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Abstract A considerable number of plant feeding mites representing different families

such as Acaridae, Siteroptidae, Tydeidae, and Tarsonemidae interact with plant pathogenic

fungi. While species within the Eriophyoidea appear to be the most common phytophagous

mites vectoring virus diseases, little is known of their role in fungal pathogen epidemi-

ology. In the present article, we present two studies on eriophyoid-fungal relationships.
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J. Peña
Department of Entomology and Nematology, Tropical Research and Education Center,
University of Florida, Homestead, FL 33031, USA

E. Palevsky (&)
Department of Entomology, Newe-Ya’ar Research Center, (ARO), P. O. Box 1021,
30095 Ramat Yishay, Israel
e-mail: palevsky@volcani.agri.gov.il

123

Exp Appl Acarol (2010) 51:191–204
DOI 10.1007/s10493-009-9302-y



The first focusing on the association between Aceria mangiferae and the fungal pathogen

Fusarium mangiferae in mango is presented as a case study. The second, as the research is

still in a preliminary phase, reports on quantitative and descriptive associations between

the cereal rust mite Abacarus hystrix and rusts caused by Puccinia spp. Mango bud tissue

colonized with F. mangiferae, and wheat and quackgrass leaves colonized with Puccinia
spp., supported significantly higher populations of eriophyoid mites. Both mite species

were observed bearing the spores of the respective pathogens on their body integument.

Aceria mangiferae vectored the pathogen’s spores into the bud, the sole port of entry for

the fungal pathogen and the frequency and severity of fungal infection increased in the

presence of A. mangiferae. While it appears that eriophyoids are playing a role in fungal

epidemiology, clearly further research is needed to enhance our understanding of direct and

indirect (plant mediated) interactions between plant pathogens and eriophyoid mites in

different plant-pathogen systems.

Keywords Eriophyoidea � Fungi � Mite-fungus-plant interactions � Aceria mangiferae �
Abacarus hystrix � Fusarium mangiferae � Puccinia spp.

Introduction

The evolution of mycophagy in the Acari has been well reviewed by Krantz and Lindquist

(1979) based on the premise that the ability to feed on vascular tissues arose through

feeding on fungi in some mite groups and also on the adaptive strategies and ecological

relationships associated with the mycophagous habits that provide parallels to those related

to phytophagy. A considerable number of mites representing many families in different

suborders interact with plant pathogenic fungi. Herbivores may facilitate fungal infection

by two main mechanisms: either by vectoring pathogen spores or by creating wound sites

for fungal penetration (Agrios 1980; Hatcher and Paul 2001).

Abdel-Sater and Eraky (2001) reported that the acarid mites, Tyrophagus putrescentiae
Shrank and Rhizoglyphus robini Claparede, when living on bulbs, transfer the fungal

pathogens Aspergillus niger, Nectria haematococca, Rhyzopus stolonifer and Penicillium
chrysogenum attached to the outside of their bodies. Conversely the transfer of Aspergillus
flavus and Aspergillus ochraceus is performed through their digestive tracts along with

their foods. Rhizoglyphus robini are attracted to and penetrate Fusarium infested bulbs

more rapidly than healthy ones (Okabe and Amano 1990, 1991).

Fusarium poae is associated with the siteroptid mite, Siteroptes avenae (Muller).

Microscopic examination of S. avenae feeding on F. poae cultures revealed the presence of

sporothecae containing microsporidia of the fungus. This close association between the

mite and fungus is considered responsible for causing Fusarium glume spot on wheat in

South Africa (Kemp et al. 1996).

The relationship of tydeid mites and mycophagy was emphasized by Krantz and

Lindquist (1979). For instance, the tydeid Parapronematus acaciae Baker feeds and breeds

on fungi that commonly occur on the leaves of citrus (McCoy et al. 1969). Lorryia formosa
Cooreman was an effective sanitizing agent in citrus groves because it reduced levels of

sooty mould fungi (Mendel and Gerson 1982). Tydeus caudatus (Dugés) densities posi-

tively correlated with levels of the grapevine downy mildew, Plasmopara viticola, in north

eastern Italy (Duso et al. 2005). The tydeid, Orthotydeus lambi (Baker) plays a role in

reducing the severity of powdery mildew on grapes caused by the fungus Uncinula
necator, suggesting the important role of mycophagous mites as potential biological
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control agents of plant pathogenic fungi (English-Loeb et al. 1999). Vitus viparia (Vita-

ceae), with closed off domatia, harbored lowered populations of O. lambi and higher levels

of U. necator (Norton et al. 2001).

The tarsonemid, Steneotarsonemus spinki Smiley, appears to open ports of entry for the

fungi, Helmintosporium and Sarocladium oryzae (Cardenas et al. 2003), which are

responsible for grain discoloration of rice, Oryza sativa. Steneotarsonemus ananas
(Tryon), the pineapple leathery pocket mite or pineapple fruit mite, is host specific to

pineapples throughout the world (Mourichon 1991; Petty et al. 2002). Trichome cells fed

upon by S. ananas serve as a favorable substrate for development of the fungus Penicillium
funiculosum, the causal agent of inter fruitlet corking, leathery pocket, and fruitlet core rot/

black spot (Petty et al. 2002).

While several species within the Eriophyoidea are apparently the most common phy-

tophagous mites vectoring viral diseases (Oldfield and Proeseler 1996), little is known of

their role in fungal pathogen epidemiology. In the present article, we present two studies on

eriophyoid-fungal relationships. The first focuses on the association between Aceria
mangiferae Sayed and the fungal pathogen Fusarium mangiferae Britz, Wingfield &

Marasas in mango and is presented as a case study where we describe some of the

underlying mechanisms clarifying the role of the mite in mango malformation epidemi-

ology. In the second study, as the research is still in a preliminary phase, we report on

quantitative and descriptive associations between the cereal rust mite Abacarus hystrix
(Nalepa) and rusts caused by Puccinia spp.

The role of the mango bud mite in mango malformation: a case study

Mango malformation is a severe disease, widely distributed in almost all mango-growing

regions worldwide (Crookes and Rijkenberg 1985; Kumar et al. 1993; Ploetz 2001; Ploetz

et al. 2002; Kvas et al. 2008). Symptoms of disease are associated with hormonal

imbalance in the host that results in misshapen growth of both vegetative and reproductive

parts of the tree (Majumder and Sinha 1972; Prasad et al. 1972; Kumar et al. 1993; Ploetz

2001, 2003). Vegetative malformation includes hypertrophy of young shoots, shorter in-

ternodes, dwarfed malformed leaves and an overall tightly bunched appearance of the

shoot. Inflorescence malformation includes short, thick and branched axes of the floral

panicles, larger flowers containing increased numbers of male and hermaphroditic flowers

that are either sterile or eventually abort. Malformed inflorescences do not bear any fruit,

resulting in great economic losses.

The etiology of mango malformation disease was controversial for many years and

many factors have been suggested as causal agents of disease such as: nutritional

deficiencies, hormonal imbalance, viruses, phytoplasmas, fungi and mites (Narasimhan

1954; Nariani and Seth 1962; Zaher and Osman 1970; Denmark 1983; Ochoa et al.

1994; Ploetz 2001). Aceria mangiferae, the mango bud mite, was hypothesized as the

causal agent of mango malformation for over 40 years mainly due to high numbers of

mites observed in malformed trees, and also because other members of the Eri-

ophyoidea are known to cause proliferation, ‘‘witches broom’’ and gall symptoms of

inflorescences in other plants (Westphal and Manson 1996). Despite the fact that the

fungal theory was well established following Koch’s postulates with several fungi,

certain members of the genus Fusarium have been shown to cause the disease

(Summanwar et al. 1966; Varma et al. 1974; Chakrabarti and Ghosal 1989; Manicom

1989; Ploetz and Gregory 1993; Freeman et al. 1999; Noriega-Cantú et al. 1999; Britz
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et al. 2002; Ploetz 2003; Marasas et al. 2006; Kvas et al. 2008; Lima et al. 2009;

Rodrı́guez-Alvarado et al. 2008), It is also clear now that A. mangiferae is not the

causal agent of mango malformation, however, various studies suggest that the mite

interacts with the fungal pathogen resulting in increased severity of disease (Prasad

et al. 1972; Sternlicht and Goldenberg 1976; Gamliel-Atinsky et al. 2009a).

Our study was aimed at revealing the possible associations between A. mangiferae and

the fungal pathogen Fusarium mangiferae. The specific objectives of the study were to:

(1) assess whether A. mangiferae can carry conidia of F. mangiferae on or within its body;

(2) determine the role of the mite in vectoring fungal conidia into the infection site;

(3) determine the role of the bud mite in promoting the fungal infection process, and

(4) evaluate the possible role of the bud mite in long-distance aerial dissemination of the

fungal conidia. A green fluorescent protein (gfp)-marked strain of F. mangiferae was used

throughout this study which distinguished it from that used in previous studies (Nariani and

Seth 1962; Summanwar and Raychaudhuri 1968; Manicom 1989; Labuschagne et al. 1993)

and helped distinguish the pathogen from other contaminants and opportunistic fungi.

Below we will briefly describe the major results and implications from this study; a

detailed account of this research can be found in Gamliel-Atinsky et al. (2009a).

Bearing conidia on or within the body of Aceria mangiferae

In order to test whether A. mangiferae can bear F. mangiferae conidia, two methods were

used: the first one was aimed at determining whether the conidia attach to the outer

integument of the mite and if this attachment is specific to a certain part of the body. Mites

were exposed to the gfp-marked isolate of F. mangiferae and then inspected under a

confocal microscope. In the second method, the possibility that the mite carries conidia

within its body was assessed using a low-temperature scanning electron microscope

(LT-SEM), taking measurements of both conidia and mite stylets (measured directly and

indirectly according to the diameter of the feeding holes in the plant). We hypothesized

that the diameter of the smallest conidia is larger than the diameter of the mite’s stylets.

Results from these observations demonstrated that external rather than internal bearing of

conidia is feasible since mites were observed with conidia clinging to their body (Fig. 1)

and LT-SEM measurements indicated that the width of the mite mouthparts was sub-

stantially smaller than the diameter of the smallest conidium (Fig. 2). Moreover, since

there is a lack of continuity between the midgut and the hindgut of eriophyoid mites

(Nuzzaci and Alberti 1996), fungal spores cannot be transferred and secreted in feces.

Internal bearing of pathogens by eriophyoid mites is a known phenomenon with viral

pathogens due to their minute size (Oldfield and Proeseler 1996). Associations with fungi

is apparently only possible via external-body attachment, such as in the case of acaro-

pathogenic fungi (McCoy 1996).

Vectoring conidia to penetration site

One possible benefit for F. mangiferae from this bipartite association is reaching the

infection site. Results from our recent study demonstrated that the apical bud is the

exclusive penetration site for the fungal pathogen (Gamliel-Atinsky et al. 2009b) which

also serves as the exclusive living habitat of A. mangiferae. Most conidia of F. mangiferae
disseminate in the air and randomly fall on the tree canopy which takes up most of the

surface area of the orchard. One possible route of reaching the hidden, small apical bud is
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via the bud mite which posseses the ability of actively seeking out and reaching the apical

bud from any location in the tree. In order to test the role of the mite in vectoring conidia

into apical buds, an experiment on potted plants was performed. The experiment consisted

of four treatments of different combinations of mites and/or conidia that were placed on

leaves 5 cm away from apical buds. Our results showed that conidia reached the apical bud

only in the treatment where both mites and conidia were co-inoculated on the leaves,

demonstrating the potential of eriophyoid mites as vectors of fungal pathogens (Table 1).

Assisting conidial penetration

Two quantitative evaluations of the possible role of A. mangiferae in fungal penetration, a

process taking place inside apical buds, were assessed. When apical buds of potted mango

plants were inoculated with F. mangiferae in the presence and absence of bud mites, the

frequency and severity of fungal colonization were significantly higher in buds inoculated

with both fungus and mites (Table 2). This result clearly demonstrated that the presence of

mites within the buds enhanced fungal colonization.

Association between fungal infestation and mite population levels

Another quantitative evaluation was designed in order to determine whether the presence

of the fungus affected mite populations within the bud. Numbers of bud mites were

compared within colonized and non-colonized buds by the fungal pathogen during 2006

and 2007. Higher numbers of mites were detected in buds colonized by the fungus rather

Fig. 1 Mango bud mite, Aceria mangiferae, bearing gfp-marked conidia (arrows) of Fusarium mangiferae,
the causal agent of mango malformation disease
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Table 1 Total number of Aceria mangiferae and green fluorescent protein (gfp)-marked conidia of
Fusarium mangiferae detected within 20 apical mango buds

Inoculation with Bud mites Conidia

Mites with gfp conidia 28a 9

Mites alone 35 0

Gfp alone 0 0

Untreated control 0 0

a All numbers different from zero were found significant (P \ 0.05), according to a t-test analysis of the
average number of mites and conidia per apical bud, (modified from Gamliel-Atinsky et al. 2009a)

Fig. 2 a SEM image of mango bud mites, Aceria mangiferae, feeding on bud bracts; b SEM image of
mango bud mite anterior ventral view of stylet. c SEM image of respective feeding puncture holes;
d confocal image of gfp-marked conidia and micro-conidia of Fusarium mangiferae

Table 2 Frequency (%) and severity (%) of green fluorescent protein (gfp)-marked Fusarium mangiferae
colonization in buds in the presence or absence of Aceria mangiferae over a 2 year period

Treatments Frequency of colonizationa Severity of colonizationb

2006 2007 2006 2007

Mites with gfp conidia 81.6 78.4 60.8 44.7

Gfp conidia alone 50.0 57.4 29.5 28.9

Pc 0.004 0.043 \0.0001 0.009

a Statistical analysis was calculated using a chi-square test
b Statistical analysis was calculated using a t test
c Significance refers to each pair of means per year separately
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than in non-colonized buds (Fig. 3). When a bi-annual average was calculated for the ten

sampling periods and analyzed by t-test, a significant difference was detected between 50

mites per bud found in colonized buds vs. 33.6 mites per bud found in non-colonized buds

(P = 0.0002; t586 = 3.731).

Qualitative associations were assessed with both confocal and LT-SEM observations of

apical buds that were inoculated with both the pathogen and the mites. Microscopic

observations supported our finding by demonstrating the physical proximity and the actual

contact between the two organisms within infected mango buds. Bud mites were observed

in close proximity with gfp-marked hyphae and conidia, using a confocal microscope

(Fig. 4a). LT-SEM observations also illustrated bud mites bearing hyphae and conidia on

their body (Fig. 4b, c, d).

Assisting aerial conidial dissemination

Since previous attempts to trap conidia in the air failed (Varma et al. 1971) and the role

of A. mangiferae in aerial dissemination of conidia was proposed (Ploetz 2001) we

attempted to monitor both fungal conidia and mango bud mites using several trapping

methods in order to shed light on the mode of conidial dissemination in the field.

Conidia of F. mangiferae were trapped successfully using two trapping methods and an

annual peak of dissemination was found in the spring/early summer months (Gamliel-

Atinsky et al. 2009a). Aceria mangiferae was trapped throughout the season, but no

fungal growth was detected after placing these mites on selective media for the fungus F.
mangiferae. Our findings imply that conidia can reach the mango tree independently of

the bud mite and thus the latter does not seem to play a role in the windborne dis-

semination of the pathogen.

Fig. 3 Mean density of Aceria mangiferae within colonized and non-colonized buds by Fusarium
mangiferae over a 2-year-survey in the Volcani experimental orchard, Bet Dagan, Israel. Bars represent
standard errors of the mean (±SE). Biannual means were calculated and subjected to t-test analysis (results
presented in text)
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Associations between the cereal rust mite Abacarus hystrix and rusts caused
by Puccinia spp.

The cereal rust mite A. hystrix is notable among eriophyoid mites in causing losses to

cultivated grasslands. It has been found to infest wheat, oats, barley, rye, rice, quackgrass,

timothy, orchardgrass and many other (ca. 60–70) cultivated and wild grass species

throughout the world (Amrine and De Lillo 2003). Abacarus hystrix feeding causes leaf

discoloration and inhibition of seed production, and at high densities the mite causes

withering of plants and retards their growth (Frost and Ridland 1996). The cereal rust mite

is also known to transmit ryegrass mosaic virus (RMV), a serious disease of temperate

grasslands, and agropyron mosaic virus (AMV), a minor disease of wheat and quackgrass

(Oldfield and Proeseler 1996). The mite lives freely on the upper leaf surfaces and dis-

perses passively on air currents (Nault and Styer 1969).

Rusts caused by Puccinia spp. are significant diseases affecting cereal and other grasses

worldwide. Infections may occur on stems, leaf sheaths, or leaf blades and glumes. A few

days post infection elongated pustules develop, subsequently rupturing the plant epidermis

and exposing a mass of reddish brown urediniospores (Fig. 5). Urediniospores are released

from the uredinia and may be transported over long distances by wind and infect other

plants. In areas with mild climates, infected grass foliage can serve as the overwintering

Fig. 4 Microscopic images of the mango bud mite Aceria mangiferae and Fusarium mangiferae within
inoculated apical buds. a Confocal microscope image of three A. mangiferae mites and gfp-marked
F. mangiferae hyphae with germinating conidia surrounding them; b SEM image of A. mangiferae with
fungal conidia on their bodies and eggs in close proximity of fungal hyphae; c SEM image of a colony of
A. mangiferae mites and fungal hyphae around and surrounding them; d SEM image of A. mangiferae near
plant trichomes with fungal hyphae proximate to them
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site for the mycelium and urediniospores. Another type of rust spore that may overwinter is

the teliospore, from which basidiospores are produced. The latter infect non-grass hosts,

e.g., barberries Berberis spp., and after germination two more spore types (i.e., pycni-

ospores and aeciospores) are formed. Aeciospores can infect only grasses, giving rise to

urediniospores and thus completing the life cycle (Cummings 1971; Leonard and Szabo

2005).

During a survey of the eriophyoid fauna on grasses in Poland carried out from 1998

(Skoracka 2004), the concurrent presence of A. hystrix and rusts caused by Puccinia spp.

have been reported on quackgrass and wheat. Moreover, mite specimens bearing rust

spores on their bodies have been observed. Up to now, no reports have suggested the

existence of relationships between eriophyoid mites and rust fungi. Here we present results

of observations regarding the associations between rust fungi and the cereal rust mite.

Association between fungal infestation and mite population levels

Quackgrass Elymus repens (L.) Gould and wheat Triticum aestivum L. plants were col-

lected in 1998–2001 in west Poland from 23 locations. The material included 143 samples,

among them 99 samples contained quackgrass and 44 samples contained wheat. Each

sample consisted of 5–10 individual shoots of a given grass species, collected randomly

from the sampling location. Shoots were cut just above ground level and put into a plastic

bag. The grasses were examined in the laboratory with a stereomicroscope. The presence

of rust fungi per leaf was recorded. Mites were counted and mounted on slides, and

subsequently identified with a phase-contrast microscope. Mean density of mites on leaves

infected with rust [DR], and mean density of mites on leaves with no symptoms of rust

(clear) [DC] were calculated. To test the differences between means two sample t-tests was

applied. For computations, the S-PLUS software was used (S-PLUS 2005).

The density of the cereal rust mite was significantly higher on leaves infected by rust

fungi (DR) compared to leaves with no symptoms of rust (DC). This result is true for both

host species, quackgrass (P \ 0.0001; t3477 = -14.87; Fig. 6A), and wheat (P \ 0.0001;

t1212 = -8.86; Fig. 6B).

Fig. 5 SEM of a rust pustule caused by Puccinia spp. releasing urediniospores on the underside of a
quackgrass leaf
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On the leaves infected by rust, mites aggregated near rust pustules. Some mite specimens

bore urediniospores attached to their dorsal opisthosoma. From one to few (about 5–6)

urediniospores were observed attaching to the singular mite specimen (Fig. 7a, b).

Discussion

Based on our LT-SEM study of infested mango bud bracts with bud mites and the pathogen

(R. Ochoa et al., unpublished), we have no proof that the perforations created by

A. mangiferae serve as ports of entry for F. mangiferae. However, it is clear that the

presence of the mite, at least in the case of A. mangiferae, increases the frequency and

severity of fungal infection. Similarly, Aceria tulipae (Keifer) was implicated in the spread

of fungus-causing rot of garlic bulbs in the field (Jeppson et al. 1975). Saini and Singh

(1989) reported that galls induced by eriophyoid mites harbor overwintering inoculum of

the fungus Microsphaera alphitoides f. sp. ziziphi, the causal agent of powdery mildew of

Indian Jujube Ziziphus mauritania Lam., thus improving the perpetuation of the disease

from one season to the next.

In respect to the effect of the pathogen on mite populations, both mango bud tissue

infected with F. mangiferae and wheat and quackgrass leaves infected with Puccinia spp.

supported significantly higher populations of eriophyoid mites. In a bi-seasonal experiment

set up to evaluate induced plant responses to herbivores and pathogens in papaya, Fournier

et al. (2004) observed higher populations of the papaya rust mite, Calacarus flagelliseta
Fletchmann, DeMoraes, and Barbosa on plants previously exposed to the powdery mildew,

Oidium caricae. The authors suggested that exposure to powdery mildew induced plant

susceptibility to the papaya rust mite, possibly due to improved plant nutritional value and/

or to lower expression of plant defenses. Peña et al. (2005) found higher densities of

A. mangiferae mites on the external and middle bracts of mango buds than on the internal

bracts next to the dome. The authors proposed that excess relative humidity (RH) between

the bracts of the internal region of the bud precludes the bud mites from utilizing this food

source. Fungal colonization of the bracts adjacent to the dome by F. mangiferae could

cause a slight decrease in RH which might allow the mites to enter and occupy the internal

region of the bud. In a study designed to evaluate the effects of the tomato spotted wilt

virus on its thrips vector, Frankliniella occidentalis (Pergande), juvenile survival and

Fig. 6 Mean density of the cereal rust mite Abacarus hystrix on leaves infected with Puccinia spp. rust
(DR) and non-infected (DC) on A quackgrass and B wheat. Bars represent 95% confidence intervals around
means. Different letters represent significant differences (P \ 0.0001) between combinations based on two
sample t-test
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developmental rate were consistently higher on virus-infected plants (Belliure et al. 2005).

The authors hypothesized that the virus counters the negative effects of the herbivore-

induced defense mechanisms thereby improving the performance of its insect vector. One

remote possibility that has not been addressed is that eriophyoid mites could be directly

feeding on the fungus; however, we did not observe this behavior even though the bud

mites were crawling all around the mycelium. While we are aware that eriophyoids are

considered obligatory plant feeders; we still think this option should be examined using

molecular tools.

As eriophyoid mites and plant pathogens share the same microniche, it can be argued

that the clinging of the fungal spores to the mite’s body has little impact on the ecology of

the system. At least in the case of the mango bud mite, we are convinced that this is not the

case because it was demonstrated that the mite can vector the spores to the buds, the

fungus’s sole port of entry to the plant and enhance disease severity (Gamliel-Atinsky et al.

2009b). Furthermore, the spores could benefit from the ability of the mites to travel long

distances by wind (Zhao and Amrine 1997). The significance of this association for the

cereal rust mite has yet to be clarified. The large spore size in relation to the mite’s body

size and the fact that the spores appear to adhere to the mite’s body even after the SEM

preparation procedure may indicate that this phenomena is not by mere chance. Rust spores

are disseminated in the wind and are very resilient to desiccation and ultra violet radiation,

thus it is very unlikely that eriophyoid mites are part of the long range dispersal of this

fungus. However, mites bearing the rust spores on their body may be playing an important

role in short range dispersal by moving the spores about the plant thereby increasing the

points of infection. Further investigation is necessary to evaluate the role of the cereal mite

as a vector of rust spores and to assess its effect on pathogen penetration of the leaf tissue.

Our mango malformation research suggests that fungal as well as other plant pathogens

may play an important role in additional cases where plant disorders have been attributed,

till now, solely to eriophyoid mites. For example, on Lantana camara L., the lantana gall

mite Aceria lantanae (Cook), causes vegetative deformations appearing as masses of very

small leaves (Smith-Meyer 1996). Similarly vegetative malformations occur on caraway

Carum carvi L., in association with Aceria carvi Nalepa (Zemek et al. 2005). On Prota-

ceae, witches broom has been related to Aceria proteae Meyer (Smith-Meyer 1996) but

recently a spiroplasma has been isolated from the mite and the diseased plant tissue,

possibly indicating a positive interaction between these two organisms (Wieczorek et al.

Fig. 7 a Stereomicroscope image showing the cereal rust mite, Abacarus hystrix, bearing conidia of
Puccinia spp. on its body on the underside of a quackgrass leaf (spore marked with black arrow); b SEM
image showing the cereal rust mite bearing conidia on its body

Exp Appl Acarol (2010) 51:191–204 201

123



2003). Even though these examples of plant disorders do not possess the same symptoms

as those of mango malformation, there do seem to be marked similarities. We propose that

future research on eriophyoid related plant disorders, especially those without typical

eriophyoid galls and erinea (Westphal and Manson 1996), should consider and evaluate

additional pathogens as causal agents.

In summary, while it appears that eriophyoids are playing a role in fungal epidemiology,

clearly further research is needed to broaden our understanding of direct and indirect (plant

mediated) interactions between plant pathogens and eriophyoid mites in different plant-

pathogen systems.
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