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a b s t r a c t

Climate change can alter soil communities and functions, but the consequences are uncertain for most
ecosystems. We assessed the impacts of climate change on soil nematodes in a semiarid grassland using
a 7-year, factorial manipulation of temperature and [CO2]. Elevated CO2 and warming decreased the
abundance of plant-feeding nematodes and nematodes with intermediate to high values on the
colonizer-persister scale (cp3-5), including predators and omnivores. Thus, under futuristic climate
conditions, nematode communities were even more dominated by r-strategists (cp1-2) that feed on
bacteria and fungi. These results indicate that climate change could alter soil functioning in semiarid
grasslands. For example, the lower abundance of plant-feeding nematodes could facilitate positive effects
of elevated CO2 and warming on plant productivity. The effects of elevated CO2 and warming on nem-
atode functional composition were typically less than additive, highlighting the need for multi-factor
studies.

Published by Elsevier Ltd.
Nematodes are a morphologically and functionally diverse
group of soil organisms (Bongers and Bongers, 1998; Ferris, 2010;
Ferris et al., 2001; Neher, 2010; Yeates et al., 1993), so shifts in
nematode community composition can provide clues about the
sensitivity of soil food webs and soil functions to climate change.
However, the impacts of climate change on nematode abundance
have been idiosyncratic across studies, ranging from positive to
negative for unknown reasons. Even when focusing on specific
nematode functional groups, such as plant-feeders, the impacts of
climate change on nematode abundance vary considerably across
studies (A'Bear et al., 2014; Ayres et al., 2008; Blankinship et al.,
2011; Cesarz et al., 2015; Ferris et al., 2012). The lack of predict-
ability of nematode responses to climate change likely reflects
ollins, CO 80526, USA.
ueller).
three sources of variation among studies: i) biogeographic variation
in how climate change influences soil abiotic conditions (e.g.,
moisture) and the basal resources of soil food webs, including roots,
bacteria, and fungi (García-Palacios et al., 2015), ii) variation in the
extent to which various factors regulate soil food web structure
(e.g., abiotic vs. biotic factors, top-down vs. bottom-up factors, in-
direct vs. direct effects of climate change) (Kardol et al., 2010; Shao
et al., 2015), and iii) variation in the taxonomic and functional
resolution of nematode identification (Cesarz et al., 2015; Neher
and Weicht, 2013). Thus, additional studies are required to
generate hypotheses and better understand the impacts of climate
change on soil nematodes. Multi-factor studies are especially
needed because of their rarity and potential for interactions among
multiple aspects of climate change (e.g., warming and elevated CO2;
Eisenhauer et al., 2012). There are only two reports of the com-
bined, in situ effects of elevated CO2 (eCO2) and warming on
nematode communities, both for rice paddies in Asia (Chen et al.,
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Fig. 1. Abundance of nematode functional groups characterized by trophic position (left) and life-history traits (the colonizer-persister scale; right). Bars show treatment means
(±SE, n ¼ 5). The cp scale ranks nematodes along a spectrum from those with r-selected traits (cp1), e.g., short generation times and high fecundity, to those with K-selected traits
(cp5). Plant-feeding nematodes are not included in the results shown for cp groups because their life-history strategies might not be comparable to other trophic groups (Bongers,
1990). The relative abundance of cp1 nematodes was very low (<2% in all but one plot), so the sum of cp1 and cp2 nematodes are shown. Similarly, the relative abundance of
predators was very low (<2% in all but one plot), so the sum of predators and omnivores are shown. Bold print indicates model terms with P < 0.05 and italic print indicates model
terms with 0.05 < P < 0.1. The treatment interaction term is also shown in normal print if 0.1 < P < 0.2 because in factorial designs with low statistical power, risk of Type II errors is
likely much greater than that of Type I errors (Smith et al., 2002) and the interpretation of main effects is conditional upon the interaction (Stehman and Meredith, 1995). When the
interaction term had P < 0.2, treatment means labelled with different letters were marginally significantly different according to post-hoc Tukey tests (a ¼ 0.1). *Abundance was
estimated by multiplying the total number of nematode individuals in each plot by the relative abundance of each functional group (derived from identification of ~100 nematodes
per plot).
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2014; Okada et al., 2014).
Here, using a factorial field experiment, we describe the in situ

impacts of eCO2 and warming on the nematode community in a
semi-arid, mixed-grass prairie in Wyoming, U.S.A. Mixed-grass
prairies are the most widespread grassland type in North America
(Samson et al., 2004). Nematodes could play an important role in
shaping the functions of mixed-grass prairies because grasslands
typically have high nematode densities and, for example, plant
productivity is sensitive to shifts in nematode density (Bardgett
et al., 1999; Hunt et al., 1987; Hunt and Wall, 2002; Ingham and
Detling, 1990; Stanton, 1988). Reports from this experiment in
Wyoming show that warming and eCO2 have influenced abiotic soil
conditions, including temperature, moisture, and nutrient pools, as
well as the basal parts of soil food webs, including roots and mi-
crobes (Carrillo et al., 2014, 2012; Dijkstra et al., 2012, 2010;Mueller
et al., 2016). Given these shifts in resource availability and
microclimate due to eCO2 and warming, we expected associated
shifts in nematode abundance and community composition, i.e., we
tested the null hypothesis that eCO2 and warming do not impact
nematodes. The eCO2 treatment increased [CO2] to ~600 ppm using
Free-Air CO2 Enrichment (FACE) technology and was implemented
during sunlit hours of the plant growing-season. The warming
treatment, implemented using infrared lamps, increased canopy
temperatures by ~1.5 �C during the day and 3 �C during the night,
through all seasons. The warming and eCO2 treatments were
maintained for 7 and 8 years, respectively, with 5 replicates per
treatment (2006e2013) (LeCain et al., 2015; Morgan et al., 2011).

We sampled nematodes during the experiment's final year. In
late July, which is typically within a few weeks of peak plant pro-
duction aboveground, three soil cores (3 cm diameter; 15 cm deep)
were collected for nematode extraction from each experimental
plot. Soils were composited at the plot level (n ¼ 20) and
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Fig. 2. Treatment effects on indices of the functional composition of nematode communities. For the left panel, treatment means are shown with standard error indicated by the
error bars (n ¼ 5 for each treatment). For the right panel, the indices for each plot are shown. The basal food web component shows a nearly identical pattern as that for cp1þcp2
nematodes (Fig. 1) because the basal food web component is a weighted function of cp2 nematodes that feed on bacteria or fungi (Ferris et al., 2001) and because cp1 nematodes
were uncommon in our samples (Supplemental Table 1). Similarly, the structure food web component and Structure Index show a very similar pattern to that of the cp3 and cp4
nematodes (Fig. 1) because the structure component is a weighted function of the relative abundance of cp3-5 nematodes (Ferris et al., 2001). The Maturity Index (Bongers, 1990;
Bongers and Bongers, 1998) was tightly correlated with both structure and the Structure Index (R2 ¼ 0.91 and 0.97, respectively). Bold print indicates model terms with P < 0.05 and
italic print indicates model terms with 0.05 < P < 0.1. When the interaction term had P < 0.2, treatment means labelled with different letters were marginally significantly different
according to post-hoc Tukey tests (a ¼ 0.1).
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refrigerated (<48 h) prior to extraction. Nematodes were extracted
over 72 h using Baermann funnels (Baermann, 1917) and preserved
in a 5% formalin solution. For each sample, nematodes were
counted using an inverse Leica DMI 4000B light microscope at 50�
magnification and at least 100 individuals were randomly identi-
fied at 400� magnification following Bongers (1988); adults were
identified to genus-level and most juveniles were identified to
family-level. We identified nematode adults from 44 genera and
juveniles from six families. Nematode taxawere then arranged into
trophic groups (Bongers and Bongers, 1998; Okada et al., 2005;
Yeates et al., 1993), ordered according to the colo-
nizationepersistence gradient (cp values) (Bongers, 1990; Bongers
and Bongers, 1998), and assigned to functional guilds by
combining trophic groups with cp values (Bongers and Bongers,
1998; Ferris et al., 2001) (Supplemental Table 1). We evaluated
the role of cp values separately for plant-feeding nematodes
(parasitic) and other nematodes (non-parasitic) because the life-
history strategies of plant-feeding nematodes might not be com-
parable to other trophic groups (Bongers, 1990). We used mixed-
models to evaluate the significance of treatment effects and in-
teractions (fixed effects), while accounting for the distribution of
plots across two blocks (random effect) with slightly different soil
types. When treatment interaction terms had P < 0.2 (sensu
Stehman and Meredith, 1995), we used post-hoc Tukey tests to
compare treatment means using a ¼ 0.1.

Elevated CO2 and warming altered nematode community
composition (Fig. 1). For several nematode functional groups,
negative treatment effects were more apparent for absolute
abundance than for relative abundance, because total nematode
abundance was lower in all treated plots compared to the controls
(11.4 nematodes per g of soil ±1.2 SE and 17.8 nematodes per g of
soil ±3.1 SE, respectively; P > 0.1). Both eCO2 and warming tended
to decrease the abundance of three nematode functional groups
(Fig. 1), including plant-feeding nematodes, predators plus omni-
vores, and non-parasitic nematodes with intermediate to high cp
values (cp3 to cp5, where high values reflect a K-selected strategy;
predators and omnivores were assigned cp values of 4 or 5).
Consequently, the relative abundance of other functional groups of
nematodes tended to increase in response to eCO2 and warming,
especially bacteria- and fungi-feeding nematodes that are on the
‘colonizer’, r-selected end of the cp scale (cp1 and cp2; Fig. 1). More
than 90% of plant-feeding nematodes were characterized as cp2 or
cp3 (Supplemental Table 1), and these two groups of plant-feeders
had similar responses to the treatments. The relative abundance of
some groups of nematodes was more sensitive to eCO2 (plant-
feeding and bacteria-feeding nematodes), while other groups were
more sensitive to warming (non-parasitic cp3 and cp4 nematodes;
Fig. 1). There was no evidence that the treatments influenced
various indices of nematode diversity or relative abundance of the
fungal or bacterial decomposition pathways (data not shown).

The treatment effects were less than additive for several groups
of nematodes, reflecting potential CO2 � warming interactions
(Fig. 1). For plant-feeding nematodes, predators plus omnivores,
and non-parasitic nematodeswith cp3 or cp4, if the negative effects
of eCO2 and warming alone were additive, the expected mean
abundance of these groups in the eCO2þwarming treatment would
be zero; yet, their abundance in the combined treatment was
similar to that in the eCO2 alone and warming alone treatments
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(Fig. 1). These results suggest the impacts of climate change on soil
nematode communities could be difficult to predict from single-
factor experiments. In a rice paddy in Japan, Okada et al. (2014)
did not observe interactive effects of eCO2 and warming on the
abundance of six nematode genera, but they did not evaluate ef-
fects on the relative abundance of those genera or nematode
functional groups.

Other results from this experiment provide clues regarding
possible causes and consequences of the observed shifts in nema-
tode community composition. In contrast to the nematode results,
warming and eCO2 had opposing effects on soil moisture and
nutrient availability (Carrillo et al., 2012; Dijkstra et al., 2012, 2010;
Mueller et al., 2016); thus, simple links between shifts in nematode
communities, moisture, and nutrients were not apparent. There
were, however, some commonalities between the observed im-
pacts of warming and eCO2 on nematodes, microbes, and plant
roots. Similar to the observed effects on ‘basal’ nematodes (i.e.,
bacteria- and fungi-feeding, sensu Ferris et al., 2001, Figs. 1 and 2),
warming and eCO2 tended to have positive, but sub-additive effects
on the number and length of fine roots (Carrillo et al., 2014; Mueller
et al., unpublished) and the amount of C and N inmicrobial biomass
(Carrillo et al., unpublished; Chen et al., 2015; Dijkstra et al., 2010).
Also, the relative abundance of bacterial-feeding and plant-feeding
nematodes was correlated with the concentration of a single PLFA
attributed to gramnegative bacteria (Fig. 3), which can be abundant
in the rhizosphere (Griffiths et al., 1999). Finally, Suseela et al. (in
review) observed positive, and sometimes sub-additive, effects of
eCO2 andwarming on the amount of suberin and individual suberin
monomers in plant roots. If these plant biomolecules inhibit plant-
feeding nematodes (Biederman and Boutton, 2009; Holbein et al.,
2016), this result could help explain the negative, sub-additive ef-
fects of eCO2 and warming on the abundance of plant-feeding
nematodes (Fig. 1). In turn, the diminished abundance of plant-
feeding nematodes could have contributed to observed positive
responses of plant productivity, above and below-ground, to both
eCO2 and warming (Carrillo et al., 2014; Mueller et al., 2016).
Collectively, these results suggest the impacts of climate change on
nematodes might be largely indirect and mediated from the “bot-
tom-up” by plants and microbes.

Additional information was gained by classifying nematodes
into functional guilds defined by both trophic position and life
history (Fig. 2). Consistent with expectations for natural grasslands
(Ferris et al., 2001), the nematode communities in control plots had
a relatively high Structure Index, reflecting abundant trophic links
and high abundance of predators and omnivores within the nem-
atode community; this structurewas diminished by the treatments,
particularly bywarming alone (Fig. 2). Themean Enrichment Index,
reflecting the abundance of opportunistic bacteria- and fungi-
feeding nematodes that respond to resource enrichment, was
relatively low and similar across control and treatment plots.
However, due to a few higher enrichment values in treated plots,
the control plots showed less variability in the Enrichment Index
(Fig. 2). According to the original interpretation of these functional
indices (Ferris et al., 2001), by reducing the number of trophic links
within the nematode community and increasing the relative
abundance of the basal components of the soil food web (particu-
larly bacteria- and fungi-feeding nematodes), the future climatic
conditions implemented in the PHACE experiment have induced a
shift toward a soil food web that is “degraded” and “stressed”, and
possibly less regulated by top-down effects.

The shifts in nematode functional composition we observed
suggest that, for the expansive mixed-grass prairie of North
America, climate change could have significant impacts on below-
ground food webs and functions (e.g., decomposition, respiration,
nutrient cycling). To better predict the impacts of climate change on
nematode communities and soil functions across ecosystems, our
results and those of other recent studies (Cesarz et al., 2015; Kardol
et al., 2010; Neher and Weicht, 2013; Thakur et al., 2014) suggest
that: i) more factorial studies should be conducted (e.g.,
CO2 �warming), and ii) nematode abundance should be measured
for functional groups defined by trophic level and life history.
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