Regional-scale controls on dissolved nitrous oxide in the Upper Mississippi River

P. A. Turner1, T. J. Grifffiths3, J. M. Baker1,2, X. Lee3,4, J. T. Crawford5, L. C. Loken6,7, and R. T. Venterea1,2

1Department of Soil, Water, and Climate, University of Minnesota, Twin Cities, St. Paul, Minnesota, USA, 2Agricultural Research Service, United States Department of Agriculture, St. Paul, Minnesota, USA, 3School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut, USA, 4Yale-Nanjing University of Information, Science and Technology Center on Atmospheric Environment, Nanjing University of Information and Technology, Nanjing, China, 5National Research Program, United States Geological Survey, Boulder, Colorado, USA, 6Wisconsin Water Science Center, United States Geological Survey, Middleton, Wisconsin, USA, 7Center for Limnology, University of Wisconsin-Madison, Madison, Wisconsin, USA

Abstract The U.S. Corn Belt is one of the most intensive agricultural regions of the world and is drained by the Upper Mississippi River (UMR), which forms one of the largest drainage basins in the U.S. While the effects of agricultural nitrate (NO3−) on water quality in the UMR have been well documented, its impact on the production of nitrous oxide (N2O) has not been reported. Using a novel equilibration technique, we present the largest data set of freshwater dissolved N2O concentrations (0.7 to 6 times saturation) and examine the controls on its variability over a 350 km reach of the UMR. Driven by a supersaturated water column, the UMR was an important atmospheric N2O source (+68 mg N2O N m−2 yr−1) that varies nonlinearly with the NO3− concentration. Our analyses indicated that a projected doubling of the NO3− concentration by 2050 would cause dissolved N2O concentrations and emissions to increase by about 40%.

1. Introduction

The Upper Mississippi River (UMR) drains nearly 492,000 km2 of the U.S. Corn Belt [Natural Resources Conservation Service, 2012], one of the most intensively cultivated regions on the planet. Within the UMR basin, more than half of the U.S. share of nitrogen (N) fertilizers are applied [Griffiths et al., 2013; Food and Agriculture Organization, 2015] to produce 40% of the nation’s corn [NRCS, 2012]. These activities have amplified river N loading, mainly as nitrate (NO3−) [Turner and Rabalais, 1991; Panno et al., 2006]. Much effort has focused on the effects of excessive N on water quality [Rabalais, 2002] and the ability of the UMR to reduce downstream transport [Richardson et al., 2004; Strauss et al., 2004, 2011] to estuary systems. However, measurements of nitrous oxide (N2O), the dominant stratospheric ozone-depleting substance [Ravishankara et al., 2009] and an important greenhouse gas [Hartmann et al., 2013], in the UMR are conspicuously absent in the literature, representing a significant knowledge gap in our understanding of the regional controls on dissolved N2O concentrations and emissions in heavily modified agricultural rivers.

Rivers are globally significant sources of N2O to the atmosphere [Beaulieu et al., 2011; Turner et al., 2015], responsible for 10%–17% of the anthropogenic budget [Beaulieu et al., 2011; Syakila and Kroeeze, 2011]. Yet rivers remain one of the most uncertain N2O sources [Nevison, 2000], largely due to low spatiotemporal sampling resolution that is unable to resolve the high variability of surface water N2O concentrations caused by dynamic production and consumption processes. Nitrous oxide production via denitrification and nitrification in the water column [Beaulieu et al., 2010] and sediments [Boy et al., 2006; Marzadri et al., 2014] causes rivers to become saturated with N2O that is emitted to the atmosphere. Generally, the degree of N2O saturation increases with the concentration of NO3− and ammonium (NH4+), indicating that emissions from large rivers are derived from in situ N2O production [Beaulieu et al., 2010] rather than terrestrial delivery. Global model simulations suggest a doubling of N loading in rivers by the year 2050 [Seitzinger et al., 2002], implying that N2O emissions from rivers, including the UMR, will likely increase. However, the relationship between dissolved N2O concentrations in rivers and N loading is poorly constrained because obtaining these types of data is logistically challenging and, consequently, observations are very limited. Recent studies indicate that surface water N2O concentrations behave nonlinearly, plateauing in response to a number of environmental drivers, including dissolved oxygen concentration [Rosamond et al., 2012] and
Observations that N$_2$O concentrations increase at a decreasing rate are likely caused by the inverse relation between N loading and removal efficiency [Mulholland et al., 2008]. This nonlinearity implies that N$_2$O emissions will not increase proportionally with N loading projections, especially as a river becomes N saturated. Characterizing the N$_2$O:NO$_3^-$ mass ratio should provide an upper constraint on N$_2$O concentrations in N-rich systems and provide insights regarding how these rivers may respond under business-as-usual N scenarios.

Here we present the largest freshwater dissolved N$_2$O concentration data set to date and the first N$_2$O surface water concentration measurements from the UMR to (1) explore the biochemical factors that control the degree of riverine N$_2$O saturation, (2) identify N$_2$O hot spots, and (3) predict how N$_2$O concentrations will respond to future N loading.

2. Materials and Methods

2.1. Site Description

For this study, we considered a portion of the UMR that extends from Minneapolis, MN, through Pool 8 (near La Crosse, WI). Along this stretch, eight lock and dam combinations have been installed to facilitate navigation. The river is organized into pools to describe river sections between two neighboring dams. In addition to the main channel, a pool includes impounded waters, side channels, and backwaters [Strauss et al., 2011]. The temporal (10 April, 16 June, 4 August, and 13 October) and spatial dynamics of N$_2$O concentration were observed in Pool 8, a 104 km2 section of the UMR upstream of Lock and Dam 8. From 1 to 3 August 2015, a 350 km reach from Minneapolis, Minnesota, to Pool 8 provided a regional-scale assessment of N$_2$O concentration patterns in the UMR.

2.2. Water Sampling

We used a boat-mounted flow-through sampling system [Crawford et al., 2015] to continually measure surface water N$_2$O and other limnological parameters. In brief, we pumped surface water (0.3 m) to a series of sensors and stripped the dissolved gases using a sprayer-type equilibration device [Crawford et al., 2015]. This type of equilibrator has a fast response time [Santos et al., 2012; Yoon et al., 2016] and has been used in oceanic N$_2$O campaigns [Bange et al., 1996; Arévalo-Martínez et al., 2013, 2015; O’Reilly et al., 2015] but has never been used to measure N$_2$O in freshwater systems. Equilibrator headspace air was drawn through a desiccant tube before entering a Teledyne gas filter correlation N$_2$O analyzer (Model M320EU2; Teledyne Instruments, City of Industry, CA, USA) [Fassbinder et al., 2013; Turner et al., 2015]. A circular loop was created by returning sample air back to the equilibrator device. A data logger (Model 23X; Campbell Scientific, Logan, UT, USA) recorded the N$_2$O analyzer output at 1 Hz for postprocessing.

This system, the Fast Limnology Automated Measurement (FLAME) platform, has been used extensively to monitor dissolved CO$_2$ and CH$_4$ on the Mississippi River [Crawford et al., 2016]. The FLAME instrument panel consisted of a YSI sonde (Model EXO2; Yellow Springs, OH, USA), an optical NO$_3^-$ sensor (Model SUNA V2, Atlantific, Halifax, NS, Canada), and a GPS device. The FLAME platform measured water temperature (T), dissolved oxygen (DO), pH, turbidity, specific conductivity, Chl a, and fluorescent dissolved organic matter (fDOM). Higher fDOM values are related to terrestrially derived organic matter [Spencer et al., 2013] and are a proxy for dissolved organic carbon [Crawford et al., 2015]. Spatial coordinates were recorded semicontinuously at 1 Hz, while measurements of NO$_3^-$ were recorded at 0.1 Hz.

2.3. Data Processing

The raw N$_2$O concentration data (n = 101,862) were processed using MATLAB (R2013b; Mathworks, Natick, MA, USA) software. To georeference the FLAME and N$_2$O data, we determined the hydraulic and sensor response time lags using a series of step change experiments [Crawford et al., 2015]. The hydraulic and sensor lag describes the time required for the instrument to detect a step change (42.3 s) caused by tube length, instrument responsivity, and equilibrator lag. The sensor responsivity of the N$_2$O analyzer was estimated using an equilibrator time constant τ (61.6 s) that describes the time required for a 63% step change to occur. A wavelet denoising technique was applied to the N$_2$O concentration data to improve the signal-to-noise ratio of the signal [Fassbinder et al., 2013]. For convenience of data processing and statistical analyses, all of the data streams were subjected to 30 s block averaging resulting in a data series of n = 3667.
The surface water N₂O concentration ([N₂O]; mol N₂OL⁻¹) was calculated from

\[[N_2O] = [N_2O_{\text{eq}}] \times F(T, p) \] (1)

where \([N_2O_{\text{eq}}]\) is the equilibrator concentration and \(F(T, p)\) is the solubility function at the given surface water temperature \((T)\) and pressure \((p)\) [Weiss and Price, 1980; Grefe and Kaiser, 2014]. The theoretical equilibrium N₂O concentration \(([N_2O_{\text{amb}}]; \text{mol N}_2O\text{L}^{-1})\) assuming water-atmosphere equilibrium was calculated similarly

\[[N_2O_{\text{amb}}] = [N_2O_{\text{amb}}^*] \times F(T, p) \] (2)

where \([N_2O_{\text{amb}}^*]\) is the ambient atmospheric concentration reading by the N₂O analyzer and \(F(T, p)\) is the solubility function. The ambient concentration was measured every 2 h. The analyzer was zeroed and spanned using analytical grade standards (Specialty Gases of America, Toledo, OH, USA) before each measurement campaign. The concentration precision after wavelet denoising is 1.5 nmol mol⁻¹ [Fassbinder et al., 2013]. These two metrics, \([N_2O]\) and \([N_2O_{\text{amb}}]\), are water temperature dependent. Therefore, we use their ratio to standardize the measurements with respect to the in situ water temperature as N₂O saturation (N₂O.sat)

\[\text{N}_2\text{O}_{\text{sat}} = \frac{[N_2O]}{[N_2O_{\text{amb}}]} \] (3)

A novel aspect of the FLAMe platform is its capacity to incorporate spatial coordinates to identify spatial patterns driving N₂O.sat across large spatial distances. A Getis-Ord G* analysis of each data set identified clustering of statistically significant high and low N₂O.sat and NO₃⁻ values relative to neighboring points [Ord and Getis, 2010]. A 99% significance threshold was used to determine N₂O.sat and NO₃⁻ hot spots and cold spots (Arcmap v.10.3; ESRI, Redlands, CA, USA).

Using CO₂ piston velocity \((k)\) measurements from the UMR [Crawford et al., 2016], we estimated the mean \((n = 22)\) \(k\) using the temperature-adjusted N₂O Schmidt number [Wanninkhof, 1992]. Nitrous oxide fluxes (nmol N₂O/Nm²s⁻¹) from the UMR were calculated as

\[\text{Flux}_{\text{N}_2\text{O}} = k \times ([N_2O - N_2O_{\text{amb}}]) \] (4)

We assumed that variations in the evasion coefficient would be negligibly within the UMR because of minimal channel geometry change [Wallin et al., 2011], and consequently, N₂O.sat and Fluxₙ₂ₒ would be most sensitive to in situ production and consumption mechanisms [Beaulieu et al., 2015]. We estimated that N₂O.sat ratios greater than 1.2 and less than 0.8 were indicative of active production and consumption zones, respectively, while N₂O.sat values within this window were classified as zones of negligible production and consumption [Beaulieu et al., 2015].

2.4. Ensemble Regression Trees

The controls on riverine N₂O.sat were identified independently for each river section using ensemble \((n = 500)\) binary bagged regression trees with the MATLAB fitensemble function (v.2015.b, Mathworks, Natick, MA, USA). This supervised learning method does not require an assumption of normality, and the bootstrap aggregation technique reduces prediction variance [De’ath and Fabricius, 2000; Sutton, 2005] making it a powerful tool for better understanding the controls on N₂O saturation [Baulch et al., 2011; Venkiteswaran et al., 2014; Lundy et al., 2015]. The relative predictor importance (RPI) of each explanatory variable on the corresponding N₂O.sat response was computed by summing the change in mean square error from splitting each predictor and dividing by the number of nodes. The importance was normalized with respect to the largest value [Lundy et al., 2015]; a response of 1 recognizes the independent variable with the greatest impact on the N₂O.sat and a value of 0 indicates no influence. The variance of the ensemble regression model was determined by calculating the pseudo \(R^2\) value of model predicted and observed N₂O.sat ratios.

3. Results and Discussion

The UMR was supersaturated with N₂O throughout the ice-free measurement period, indicating it was an important atmospheric source (Figures 1 and 2a). Across all sampling locations and dates, the mean (standard deviation) N₂O.sat was 2 (0.9) times the atmospheric saturation (Table 1). The mean (standard deviation) fluxes at the regional scale (August) and throughout the ice-free period (April–October) were 0.5 (0.2) and...
0.2 (0.1) nmol N$_2$O N m$^{-2}$ s$^{-1}$, respectively, which are comparable to observations from nearby corn fields [Griffis et al., 2013] and within the range observed in other large rivers [McMahon and Dennehy, 1999; Cole and Caraco, 2001; Hinshaw and Dahlgren, 2013]. Integrated over the measurement period (186 days), the UMR emitted 68 (20–115) mg N$_2$O − N m$^{-2}$. Because groundwater and most tributary flows are negligible in a river of this size, and because of the short residence time of upstream dissolved gases, our data indicate that the UMR actively produces N$_2$O throughout the year. Although, at certain times and places, external N$_2$O inputs could be significant, for instance, high discharge from the N-rich Minnesota River could affect N$_2$O$_{sat}$, but these sources are poorly constrained.

During the June Pool 8 campaign, an instrument issue prevented N$_2$O$_{sat}$ measurements greater than 4.8. Because we can only state that N$_2$O$_{sat}$ was equal to or above 4.8, they were not included in the following analyses. However, the high N$_2$O$_{sat}$ in Pool 8 in June is consistent with recent top-down measurements and modeling that found total emissions (direct + indirect) [Miller et al., 2012; Griffis et al., 2013] and indirect emissions from leaching and runoff [Chen et al., under review] to be the highest during this period, likely because of the recent application of N fertilizers.
Spatial analyses, based on the Getis-Ord G* statistic [Ord and Getis, 2010], identified four N_2O_{sat} hot spots along this section of the UMR (Figure 2b). Hot spots were generally within close proximity to municipal wastewater treatment plants (WWTP). These hot spots dissipated rapidly, presumably because of dilution and outgassing over relatively short distances, suggesting that care should be taken when sampling nearby. The strength of these hot spots reflects differences in effluent discharge and river volume. Since NO$_3^-$ hot spots were not observed downstream of each WWTP (Figure 2c), it is likely that N$_2$O was produced during wastewater processing prior to discharge into the UMR [Kampschreur et al., 2009]. However, WWTPs are relatively minor contributors to the total N in the UMR, with greater than 70% being from agricultural sources [Wall et al., 2013]. Our analyses identified five NO$_3^-$ cold spots (i.e., locations with anomalously low-dissolved N$_2$O) along this reach that were collocated with NO$_3^-$ cold spots (Figure 2c), indicating that NO$_3^-$ concentrations are an underlying requirement for N$_2$O production.

Overall, the surface water NO$_3^-$ (RPI = 1) concentration was the most important explanatory variable driving regional fluctuations in UMR N_2O_{sat} (Figure 3a), whereas throughout the ice-free period, temperature (RPI = 1) and NO$_3^-$ (RPI = 0.86) were the most important predictors (Figure 3b). The strong relation with NO$_3^-$ throughout the UMR was expected because it is linked to both nitrification and denitrification. These processes are well documented in rivers [Strauss et al., 2002; Beaulieu et al., 2011], lakes [Wang et al., 2009], reservoirs [Beaulieu et al., 2015], and estuaries [Owens, 1986; Murray et al., 2015]. In a well-oxygenated river such as the UMR, the strong relation between NO$_3^-$ and N_2O_{sat} suggests that nitrification is a likely pathway to N$_2$O production [Beaulieu et al., 2015]. This relationship also suggests that N$_2$O could be produced via denitrification, since the NO$_3^-$ concentration in the surface water is likely an indirect measure of the NO$_3^-$ available for diffusion into hypoxic sediments [Rosamond et al., 2012], i.e., the sediment denitrification potential. Other processes (e.g., dissimilatory nitrate reduction to ammonia (DNRA) and nitriﬁcation) may produce N$_2$O simultaneously, but the ﬂuxes associated with these production pathways are expected to be small and cannot be elucidated from our data or analyses. However, the kinetics of NO$_3^-$ processing and concurrent N$_2$O production are affected by secondary environmental factors—including turbidity (RPI = 0.4), pH (RPI = 0.3), fDOM (RPI = 0.18), and DO (RPI = 0.14)—that may limit or enhance reaction rates (production via nitrification and consumption via denitrification).

Table 1. The Mean (Standard Deviation) of N_2O_{sat}, N_2O_{FLUX} (nmol N$_2$O N m$^{-2}$ s$^{-1}$), NO$_3^-$ (mg NO$_3^-$ L$^{-1}$), DO (% Saturation), Chl a (Relative Fluorescence Units; RFU), Turbidity (Formamphenol Nephelometric Units; FNU), fDOM (Quinine Sulfate Units; QSU), and Temperature (°C) During Each Sample Campaign.

<table>
<thead>
<tr>
<th>Water Chemistry</th>
<th>N$2O{sat}$</th>
<th>N$2O{FLUX}$</th>
<th>NO$_3^-$</th>
<th>DO</th>
<th>Chl a</th>
<th>Turbidity</th>
<th>fDOM</th>
<th>pH</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regional (n = 1553)</td>
<td>2.5 (0.9)</td>
<td>0.5 (0.2)</td>
<td>1.5 (1.3)</td>
<td>119.7 (16.4)</td>
<td>30.8 (12)</td>
<td>10.1 (6)</td>
<td>97 (13)</td>
<td>8.5 (0.2)</td>
<td>23.8 (0.6)</td>
</tr>
<tr>
<td>Pool 8—April (n = 298)</td>
<td>1.2 (0.1)</td>
<td>0.1 (0.06)</td>
<td>1.4 (1)</td>
<td>96.8 (3.2)</td>
<td>4.6 (2.1)</td>
<td>27.1 (35.8)</td>
<td>45.1 (11.3)</td>
<td>8.4 (0.2)</td>
<td>6.2 (0.7)</td>
</tr>
<tr>
<td>Pool 8—June (n = 474)</td>
<td>>4.8</td>
<td>>0.7</td>
<td>2 (1.5)</td>
<td>79 (9)</td>
<td>6.7 (2.5)</td>
<td>76.7 (81)</td>
<td>78 (27)</td>
<td>8 (0.5)</td>
<td>21 (0.4)</td>
</tr>
<tr>
<td>Pool 8—August (n = 828)</td>
<td>1.7 (0.3)</td>
<td>0.2 (0.1)</td>
<td>0.95 (1)</td>
<td>141.7 (32.6)</td>
<td>41.6 (2.1)</td>
<td>9.2 (4.8)</td>
<td>70.4 (21.7)</td>
<td>8.8 (0.3)</td>
<td>23.5 (0.9)</td>
</tr>
<tr>
<td>Pool 8—October (n = 514)</td>
<td>1.4 (0.2)</td>
<td>0.1 (0.06)</td>
<td>1.2 (0.6)</td>
<td>92.3 (5.6)</td>
<td>3.4 (1.3)</td>
<td>5 (1.6)</td>
<td>74.2 (17.3)</td>
<td>8.2 (0.1)</td>
<td>12 (0.7)</td>
</tr>
</tbody>
</table>

Figure 3. Relative predictor importance (RPI) determined using ensemble (n = 500) regression trees to predict N_2O_{sat} observations. Red and blue bars denote positive and negative relationships, respectively. The variable importance describes the explanatory power of a predictor on the N_2O_{sat} response. The pseudo R^2 was determined from an observed N_2O_{sat} versus predicted N_2O_{sat} relation from the ensemble regression model. Each value was normalized to the most important predictor in each system, (a) the RPI of the regional-scale measurements and (b) the temporal (April, August, and October) RPI from Pool 8.
We posit that these secondary factors indirectly dampen the N\textsubscript{2}Osat response by reducing the efficiency of NO\textsubscript{3}−/C\textsubscript{0}− removal (i.e., N\textsubscript{2}O production potential) at high solute concentrations [Mulholland et al., 2008]. This response has been attributed to limits on denitrification—including dissolved oxygen and carbon [Mulholland et al., 2008]—that were also identified by our ensemble regression tree model. These data also classified pH as an important predictor, likely because it affects the rates of denitrification [Knowles, 1982] and nitrification [Strauss et al., 2004]. We hypothesize that the positive relation identified between turbidity and N\textsubscript{2}Osat in the model reflects the fact that nitrifying bacteria bind to suspended particles in the water column [Beaulieu et al., 2010]. Together, these factors affect the fraction of NO\textsubscript{3}− converted to N\textsubscript{2}O at N saturation [Beaulieu et al., 2011] that underlies the horizontal asymptote observed for dissolved N\textsubscript{2}O concentrations in the UMR (Figure 4).

Using Michaelis-Menten kinetics [García-Ruiz et al., 1998; Boyer et al., 2006], we describe the weakening N\textsubscript{2}O response to N saturation as

\[
[N_2O] = \frac{V_{\text{max}} \times [NO_3^-]}{K_m + [NO_3^-]},
\]

with the parameters estimated using a nonlinear least squares fitting function (environ; v. R2013B; Mathworks, Natick, MA, USA). Here the [N\textsubscript{2}O] (mg N\textsubscript{2}O− N L−1) can be derived from the [NO\textsubscript{3}−] (mg NO\textsubscript{3}− L−1) with a V\textsubscript{max} of 0.0011 (95% CI; ± 4.1 × 10−5) mg N\textsubscript{2}O− N L−1 and a K\textsubscript{m} of 1.36 (±0.11) mg NO\textsubscript{3}− L−1. The V\textsubscript{max} represents the system’s maximum [N\textsubscript{2}O] and the K\textsubscript{m} is the [NO\textsubscript{3}−] required to reach 50% of the V\textsubscript{max}. The nonlinearity of Figure 4 implies that increasing NO\textsubscript{3}− concentrations will have a progressively weaker effect on N\textsubscript{2}O concentrations in the UMR. In North America, river models project a doubling of the NO\textsubscript{3}− exported to estuaries by the year 2050 [Seitzinger et al., 2002]. Using the relation shown in Figure 4, a doubling of NO\textsubscript{3}− would increase N\textsubscript{2}O emissions from the UMR by about 42% (95% CI; 32−52%). Conversely, the U.S. Environmental Protection Agency has established a goal to reduce N export by 45% by 2035. If these goals were achieved, N\textsubscript{2}Osat would decrease by about 32% (26–38%), implying a substantial reduction in N\textsubscript{2}O emissions. However, because our regression tree models indicated that N\textsubscript{2}Osat was influenced by secondary factors, these forecasts could be diminished, for instance, a reduction in turbidity (decreased substrate for nitrifying bacteria) would lower N\textsubscript{2}Osat and therefore these forecasts should represent an upper estimate.

While automated soil N\textsubscript{2}O measurement systems have become more common in recent years, techniques for continuous measurement of riverine N\textsubscript{2}O concentrations have lagged behind. The techniques applied in this study have potential to address this problem worldwide and could significantly reduce the uncertainty in riverine N\textsubscript{2}O emissions and the riverine emission factor (EF\textsubscript{5r}) provided by the Intergovernmental Panel on Climate Change (IPCC) [Nevison, 2000]. For instance, stationary in situ sampling platforms located at strategic locations within a stream network could be used for emission upscaling [Turner et al., 2015] to develop regionally appropriate, Tier II EF\textsubscript{5r} values. Further, such data could be used to improve our understanding of the interannual variability and long-term dynamics of dissolved riverine N\textsubscript{2}O and emissions.

Figure 4. Measurements of N\textsubscript{2}O and NO\textsubscript{3} from the UMR basin. The red dashed line is the Michaelis-Menten (MM) function derived from the regional-scale campaign (n = 1553). The black horizontal dashed line denotes the V\textsubscript{max}, and the black dashed box represents the K\textsubscript{m}. We posit that these secondary factors indirectly dampen the N\textsubscript{2}Osat response by reducing the efficiency of NO\textsubscript{3}− removal (i.e., N\textsubscript{2}O production potential) at high solute concentrations [Mulholland et al., 2008]. This response has been attributed to limits on denitrification—including dissolved oxygen and carbon [Mulholland et al., 2008]—that were also identified by our ensemble regression tree model. These data also classified pH as an important predictor, likely because it affects the rates of denitrification [Knowles, 1982] and nitrification [Strauss et al., 2004]. We hypothesize that the positive relation identified between turbidity and N\textsubscript{2}Osat in the model reflects the fact that nitrifying bacteria bind to suspended particles in the water column [Beaulieu et al., 2010]. Together, these factors affect the fraction of NO\textsubscript{3}− converted to N\textsubscript{2}O at N saturation [Beaulieu et al., 2011] that underlies the horizontal asymptote observed for dissolved N\textsubscript{2}O concentrations in the UMR (Figure 4). Using Michaelis-Menten kinetics [García-Ruiz et al., 1998; Boyer et al., 2006], we describe the weakening N\textsubscript{2}O response to N saturation as

\[
[N_2O] = \frac{V_{\text{max}} \times [NO_3^-]}{K_m + [NO_3^-]},
\]

with the parameters estimated using a nonlinear least squares fitting function (environ; v. R2013B; Mathworks, Natick, MA, USA). Here the [N\textsubscript{2}O] (mg N\textsubscript{2}O− N L−1) can be derived from the [NO\textsubscript{3}−] (mg NO\textsubscript{3}− L−1) with a V\textsubscript{max} of 0.0011 (95% CI; ± 4.1 × 10−5) mg N\textsubscript{2}O− N L−1 and a K\textsubscript{m} of 1.36 (±0.11) mg NO\textsubscript{3}− L−1. The V\textsubscript{max} represents the system’s maximum [N\textsubscript{2}O] and the K\textsubscript{m} is the [NO\textsubscript{3}−] required to reach 50% of the V\textsubscript{max}. The nonlinearity of Figure 4 implies that increasing NO\textsubscript{3}− concentrations will have a progressively weaker effect on N\textsubscript{2}O concentrations in the UMR. In North America, river models project a doubling of the NO\textsubscript{3}− exported to estuaries by the year 2050 [Seitzinger et al., 2002]. Using the relation shown in Figure 4, a doubling of NO\textsubscript{3}− would increase N\textsubscript{2}O emissions from the UMR by about 42% (95% CI; 32−52%). Conversely, the U.S. Environmental Protection Agency has established a goal to reduce N export by 45% by 2035. If these goals were achieved, N\textsubscript{2}Osat would decrease by about 32% (26–38%), implying a substantial reduction in N\textsubscript{2}O emissions. However, because our regression tree models indicated that N\textsubscript{2}Osat was influenced by secondary factors, these forecasts could be diminished, for instance, a reduction in turbidity (decreased substrate for nitrifying bacteria) would lower N\textsubscript{2}Osat and therefore these forecasts should represent an upper estimate.

While automated soil N\textsubscript{2}O measurement systems have become more common in recent years, techniques for continuous measurement of riverine N\textsubscript{2}O concentrations have lagged behind. The techniques applied in this study have potential to address this problem worldwide and could significantly reduce the uncertainty in riverine N\textsubscript{2}O emissions and the riverine emission factor (EF\textsubscript{5r}) provided by the Intergovernmental Panel on Climate Change (IPCC) [Nevison, 2000]. For instance, stationary in situ sampling platforms located at strategic locations within a stream network could be used for emission upscaling [Turner et al., 2015] to develop regionally appropriate, Tier II EF\textsubscript{5r} values. Further, such data could be used to improve our understanding of the interannual variability and long-term dynamics of dissolved riverine N\textsubscript{2}O and emissions.
4. Conclusions

Our data and analyses demonstrate that the UMR is supersaturated with N$_2$O during the ice-free period and is an important source of atmospheric N$_2$O. The regression tree models evaluated in this study indicate that NO$_3^-$ is the dominant control on N$_2$O concentrations but that other environmental variables may limit NO$_3^-$ processing. Given the significant nonlinear relation between NO$_3^-$ and N$_2$O in the UMR, we expect that a doubling of N loading is likely to cause a substantial (32–52%) rise in dissolved N$_2$O concentrations and atmospheric emissions.

Acknowledgments
We thank William Breiter, Michael Dolan, Mark Dornblaser, Stephen Powers, and Matt Erickson for field and laboratory assistance. This work was supported by the U.S. Department of Agriculture, grant USDA-NIFA 2013-67019-21364, USDA-ARS, and the U.S. Geological Survey’s LandCarbon program. Data are hosted at https://www.biometeorology.umn.edu/research/data-archives. Any use of trade or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

References

Natural Resources Conservation Service (2012), Assessment of the effects of conservation practices on cultivated cropland in the Upper Mississippi River basin.

