW​min is the minimum total available water in root zone, 
which is the value before root development. TAW​max is the 
maximum total root zone available water, when root reaches 
its maximum depth; more detailed explanations of TAW​ri, 
TAW​min and TAW​max are in Sect. “Total available water, 
TAW​r”.

At the end of each day, IniDeep is reduced by the deep 
percolation from the root zone:

and DPi is updated by:

Total available water, TAW​r

The total available water in the root zone (TAW​r) is affected 
by soil texture and rooting depth, and is calculated by the 
following equation (Allen et al. 1998):

where θFC is the volumetric water content at field capacity 
(mm mm−1), θWP is the soil volumetric water content at the 
wilting point (mm mm−1), and Zr is the effective rooting 
depth (mm).

(6)RIniDeep
i
= IniDeep ×

TAWr
i
− TAWmin

TAWmax − TAWmin
,

(7)IniDeep = max
(
IniDeep − DP

i
, 0

)
,

(8)DP
i
= max

(
DP

i
− IniDeep, 0

)
.

(9)TAWr
i
= (�FC − �WP) × Zr,i,

By assuming a linear root zone increase during the grow-
ing season, the development of Zr could be described by 
Steduto et al. (2009):

When ti < t1,

When t1 < ti <tx,

When ti > tx,

where ti is any day after planting, t1 is the day after plant-
ing when effective rooting depth begins to increase from its 
minimum value (Zmin), and tx is the day when effective root 
depth reaches its maximum (Zmax). The development of the 
effective root zone depth is shown in Fig. 1a.

Based on Eqs. 10–12, the development of TAW​r during 
the growing season was estimated and shown as a solid line 
in Fig. 1b. The dynamics of TAW​r was mainly controlled 
by the increase in the effective root zone depth; whereas 
the total plant available water, θFC − θWP, in each soil layer 
affects the rate of change the TAW​r (the solid line in Fig. 1b).

At least six parameters for each soil layer (t1, tx, Zmin, Zmax, 
and θFC, and θWP), and prior knowledge on soil texture, are 
needed to estimate TAW​r with the above procedure. In this 
paper, a new approach was proposed to determine the TAW​
r instead of using Eqs. 10–12, and with fewer parameters 
and without the need of prior knowledge of soil properties:

When ti < t1.

(10)Z
r,i = Zmin.

(11)Zr,i = Zmin + (Zmax − Zmin) ×
t
i
− t1

t
x
− t1

.

(12)Zr,i = Zmax,

Fig. 1   Crop root development (a) and TAW​r development (b). TAW​r is the total available water in the root zone



192	 Irrigation Science (2018) 36:187–201

1 3

When t1 < ti <tx

When ti > tx

where TAW​min is the minimum root zone soil total available 
water in mm and TAW​max is the maximum root zone soil 
total available water in mm.

The TAW​r calculated from Eqs. (13–15) is shown as a 
dashed line in Fig. 1b, which is close to that estimated from 
Eqs. (10–12), but with only four parameters (t1, tx, TAW​min, 
TAW​max), and these four parameters will be estimated by an 
optimization procedure (Sect. “Inverse procedure for TAW​r 
estimation”).

Evaporation and basal transpiration coefficients, Ke and Kcb

The estimation of evaporation coefficient (Ke) in Eq.  (3) 
requires knowledge of the maximum soil evaporation depth 
(Ze) and soil hydraulic properties (θFC and θWP) in the surface 
soil layer to determine the total available water for evapora-
tion (similar to Eq. 9) (Allen et al. 1998). The maximum soil 
evaporation depth (Ze) was assumed as 100 mm (Allen et al. 
1998). As the seeding depth in this experiment is 50 mm, it 
is reasonable to assume that the effective rooting depth at the 
beginning of root development (Zmin) is the same as the maxi-
mum soil evaporation depth (Ze). Based on this assumption, 
total available water for soil evaporation was the same as total 
available water for crop transpiration (TAW​min). The Kcb_mid, 
Kcb_ini, and Kcb_end were obtained from the FAO-56 document 
(Kcb_ini = Kcb_end), and Kcb_mid was adjusted based on local cli-
mate (wind speed, relative humility and crop height) (Allen 
et al. 1998). When fractional canopy cover was larger than 0.8, 
Kcb,i was equal with Kcb_mid, and when fractional canopy cover 
was smaller than 0.2, Kcb,i was equal with Kcb_ini = Kcb_end, 
and when Kcb,i ranged between 0.2 and 0.8, Kcb was linearly 
increased from Kcb_ini to Kcb_mid (Allen et al. 1998).

The calculation procedure of the water balance model is 
shown in Fig. 2.

CWSI to determine Ks

One of the widely used methods for estimating crop water 
stress index (CWSI) is based on measured canopy tempera-
ture (Idso 1981; Jackson et al. 1981, 1988).

CWSI is defined in Eq. 16 by the upper (Tc − Ta)u and 
lower boundary (Tc − Ta)l of temperature difference between 
the crop canopy and the air above it, where (Tc − Ta)u and 

(13)TAWr
i
= TAWmin.

(14)

TAWr
i
= TAWmin + (TAWmax − TAWmin) ×

t
i
− t1

t
x
− t1

.

(15)TAWr
i
= TAWmax,

(Tc − Ta)l represent non-transpiring and fully transpiring con-
ditions, respectively (Idso et al. 1981; Jackson et al. 1981).

where (Tc − Ta)i is the difference between canopy tempera-
ture (Tc, °C) and air temperature (Ta, °C) on day i. When a 
crop is under full soil–water condition or no water stress, 
the CWSI value is close to 0; while for a crop under severe 
water stress condition, CWSI is close to 1. A detailed cal-
culation procedure for (Tc − Ta)u and (Tc − Ta)l can be found 
in “Appendix  1”. To inversely calculate TAW​r through 
Eqs. (13, 14 and 15), the water stress coefficient (Ks_CWSI) 
from CWSI was determined as:

When CWSI = 0 then Ks = 1, there is no limitation 
on plant transpiration. However, as the value of CWSI 
approaches 1, then Ks will approach 0. In this case, the plant 
transpiration will shut down due to severe water stress.

Inverse procedure for TAW​r estimation

In the above soil water balance model, the unknown param-
eters are t1, tx, TAW​min, TAW​max in Eqs. (13–15). The soil 
water balance model estimates the daily SWDr, which can be 
used to estimate the daily water stress coefficient Ks for any 
given t1, tx, TAW​min, TAW​max. Alternatively, the CWSI stress 
coefficient (Ks_CWSI) can be calculated using Eq. 17 which 
integrates canopy temperature measurements. Therefore, an 
optimized procedure is proposed to estimate t1, tx, TAW​min, 
and TAW​max by minimizing the difference between the Ks 
calculated from a soil water balance model and Ks_CWSI 
from canopy temperature measurements (Fig. 3).

(16)CWSI
i
=

(Tc − Ta)i − (Tc − Ta)l

(Tc − Ta)u − (Tc − Ta)l
,

(17)Ks_CWSI
i
= (1 − CWSI

i
).

TAWri

SWDr,i-1

Climate 
Factors

ET0

Ti Es,i

Eq.3

Eq.4&5

Water balance model

t1, tx, TAWmin, TAWmax

Eq.13-15

FAO Kcb

Ks,i

Ke,i

SWDr,i

Eq.1

Eq.2

Pi & Ii

IniDeepi-1

RiniDeepi

Eq.6

DPi

IniDeepiDPi

Eq.8 Eq.7

SWD=IniDeepi+SWDr,i

Fig. 2   FAO-56 water balance model calculation procedure
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First, the coefficient of determination (R2) between Ks and 
Ks_CWSI was optimized. In the optimization, when R2 (for 
the linear regression between Ks and Ks_CWSI) was larger 
than 0.5, the absolute difference (mean absolute error, MAE) 
between Ks and Ks_CWSI was minimized. The procedure 
was applied using a multi-objective optimization package 
(mco) in the statistical program R (Mersmann et al. 2014). 
The objective function was defined as follows (Mersmann 
et al. 2014):

When

Minimize

where n is the total number of observations,`Ks,i 
and`Ks_CWSIi are the daily mean value of water stress 
from the soil water balance model and from the CWSI, 
respectively.

Uncertainty of TAW​r and its influence on crop 
transpiration

After the optimal TAW​r from CWSI was obtained from 
the above iterative procedure (Fig. 3), the Markov chain 
Monte Carlo (MCMC) method with Metropolis Hast-
ings sampling algorithm was applied to determine the 

(18)

R
2 =

∑n

i=1
(Ks,i − K̄s,i)(Ks_CWSI

i
− K̄s_CWSI

i
)

�
∑n

i=1
(Ks,i − K̄s,i)

2 ∑n

i=1
(Ks_CWSI

i
− K̄s_CWSI

i
)
2

≥ 0.5.

(19)MAE =

∑n

i=1
��Ks,i − Ks_CWSI

i
��

n
,

probability distribution of TAW​r parameters. The output 
from MCMC provides a set of acceptable TAW​r param-
eters values, which captures the probabilistic certainty of 
TAW​r parameters in light of the observed crop water stress 
coefficient (Ks_CWSI). The accepted TAW​r parameter set 
could be used to determine the probability distribution 
and uncertainty of estimated TAW​r. Additional details 
of the MCMC algorithm are described in Gelman et al. 
(2013). For this study, the MCMC technique using one 
chain for each treatment in 3 years was implemented, and 
each chain consisted of 3000 acceptable samples of TAW​
r. To accelerate the convergence of the MCMC chain, the 
obtained optimized TAW​r was used as the starting point 
for each MCMC chain. The first 1500 acceptable samples 
of TAW​r were treated as a “burn in” period and were dis-
carded (Gelman et al. 2013; Hartig et al. 2012). Thus, a 
total of 1500 acceptable samples of TAW​r were obtained 
for each treatment across 3 years, and were used to deter-
mine parameter probability distributions. The “metrop” 
function in R “mcmc” package was used for above MCMC 
application (Geyer and Johnson 2015).

To study the impact of TAW​r on crop transpiration 
under different irrigation levels, a scenario (sensitivity) 
study was carried out. Three irrigation levels and five 
TAW​max levels (120, 100, 90, 80, 70 mm) were considered. 
The three irrigation levels, TR1 (100/100), TR8 (65/65) 
and TR12 (40/40) were chosen to represent different con-
ditions of water availability, including well-watered condi-
tion (STR 1), medium water availability condition (STR8), 
and severe deficit condition (STR12) in 2015. The input of 
water balance model (except TAW​max and irrigation sched-
ule) for TR1 in 2015 was used for this scenario study, and 
the model was run fifteen times with different levels of 
irrigation and TAW​max. The impact of TAW​max on crop 
transpiration under different irrigation levels at daily and 
seasonal scales was studied.

Evaluation of optimized TAW​r

To evaluate the performance of the optimized TAW​r method 
on the soil water deficit prediction, the soil water balance 
model, with the optimized TAW​r (Model-TAW​r), was com-
pared with the observed soil water deficit. In addition, for 
comparison purposes, another simulation scenario was used 
running the water balance model using empirical param-
eters, 7, 68, 20.25, and 120 mm for t1, tx, TAW​min, TAW​
max, respectively (Model-FAO). These parameters were set 
based on soil texture, the rooting depth and crop growth 
stage measurements. Root Mean square error (RMSE), 
Nash–Sutcliffe coefficient (Nash), and mean absolute error 
(MAE) were used to evaluate the goodness of model simula-
tion (Nash and Sutcliffe 1970; Willmott 1982).

Water balance 
model in Figure 2

End of 
optimiztion? 

Run water 
balance model 
(Figure 2) with 

optimized 
TAWr

True

t1, tx, TAWmin, 
TAWmax

Daily Ks
Canopy 

temperature

Ks_CWSICompare Ks
 and Ks_CWSI

False

Fig. 3   The inverse procedure to determine TAWr from canopy tem-
perature
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Results and discussion

Calculated CWSI

A strong negative correlation between VPD and Tc − Ta (p 
value < 0.001) was found with data from 3 years (Fig. 4). 
The coefficients of non-stress baseline are shown in Fig. 4, 
and calculated seasonal average ra and rcp were 11.55 (s m−1) 
and 38.88 (s m−1), respectively. The coefficients for the base-
line were similar to those obtained by previous studies in 
Greeley, Colorado (DeJonge et al. 2015; Taghvaeian et al. 
2014b), where the slope “b” ranged from − 1.79 to − 2.0, 
and the intercept “a” ranged from 2.3 to 3.4 for maize in this 
region. Results obtained in this study are reasonable, since 
other studies reported similar values. The average resist-
ances obtained by O’Toole and Real (1986) obtained were 
ra of 14.9 s m−1 and rcp of 56.3 s m−1. Jackson et al. (1981) 
stated that it was reasonable to use a constant ra, around 
6–10 m s−1. Tolk (1992) reported the values of`rcp ranging 
from 30 to approximately 110 s m−1 during the corn growing 
season. Thus, the parameters (ra and rcp) obtained for CWSI 
in this study are reasonable.

Average CWSI values by growth stage in each year 
are shown in Table 4. In the late vegetative stage, CWSI 
responded to the water stress created by the treatments. 
When crops entered the reproductive stage, full irriga-
tion was resumed for all treatments and all CWSI values 
decreased to between 0 and 0.2. When crops reached the 
maturity stage, CWSI values increased again in those treat-
ments in which deficit irrigation was resumed. For TR13 
(40/80), more water was applied during the maturation stage 
than the vegetation stage in 2015. Therefore, CWSI value for 

y = -1.9327x + 3.1838 
R² = 0.895 
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Fig. 4   Non-water stress baseline developed in this study with obser-
vations from the full irrigation treatment in 2012, 2013 and 2015 
(Tc − Ta = b × VPD + a; dash line and gray dots)
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TR13 in the maturation stage was lower than that in the veg-
etative stage. Consequently, calculated CWSI in this study 
responded well as expected to crop water stress differences 
between treatments and growth stages.

Soil water deficit

Model-TAW​r resulted in improved estimation of soil water 
deficit compared to Model-FAO (Table 5; Fig. 5). Using 
TAW​r estimated from CWSI, the averaged Nash coefficient 
of all treatments and for all 3 years increased from 0.28 to 
0.5; while the averaged RMSE and MAE of all treatments 
during all 3 years decreased from 14.4 to 17.2 to 11.5 and 
14.3 mm, respectively. This means a reduction of the RMSE 
and MAE by 17 and 20%, respectively, compared with 
Model-FAO. Model-FAO overestimated soil water deficit, 
due to overestimation of TAW​r, especially in Treatment 8 
(Table 5; Fig. 5). Comparing simulated soil water deficit 
with Model-TAW​r, it was clear that Model-TAW​r could 
well-describe the response of soil water deficit to irriga-
tion management in each treatment (Fig. 5). Overall, the 
soil water deficit estimated by Model-TAW​r was reasonable 
for all treatments in all 3 years. Using the TAW​r estimated 

from CWSI, the model was able to improve water deficit 
estimation.

Optimized parameters and uncertainty

The optimized parameters for Model-TAW​r through the iter-
ative process are shown in Table 6. The optimized soil water 
balance model using the CWSI approach seemed to yield a 
reasonable value for the TAW​r, compatible with the empiri-
cal values from field measurements. The average value of 
the field estimated field capacity in this experimental field 
was 0.20–0.24 m3 m−3. The root length distribution in the 
experiment field varied considerably between treatments. 
For deficit irrigation treatments, deeper root systems were 
found than for the full irrigation treatment (Comas et al. 
2013). The observed maximum rooting depth varied from 
800 mm to 1050 mm in year 2012. It is common for maize 
irrigation to assume that the soil volumetric water content 
at wilting point is 50% of field capacity (Allen et al. 1998; 
DeJonge et al. 2015). Thus, the estimated maximum TAW​
r from experimental data (TAW​r − E) ranged from 80 mm 
(0.20 × 800 × 0.5) to 126 mm (0.24 × 1050 × 0.5). As shown 
in Table 6, most of CWSI derived maximum TAW​r values 
were within the range of TAW​r − E. Furthermore, the CWSI 

Table 5   Statistical analysis of modeled and observed soil water deficit (mm) by different scenarios

Model-TAW: soil water balance model with optimized TAW​r and Kcb estimated from crop coverage. Model-FAO: soil water balance model with 
experience TAW​r and Kcb estimated from FAO document
Nash Nash–Sutcliffe model efficiency coefficient, RMSD root-mean-square deviation, MAE mean absolute error

Year Treatment Nash RMSE MAE

Model-FAO Model-TAW​ Model-FAO Model-TAW​ Model-FAO Model-TAW​

2012 TR1 (100/100) 0.15 -0.02 16.10 17.63 13.16 14.84
TR2 (100/50) 0.88 0.86 9.99 10.65 8.34 8.58
TR6 (80/40) 0.87 0.79 11.37 14.77 9.71 12.45
TR8 (65/65) 0.43 0.77 16.00 10.13 14.16 8.31
TR10 (65/40) 0.56 0.81 16.73 10.93 15.18 8.67
TR12 (40/40) 0.49 0.60 16.28 14.44 15.34 13.36

2013 TR1 (100/100) − 0.50 0.29 21.54 14.88 17.76 11.21
TR2 (100/50) 0.20 0.51 20.71 16.19 17.62 13.09
TR6 (80/40) − 0.46 0.29 28.66 19.96 24.86 17.18
TR8 (65/65) − 0.23 0.61 22.73 12.78 20.03 9.96
TR12 (40/40) 0.45 0.68 20.00 15.10 17.61 12.14

2015 TR1 (100/100) 0.48 0.34 12.84 14.53 9.95 11.18
TR2 (100/50) 0.72 0.82 15.71 12.54 12.80 10.09
TR3 (80/80) 0.30 0.58 15.74 12.18 12.49 9.30
TR8 (65/65) − 1.03 0.06 27.37 18.63 19.94 14.10
TR9 (65/50) 0.23 0.76 19.50 10.83 16.00 8.90
TR10 (65/40) 0.88 0.89 10.18 9.86 8.15 7.11
TR11 (50/50) 0.75 0.82 12.97 10.82 10.25 7.39
TR12 (40/40) 0.65 0.81 14.44 10.67 11.91 8.95
TR13 (40/80) 0.27 0.53 19.23 15.40 15.04 11.63
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Fig. 5   Comparing simulated daily soil water deficit by Model-TAW 
and Model-FAO, with measured soil water deficit (black points) in 
2012, 2013 and 2015. Model-FAO is the water balance model with 
estimated TAWr from experiment. Model-TAW is the water balance 

model with estimated TAWr from canopy temperature. RAWr is the 
readily available water in the root zone, and TAWr is the total avail-
able water in the root zone. See Table  1 for TR1 (100/100), TR8 
(65/65), TR10 (65/40) and TR12 (40/40)

Table 6   Optimized parameters 
and their 95% confidence 
interval (in parentheses) for 
TAW​r parameters

t1, tx, TAW​max, and TAW​min are parameters for TAW​r development in Eq. 11

Year Treatment t1 tx TAW​max TAW​min

2012 TR1 (100/100) 15.6 (6.0, 20.0) 54.3 (50.2, 70.0) 76.7 (70.1, 77.0) 18.1 (18.0, 22.0)
TR2 (100/50) 16.1 (6.0, 16.1) 62.9 (50.0, 64) 89.3 (88.8, 91.3) 19 (18.0, 22.0)
TR6 (80/40) 12.8 (6.0, 15.7) 56.5 (50.0, 66.8) 104.9 (103.3, 110.7) 18.2 (18.0, 20.3)
TR8 (65/65) 13.3 (6.0, 20.0) 67.8 (52.0, 70.0) 71.3 (70.0, 79.0) 19.8 (18.0, 21.7)
TR10 (65/40) 12.6 (6.0, 16.5) 62.9 (50.0, 58.6) 104.4 (99.4, 104.1) 18.6 (18.0, 20.5)
TR12 (40/40) 17.2 (6.0, 20.0) 68.7 (66.0, 70.0) 116.3 (111.1, 127.1) 20.6 (18.0, 22.0)

2013 TR1 (100/100) 17.3 (6.0, 20.0) 56.1 (50.3, 59.9) 72.5 (70.0, 84.5) 18.1 (18.0, 21.6)
TR2 (100/50) 17.5 (6.0, 20.0) 54.6 (50.1, 61.7) 82.1 (72.2, 84.2) 18.1 (18.0, 21.0)
TR6 (80/40) 14.2 (11.0, 20.0) 59.4 (50.5, 57.0) 93.4 (92.6, 97.2) 18.3 (18.0, 19.7)
TR8 (65/65) 18.6 (14.3, 20.0) 67.1 (60.0, 70.0) 89.1 (85.2, 96.6) 18.4 (18.0, 20.4)
TR12 (40/40) 11.4 (12.9, 19.9) 69.3 (69.1, 70.0) 110.8 (97.7, 107) 19.9 (18.0, 22.0)

2015 TR1 (100/100) 18.7 (6.6, 19.1) 50.6 (51.3, 69.9) 85 (70.0, 86.9) 18.4 (18, 22.0)
TR2 (100/50) 12.2 (6.2, 19.8) 54.5 (50.0, 60.1) 95.7 (94.5, 102.3) 21.9 (18, 22.0)
TR3 (80/80) 12.4 (6, 19.1) 60.1 (50, 65.7) 70.9 (70.1, 82.8) 21.7 (18, 22.0)
TR8 (65/65) 16.1 (12.2, 20.0) 60.1 (50.1, 60.6) 86.5 (83.9, 88.9) 21.6 (18, 22.0)
TR9 (65/50) 16 (6.1, 20.0) 68.3 (61.3, 70.0) 85.6 (83.4, 86.7) 21.1 (18, 22.0)
TR10 (65/40) 15.4 (9.4, 20) 64.8 (52.5, 68.3) 108.3 (105.8, 110.8) 20.3 (18, 22.0)
TR11 (50/50) 15.2 (13.4, 19.9) 66.6 (66.0, 70.0) 93.4 (88.4, 91.7) 20.5 (18.1, 22.0)
TR12 (40/40) 15.9 (12.3, 19.5) 69.6 (66.6, 70) 103.6 (101.4, 104.7) 21.4 (18.1, 22.0)
TR13 (40/80) 14.2 (6.0, 18.0) 66.1 (64.5, 70) 72.2 (70.0, 73.4) 20.2 (18.1, 22.0)
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derived TAW​r had a significant relationship with the total 
irrigation and precipitation amounts during the growing sea-
son (Fig. 6). The TAW​r increased with the decrease in the 
total irrigation and precipitation.

The TAW​r parameter distributions of TR1, TR8 and TR12 
are shown in Fig. 7. Normal distributions with narrow ranges 
are associated with well-quantified parameters, indicating 
that Ks is sensitive to those parameters. TAW​max, which 
determines the maximum total available water in the root 
zone, was the most sensitive and best identified parameter. 
On the other hand, TAW​min showed a flat distribution and 
thus was not well-identified; thus the changing of TAW​min 
had limited impact on Ks. Comparing the distributions of 
parameters among different treatments, the parameters in 
deficit treatments TR8 and TR12 were better identified. This 

Fig. 6   Relationship between optimized maximum TAW​r and total 
irrigation and precipitation in 2012, 2013, and 2015

Fig. 7   Probability distributions of TAWr parameters in TR1 (100/100), TR8 (65/65) and TR12 (40/40) in 2015
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result may indicate that the irrigation level has an impact on 
estimating TAW​r using the CWSI approach.

The actual TAW​r is difficult to measure in the field due to 
variability of soil texture and crop rooting depth. Estimates 
of TAW​r estimated from CWSI were reasonable, because the 
variation of the TAW​r (derived from CWSI) between treat-
ments could be explained by the total irrigation and precipi-
tation and because it improved the soil water balance model 
(SWDr) prediction as reported in Table 5.

Impact of TAW​max on transpiration under different 
irrigation levels

The impact of TAW​max on seasonal transpiration with differ-
ent irrigation levels is shown in Fig. 8. Seasonal transpira-
tion decreases with the decreasing TAW​max and irrigation 
amounts, due to reduced soil water holding capacity. The 
reduction in seasonal transpiration between TAW​max values 
of 120 and 70 mm was 19, 54 and 55 mm, or by 4, 14 and 
21% for STR1, STR8 and STR12, respectively. The slopes of 
the decreasing trend between TAW​max and seasonal transpi-
ration were 0.39, 0.93 and 0.98 for STR1, STR8 and STR12, 
respectively. Thus, TAW​max has little impact on seasonal 
transpiration in well-watered scenarios, but it has a strong 
impact on seasonal transpiration under deficit irrigation and 
water stress conditions. The impact of TAW​max on daily tran-
spiration with different irrigation level is shown in Fig. 9. 
The change of daily transpiration caused by TAW​max was 
small in the well-watered scenario and during well-irri-
gated periods (8/3/2015–8/23/2015), and it was substantial 

under deficit irrigation conditions. This explains the lack of 
improvement using Model-TAW and lower estimated TAW​
max for treatment TR1 (100/100) (Tables 5, 6; Fig. 7). The 
optimization procedure could not find the reasonable TAW​
max values in TR1, since the change of TAW​max does not 
substantially influence the crop transpiration or crop water 
stress index for the fully watered crops.

Applications and limitations

Currently, multispectral remote sensing observations of 
canopy characteristics are available from various platforms, 
such as satellite, airborne, unmanned aerial vehicles, as well 
as ground-based systems. These remote sensing data have 
widely been used to estimate instantaneous (hourly) actual 
ET and crop water stress indices (Allen et al. 2007; Colaizzi 
et al. 2012; Sayago et al. 2017). Except for the measure-
ments from IRT sensors, other remote sensing measurements 
have relatively low temporal resolution to provide continu-
ous actual ET and crop water stress estimations due to low 
revisit frequency (temporal resolution) or cloud cover condi-
tion. Various hydrologic and agricultural system models are 
able to provide continuous ET and water stress estimations. 
However, most applications of these models used estimated 
or assume TAWr value that can only be validated by devel-
oping hydrographs at river-basin outlets (large scale water 
balance) or using intensive soil water content measurements. 

Fig. 8   Impact of TAW​max on crop seasonal transpiration with three 
irrigation levels in 2015. STR1-scenario with irrigation schedule 
of TR1 (100/100), STR8-scenario with irrigation schedule of TR8 
(65/65), STR12- scenario with irrigation schedule of TR12 (40/40) Fig. 9   Impact of TAW​max on crop daily transpiration with three 

irrigation levels in 2015e. STR1- scenario with irrigation sched-
ule of TR1 (100/100), STR8-scenario with irrigation schedule of 
TR8 (65/65), and STR12-scenario with irrigation schedule of TR12 
(40/40)
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Thus, there is limited confidence on the accuracy of actual 
ET predicted by these models. In this study, the proposed 
framework couples the CWSI (from canopy temperature 
measurements) and the FAO soil water balance model to 
provide more accurate and continuous actual ET and soil 
water deficit estimations. The CWSI in the proposed frame-
work could be replaced by actual ET values estimated from 
multispectral remote sensing data, because actual ET is also 
regulated by TAWr. The FAO water balance model could 
be replaced with other hydrologic models such as SWAT 
model.

Compared with other studies that tried to assimilate ET 
from remote sensing and ET from FAO-56 model simula-
tion (Er-Raki et al. 2008; Neale et al. 2012), the proposed 
approach does not need previous knowledge of TAW​r and 
thus may be more applicable when root development and soil 
textures are not available. At the same time, the data assimi-
lation approach presented in (Er-Raki et al. 2008; Neale et al. 
2012) only change the modeled ET when remotely sensed 
ET is available. The proposed framework used discontinu-
ous remotely sensed measurements to determine the TAWr 
curve. Then, the TAWr curve regulates modeled ET during 
the whole growing season. Therefore, this framework may 
provide a solution or an alternative to the knowledge gap 
regarding estimating TAW using remote sensing data; which 
is not solved by data assimilation approaches.

The limitation of the proposed framework is that it 
requires remote sensing measurements of canopy tempera-
ture under crop water stress conditions. The TAWr estima-
tion (as proposed in this study) does not apply if the crop 
is not under soil water stress conditions. The reasons for 
this limitation could be the large uncertainty in estimated 
TAWr when all remote sensing measurements are under 
non-water stress condition (Sect. “Optimized parameters and 
uncertainty”), and that the change of TAWr has little impact 
on crop water stress/ET under non-water stress condition 
(Sect. “Impact of TAW​max on transpiration under different 
irrigation levels”).

Conclusions

In this paper, a canopy temperature-based crop water stress 
index was incorporated into a soil water balance model to 
determine the total available water in the crop root zone to 
improve the water balance estimation of soil water deficit 
(depletion). The statistical analyses indicated that the TAW​r 
estimated from CWSI significantly improved the estimation 
of soil water deficit values, which reduced the mean absolute 
error (MAE) and root mean squared error (RMSE) by 17 and 
20%, compared with standard FAO model with experience 
estimated TAW​r. This result showed that TAW​r estimated 
using CWSI could significantly improve the performance 

of the FAO-56 soil water balance model for the estimation 
of soil water deficit throughout the crop growing season. 
The proposed procedure applies for deficit irrigated crops, 
because the change of TAW​max does not significantly influ-
ence crop transpiration or CWSI without crop stress.

Appendix 1 theoretical calculation of CWSI

The theoretical development of CWSI is based on surface 
energy balance equation, as the theoretical method uses the 
surface energy balance equation, whilst accounting for vari-
ation in climate, and calculates the divergence between the 
upper and lower boundaries of the canopy-to-air temperature 
difference (Jackson et al. 1981, 1988). The temperature dif-
ference between canopy and air could be defined as:

where cp is the heat capacity of air (J kg−1 °C), Tc is the 
temperature of canopy, Ta is the air temperature, е* is the air 
saturated vapor pressure at Tc (Pa), e is the air vapor pres-
sure (Pa), γ is the psychrometric constant (Pa ℃−1), ra is the 
aerodynamic resistance (s m−1), rc is the canopy resistance 
(s m−1), Δ is the change (slope) of saturation vapor pres-
sure with temperature (Pa ℃−1), and Rn is the net radiation 
(J m−2 s−1).

Then, the upper boundary of (Tc − Ta) is calculated, when 
rc➔∞:

And, the lower boundary of (Tc − Ta) is calculated, when 
rc = rcp

where rcp is the canopy resistance under full transpiration 
condition.

Many studies have shown that using seasonal average 
aerodynamic resistance and canopy resistance could give 
reasonable CWSI value (Clawson et al. 1989; Jalali-Farahani 
et al. 1993). Here, the aerodynamic and canopy resistances 
were determined by (O’Toole and Real 1986):

(20)

Tc − Ta =
ra

�cp

�(1 + rc∕ra)

Δ + �(1 + rc∕ra)
Rn −

e∗ − e

Δ + �(1 + rc∕ra)
,

(21)(Tc − Ta)u =
r̄a

𝜌cp
Rn.

(22)

(Tc − Ta)l =
ra

𝜌cp

𝛾(1 + r̄cp∕r̄a)

Δ + 𝛾(1 + r̄cp∕r̄a)
Rn −

e∗ − e

Δ + 𝛾(1 + r̄cp∕r̄a)
,

(23)r̄a =
𝜌cpa

R̄nb(Δ̄ + 1∕b)
,

(24)r̄cp = −r̄a

(
Δ̄ + 1∕b

𝛾
+ 1

)

,
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where a and b are the linear regression parameters of the 
non-water stress baseline of VPD and Tc − Ta (Clawson et al. 
1989; O’Toole and Real 1986), Rn is the seasonal average 
net radiation, Δ is the seasonal average slope of saturated 
vapor pressure–temperature relationship (Pa ℃−1), which is 
determined by seasonal average mean temperature.
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