
HIERARCHICAL DATA STRUCTURE FOR REAL-TIME BACKGROUND SUBTRACTION

Johnny Park, Amy Tabb∗ and Avinash C. Kak

School of Electrical and Computer Engineering, Purdue University
{jpark,atabb,kak}@purdue.edu

ABSTRACT

This paper seeks to increase the efficiency of background subtraction
algorithms for motion detection. Our method uses a quadtree-base
hierarchical framework that samples a small portion of the pixels in
each image and yet produces motion detection results that are very
similar compared to the conventional methods that raster scan entire
images. The hierarchical data structure presented in this paper can be
used with any background subtraction algorithm that employs back-
ground modeling and motion detection on a per-pixel basis. We have
tested our method using two common background subtraction algo-
rithms: Running Average and Mixture of Gaussian. Our experimen-
tal results show that the application of the hierarchical data structure
significantly increases the processing speed for accurate motion de-
tection. For example, the Mixture of Gaussian method with our hi-
erarchical data structure is able to process 1600 by 1200 images at
11~12 frames per second compared to 2~3 frames per second with-
out using the hierarchical data structure.

Index Terms— Image processing, Image segmentation, Image
motion analysis, Object detection

1. INTRODUCTION

Much effort has been devoted in recent years to developing efficient
methods of motion detection using background subtraction (see the
review articles [3], [5]). However, images of size 640 by 480 or
larger present problems in real-time applications. To get around
this difficulty, we have developed a hierarchical framework using
a quadtree that allows background subtraction to be carried out in
real-time even on large images.

The hierarchical framework described in this paper may be ap-
plied to any background subtraction algorithm that employs back-
ground modeling and foreground detection on a per-pixel basis. We
have used the hierarchical data structure in two common background
subtraction algorithms: Running Average (RA) [10] and Mixture of
Gaussian (MOG) [6]. RA assumes a unimodal Gaussian distribution
for each pixel’s background model. If a new pixel value belongs to
the corresponding distribution of the background model, the pixel
is classified as background and the mean of the distribution is up-
dated. Otherwise, the pixel is classified as foreground. In MOG,
each pixel’s background is modeled as a mixture of Gaussian distri-
butions (typically 3 to 5) and the models are updated using on-line
approximation.

There are many adaptations and extensions to RA and MOG.
Wang et al. [9] modified MOG by including a shadow removal pro-
cess and by altering the process of background update and subtrac-
tion. Others refined MOG’s pixel-level classification by employing
region and frame information [2][8]. Lee et al. [4] use a Bayesian

∗Sponsored by the Appalachian Fruit Research Station, ARS/USDA

= 2L

= 0L

= 1L

= 3L

NW NE SW SE

root

Fig. 1. Image represented by a quadtree

framework of background segmentation based on MOG. All of these
approaches could, with little or minor modification, utilize the hier-
archical data structure technique presented in this paper. We are not
aware of any previous work that uses a hierarchical data structure to
increase the efficiency of a background subtraction algorithm.

2. BACKGROUND SUBTRACTION USING
HIERARCHICAL DATA STRUCTURE

In general, a background subtraction algorithm requires a set of im-
ages without any moving objects to create an initial background
model. Then, for each image, all pixels are tested against the corre-
sponding background model to detect foreground and to update the
background model. The proposed method increases the efficiency of
the foreground detection component of the algorithm using a hierar-
chical data structure.

The hierarchical data structure used in this work is based on a reg-
ularly decomposed region quadtree [7]. The root node of a quadtree
corresponds to the entire image space. Four children of a node (la-
beled in order NW, NE, SW, SE) correspond to equal-sized quad-
rants of the region represented by that node. Let L denote the level
in a quadtree (i.e., L = 0 for the root node, L = 1 for the children
of the root node, and so on), and N(L) be a set of nodes at level
L. Figure 1 shows a quadtree with nodes upto level L = 3 and the
corresponding block decomposition of the image.

After an initial background model is generated, the quadtree based
decomposition is applied to every input image of the video sequence.
Initially, a quadtree at the maximum level at L = linit is used as the
base data structure of the input image where linit is set by the user.
Then, for each node in N(linit), a random pixel is sampled where
the sampling process includes the classification of a pixel as fore-
ground or background and the update of the background model of
that pixel location (how exactly a pixel is classified as foreground or
background and how the background model is updated depend on the
background subtraction algorithm chosen). If the pixel is classified
as background, the next node in N(linit) is considered. If the pixel
is classified as foreground, the node is subdivided into the next level,
then a randomly selected pixel in each of the four children nodes is

hmedeiro
Typewritten Text
This appears in: Proceedings of IEEE International Conference on Image Processing, 2006



(e) (f) (g) (h)

(i) (j) (k)

(b) (c) (d)(a)

Fig. 2. Illustration of the background subtraction using hierarchical data structure

sampled. This subdivision process is repeated until L = lfinal. Typ-
ically, for a 640 by 480 image, the values linit = 4 and lfinal = 6
work well. Figures 2(a) ~ (d) illustrate how a quadtree is constructed
by the steps just mentioned. In (a), a random pixel in each of the
nodes in N(linit) is sampled. If a sampled pixel is classified as
foreground, then the corresponding node is subdivided into the next
level as shown in (b). A random pixel is sampled in each of the sub-
sequent children. Each new node thus created is subdivided again if
the sampled pixel is foreground until L = lfinal, as shown in (c).
The final tree structure for the example is shown in (d).

The quadtree so constructed provides the locations of the fore-
ground objects in the image at a coarse level. In order to retrieve the
fine boundaries of the foreground objects, the following procedure
is carried out. For each node in N(lfinal), all pixels contained by
the node are sampled. The number of foreground pixels, nf , and
the number of background pixels, nb, are counted. If nf

nf +nb
< τ

where τ is some threshold typically ranging from 0.1 to 0.2, no other
action is taken and the next node in N(lfinal) is considered. On the
other hand, if nf

nf +nb
≥ τ , which implies that the node contains a

significant amount of foreground pixels and that its neighborhood is
likely to be part of the foreground object, its four-connected neigh-
bor nodes are sampled. By recursively repeating this process, we
obtain a connected region that encloses a foreground object. Since
all the pixels within the connected region have been scanned, the
precise boundary of the foreground object can be obtained. The pro-
cess ends when all nodes in N(lfinal) are scanned. Figures 2(e) ~

(h) illustrate the process of forming connected regions. In (e), the
first node in N(lfinal) is scanned. Since this node contains only a
small number of foreground pixels (determined by the threshold τ ),
the next node is considered as shown in (f). Since this node contains
a large number of foreground pixels, its four-connected neighbors
are scanned. Note that the top and the right neighbors do not be-
long to N(lfinal), which implies those two neighbors do not exist
in the current tree structure. Therefore, the tree needs to be mod-
ified appropriately as shown in (g). The top and the right neigh-
bors do not contain foreground pixels, thus the recursion terminates
for those two nodes. The bottom neighbor, on the hand, belong to
a foreground object (again determined by the threshold τ ), so the
recursion continues to its four-connected neighbors. The final tree
structure and the nodes that were scanned are shown in (h). As a re-
sult of the quadtree, the algorithm samples only the pixels contained
by the connected regions and the pixels randomly selected to con-
struct the tree previously, which significantly reduces the inclusion
of redundant data and improves real-time performance.

Figures 2(i) ~ (k) show the hierarchical data structure used in a
real image. (i) shows an image with a human model as the fore-
ground object, (j) shows the sampled pixels and the initial tree struc-
ture at the step equivalent to (d) in the previous example, and finally
(k) shows all the scanned nodes and the final tree structure.

At medium to high frame rates, there will be some overlap of
regions of foreground objects in consecutive images in a sequence.
Therefore, after an image is processed, the resulting tree is used as
the initial tree structure for the next image in a sequence. Conse-



RA RA w/ tree MOG MOG w/ tree
Seq 1 68.58 166.10 13.86 114.05
Seq 2 67.94 162.18 13.19 104.67
Seq 3 54.77 68.14 14.37 67.18
Seq 4 10.91 38.76 2.36 11.55

Table 1. Processing speed (frames per second)

quently, more random pixels get sampled around the regions of the
foreground objects in the previous image. This increases the prob-
ability of generating a more accurate tree with less time spent on
generating the tree structure.

3. EXPERIMENTAL RESULTS AND DISCUSSION

We tested our algorithm on the following four image sequences.
The first sequence is an indoor hallway scene with a synthetic hu-
man model walking in the hallway. The second is an outdoor scene
with multiple synthetic human models walking. These two image
sequences were obtained from [11]. The third sequence is a busy
two-way road scene with pedestrians and waving trees in the back-
ground. Finally, the fourth is an indoor laboratory scene with a few
people moving in the room. The first three sequences have an image
size of 640 by 480 captured at 30 frames per second. The fourth
sequence has an image size of 1600 by 1200 captured at 7.5 frames
per second. All the experimental results using the hierarchical data
structure were obtained by setting linit = 4 and lfinal = 6 for the
first three sequences, and linit = 5 and lfinal = 7 for the fourth
sequence.

Table 1 shows the average processing speeds of four different
background subtraction algorithms: the Running Average (RA), the
Running Average using our hierarchical data structure (RA w/ tree),
the Mixture of Gaussian (MOG), and the Mixture of Gaussian us-
ing our hierarchical data structure (MOG w/ tree). The use of our
hierarchical data structure clearly increases the processing speeds
of the algorithms especially for the Mixture of Gaussian, which re-
quires computationally expensive foreground detection and back-
ground modeling.

Figure 3 shows the foreground detection results. The images in
the first column show the input images, the second column shows
the foreground detection results by RA, the third column the results
by RA w/ tree, the fourth column MOG, and the fifth column MOG
w/ tree. The foreground objects detected by the methods with and
without the hierarchical data structure are very similar. In order to
show a more precise comparison, Figure 4 shows the graphs that plot
the number of foreground pixels detected using the Running Aver-
age method with and without the hierarchical data structure for each
sequence. Observe that the number of foreground pixels detected is,
in general, very similar between the methods with and without the
hierarchical data structure. However, the methods with the hierar-
chical data structure detects slightly less foreground pixels consis-
tently throughout the sequence. This discrepancy is due to the fact
that some small isolated regions of foreground objects can be missed
when no pixel in that region gets sampled during the initial tree con-
struction process. In most cases, those missing regions are erroneous
foreground objects. For example, see the foreground images of Seq
3 in Figure 3. Some erroneous foreground pixels on the left that
were detected by RA are missing on the foreground image by RA
w/ tree. In some cases, the missing foreground pixels correspond to
the objects that are just beginning to enter the scene. For example,
consider Seq 2 in Figure 3. The human on the far right who is just

entering the scene is not detected by RA w/ tree. The object will
continue to be missing until a random pixel gets sampled anywhere
on that region, which then activates the subdivision of the tree and
the region growing process that eventually detects the entire object.
One can certainly increase the value of linit (i.e., smaller block size
for N(linit)) that would detect newly entered objects more quickly
at the cost of decreased processing speed.

The entire sequence of images used for the experiment and all the
foreground detection results are available at the following URL:

http://rvl1.ecn.purdue.edu/RVL/Projects/
HierarchicalBackgroundSubtraction/

4. CONCLUSION AND FUTURE WORK

We presented a hierarchical data structure concept for background
subtraction algorithms. Our experimental results show that our
method significantly increases the processing speed of background
subtraction. We also showed that the background subtraction results
between the methods with and without the hierarchical data structure
are very similar. Possible applications involve any situation where
the computing resource is limited (such as a camera attached to an
embedded system), the number of pixels to be processed is large, or
multiple cameras need to be processed by one computer.

The method proposed in this paper can be improved by adjusting
the values of linit and lfinal dynamically in a sequence. For exam-
ple, suppose a system needs to process the background subtraction
algorithm at a certain processing speed. When the current process-
ing speed gets below the desired speed, the values of linit and lfinal

can be decreased to speed up the process at the cost of less accurate
foreground detection, and vice versa.

5. REFERENCES

[1] R.T. Collins, A. Lipton, H. Fujiyoshi, and T. Kanade, “Algorithms for
Cooperative Multisensor Surveillance,” Proc. IEEE, Vol. 89, No. 10,
pp. 1456-1477, 2001.

[2] M. Harville, “A Framework for High-Level Feedback to Adaptive,
Per-Pixel, Mixture-of-Gaussian Background Models,” Lecture Notes
in Computer Science, Proc. ECCV, Vol. 2352, 2002.

[3] W. Hu„ T. Tan, L. Wang, and S. Maybank, “A Survey on Visual
Surveillance of Object Motion and Behaviors,” IEEE Trans. SMC, vol.
34, no. 3, pp. 334-352, 2004.

[4] D-S Lee, J.J. Hull, and B. Erol, “A Bayesian Framework for Gaussian
Mixture Background Modeling,” IEEE Proc. ICIP. Vol. 3, pp.973-6,
2003.

[5] M. Piccardi, “Background Subtraction Techniques: A Review,” IEEE
Proc. SMC, Vol. 4, pp. 3099- 3104, 2004.

[6] C. Stauffer, and W. Grimson, “Learning Patterns of Activity Using
Real-time Tracking,” IEEE Trans. PAMI, vol. 22, no.8, , pp. 747-757,
Aug 2000.

[7] H. Samet, “The Quadtree and Related Hierarchical Data Structures,”
Computing Surveys, Vol. 16, No. 2, pp. 187-260, 1984.

[8] K. Toyama, J. Krumm, B. Brumitt, and B. Meyers, “Wallflower: Prin-
ciples and Practice of Background Maintenance,” IEEE Proc. ICCV,
Vol. 1, pp. 255 - 261, 1999.

[9] H. Wang, and D. Suter, “A Re-evaluation of Mixture of Gaussian Back-
ground Modeling,” IEEE Proc. ICASSP, Vol. 2, No. 2, pp. 1017 - 1020,
2005.

[10] C.R. Wren, A. Azarbayejani. T. Darrcll, and A. Pentland, “Pfinder:
Real-time Tracking of the Human Body,” IEEE Trans. PAMI, Vol. 19.
no. 7. pp. 780-785, 1997.

[11] European Union MUSCLE Network of Excellence (FP6-507752),
http://muscle.prip.tuwien.ac.at/



S
eq

2
S

eq
3

S
eq

4
S

eq
1

Input RA RA w/ tree MOG MOG w/ tree

Fig. 3. Foreground detection results

Fig. 4. Graphs showing the number of foreground pixels detected by RA and RA w/ tree




