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1 Problem Description
The reconstruction of leafless fruit trees has the following applications:

• Automated measurements for physiological and genetic studies

• Needed for robotic pruning

Modern apple planting systems consist of trees that are roughly 3 feet (0.9
m) in diameter and 14 feet tall (4.27 m). The type of trees we are consid-
ering use a central leader architecture. The trees are planted in rows, as
below:

Figure 1: Tall spindle apple trees with trellis. c©Jon Clements

There are various difficulties associated
with reconstructing leafless trees:

• The outdoor environment intro-
duces illumination variations

• Wind and machine vibrations can
alter camera calibration

• Branches are thin as they emanate
from the central leader

• There is great variation in shape
among trees despite uniform ap-
plication of a specific training sys-
tem.

Figure 2: Secondary
branches emanating from
the central leader. c©Edwin
Winzeler

2 Assumptions
We pursue a Shape from Silhouette approach for reconstruction, with the
following assumptions:

• There are no leaves on the tree; the tree is in its dormant state

• Small camera calibration error exists in our datasets

• Silhouette extraction error exists in our datasets

3 Contributions
When binary-valued silhouettes are used, we call this the Shape from Inconsistent
Silhouette problem (SfIS). When continuous-valued silhouettes are used, we call
this the Shape from Silhouette Probability Maps problem (SfSPM).

Our approach provides the following contributions:

• Does not depend on parameters set by users

• Penalizes false negative and false positive error equally

• SfIS and SfSPM problems are treated identically

• Reconstructs large, thin objects with silhouette and camera calibration error.

4 Formulation of a Silhouette Inconsistency Error function
We cast the reconstruction problem as a minimization problem: labeling voxels x
as occupied or empty such that a cost function, SIE(I,x), is minimized.

The SIE function represents the absolute difference between the input SPMs and
reconstruction images.

(a) SPM (b) Reconstruction im-
age

Figure 3: SIE = 2302 for this pair of
SPM and reconstruction images.

(a) SPM (b) Reconstruction im-
age

Figure 4: SIE = 22, 641 for this pair
of SPM and reconstruction images.

We construct a function, SIE(I,x), for the entire dataset by summing the SIE
error for all pixels in image set I.

Characteristics of SIE(I,x) are:

• Closed-form psuedo-Boolean function

• High degree for large datasets (975)

• Non-submodular

The SfIS and SfSPM reconstruction problems then become

min
x∈Bn

SIE(I,x) (1)

5 Algorithm
To solve Eq. 1 is an NP-Complete problem because that SIE(I,x) is non-submodular, so we
search for a local minimum using standard moves and a heuristic developed for SfIS and SfSPM.
The process is as follows:

1. Begin with the visual hull as the initial labeling of voxels.

2. In random order, test whether each voxel’s label should be changed by evaluating the partial
first derivatives of SIE(I,x) and our heuristic.

3. Repeat until no voxel’s label is changed in step 2.

At the conclusion of the algorithm, the current labeling is a local minimum of SIE(I,x). Our
heuristic prevents the search from stalling in local minima with high values of SIE(I,x).

8 Conclusions
• Thin sections of the trees were reconstructed with both SfIS and SfSPM datasets despite

camera calibration and silhouette error

• Our method works for thicker objects as well as thin ones

• The reconstructions using SfIS and SfSPM versions are very similar

• There is little change after the first few iterations of the algorithm

9 Future Work

Goals for future work include reducing run time, correcting camera calibration error from the re-
construction, reducing noisy regions, and identifying parts of the tree from the reconstruction.

6 Synthetic dataset
The well-known Stanford bunny model was used to generate synthetic datasets with a known ground truth. (G. Turk and M. Levoy, Zippered polygon meshes from range images, in Proceedings of the 21st
annual conference on Computer graphics and interactive techniques, SIGGRAPH 94, (New York, NY, USA), pp. 311318, ACM, 1994.)
There are three datasets: perfect segmentation in BUNNY-NO-ERROR, significant segmentation error in BUNNY-SEGMENTATION-ERROR, and BUNNY-IMAGE-NOISE, where there was 20% image noise.

(a) VH (b) SfIS

Figure 5: BUNNY-NO-ERROR dataset: VH and SfIS recon-
structions.

(a) VH (b) SfIS

Figure 6: BUNNY-SEGMENTATION-ERROR dataset: VH and
SfIS reconstructions.

(a) VH (b) SfIS

Figure 7: BUNNY-IMAGE-NOISE dataset: VH and SfIS re-
constructions.

7 Real datasets of leafless trees
We tested our algorithm on trees in the laboratory, using SfIS and SfSPM versions of the datasets generated by the same background model. The number of voxels was 54.4 million (each side of a voxel
measured 3.6 mm) and 30 cameras were used. Run time was 16-40 minutes, depending on the dataset.

(a) TreeB:VH (b) TreeB: SfIS (c) TreeB: SfSPM (d) TreeC: VH (e) TreeC: SfIS (f) TreeC: SfSPM

Figure 8: Comparison of the VH and reconstructions of SfIS and SfSPM versions of a tree dataset with our local minimum search method.


