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RESEARCH

The best way to compare accessions is to conduct a series 
of trials (experiments) that captures the range of environ-

ments of interest and to have every accession present in each trial. 
However, testing all accessions in all trials is usually not possi-
ble because of limiting factors, such as the availability of space 
(e.g., fi eld, greenhouse, growth chamber, laboratory, etc.), time 
required for assessments, demands for equipment, labor, logis-
tics, and economic requirements. Because of these limitations, 
separate experiments are typically performed on diff erent sub-
sets, with only a few (or no) overlapping accessions between sub-
sets. This type of testing leads to a sparsely populated accession × 
experiment matrix (Simko and Piepho, 2011). If the objective is to 
compute mean scores for a set of accessions across a set of experi-
ments and all evaluations were performed at matching scales, it is 
possible to adjust individual scores and combine them into over-
all adjusted means (Piepho, 2003). However, if the rating scales 
for diff erent experiments diff er, combining data from multiple 
experiments with only partially overlapping sets of accessions is 
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ABSTRACT

Comparing performance of a large number 

of accessions simultaneously is not always 

possible. Frequently, only subsets of all 

accessions are tested in separate trials with only 

some (or none) of the accessions overlapping 

between subsets. Using standard statistical 

approaches to combine data from such a 

sparsely populated accession × trial matrix is 

precluded if different rating scales are used to 

evaluate accessions in those trials. Here we 

compare two approaches that can compute 

an overall linear rating for the performance of 

all accessions across a set of trials, even for 

accessions that were never tested together and 

were rated on dissimilar scales. We use data 

from lettuce (Lactuca sativa L.) postharvest 

quality collected on 178 accessions in 18 trials 

and assessment of lettuce resistance to downy 

mildew (Bremia lactucae Regel) performed 

on 583 accessions in 53 trials. The projected 

values (PV) approach uses a combination of 

principal component analysis and resampling 

to merge trial results and calculates an overall 

rating from real values. In contrast, the rank-

aggregation (RA) approach uses an extension 

of the Rasch model to combine rank-ordered 

data from individual trials. We found high 

correlation between ratings produced by the 

two approaches for the postharvest quality 

(r = 0.803) and the resistance to downy mildew 

(r = 0.748). Combining data from multiple 

experiments identifi ed lettuce accessions with 

a high level of resistance to the disease and a 

slow rate of deterioration when processed for 

salad. The PV and RA approaches also allow 

combining data from different laboratories 

or databases.
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more challenging. Here we show how such heterogeneous 
data can be combined using the methods of projected val-
ues (PV) (Ehlenfeldt et al., 2010) and rank aggregation 
(RA) (Simko and Linacre, 2010; Simko and Pechenick, 
2010). These two approaches are applied to evaluations of 
postharvest quality and resistance to downy mildew con-
ducted on lettuce accessions.

Salad-cut lettuce is a highly perishable product with a 
short shelf life. To extend shelf life of minimally processed 
lettuce, salad is typically kept at low temperature and in a 
modifi ed atmosphere consisting of low O

2
 and high CO

2
 

levels (Smyth et al., 1998; Kim et al., 2005). Nevertheless, 
signifi cant phenotypic diff erences in shelf life (percent 
deteriorated tissue) were observed among lettuce cultivars 
stored under these modifi ed atmospheric conditions (Hayes 
and Liu, 2008). These diff erences appear to be relatively 
independent of environment because similar rankings 
of cultivars were observed under diff erent conditions. 
Given the importance of salad-cut products to the lettuce 
industry, cultivars, breeding lines, and populations need to 
be evaluated for the rate of deterioration after processing for 
salad. In the present work, we combine data from 18 trials 
that were used to evaluate 178 accessions for the rate of 
deterioration. Because it was not possible to test all accessions 
simultaneously, individual trials included only a subset of 
accessions that were evaluated on three rating scales.

Downy mildew disease, caused by the oomycete 
Bremia lactucae Regel, is a major threat to lettuce production 
worldwide. Control of the disease is usually based on a 
combination of fungicides and resistance genes (Crute, 
1984, 1992). Two types of resistance genes against downy 
mildew are present in lettuce: qualitative resistance that is 
conferred by major genes that render the host incompatible 
with the pathogen and quantitative resistance that is usually 
conferred by multiple genes, each of minor eff ect (Grube 
and Ochoa, 2005; McHale et al., 2009). Unfortunately, 
qualitative resistance is not durable because B. lactucae 
develops new races that can defeat the resistance genes of 
lettuce (Crute, 1998). Quantitative resistance is usually 
more durable, but it is also more diffi  cult to evaluate (Crute 
and Norwood, 1981; Grube and Ochoa, 2005). To detect 
material with good resistance in a particular growing area, 
a large number of trials need to be performed. Here we 
combine data from 53 trials that were used to evaluate 582 
accessions for their resistance to downy mildew.

This study was motivated by a large database 
consisting of hundreds of accessions tested over several 
years either for their postharvest quality or resistance to 
downy mildew, but an overall rating of the accessions 
was precluded because the trials were performed on only 
partially overlapping subsets of accessions and evaluations 
were performed with diff erent rating scales. The objectives 
of the present study were (i) to combine data from multiple 
trials into an overall rating of accessions, (ii) to compare 

results of the two approaches based on projected values and 
rank aggregation, and (iii) to identify accessions with both 
a slow rate of deterioration after processing for salad and a 
high resistance to downy mildew under fi eld conditions.

MATERIALS AND METHODS

Plant Material
A set of accessions tested for postharvest quality (Supplemental 

Table S1) and/or resistance to downy mildew (Supplemental 

Table S2) included commercial cultivars, plant introductions from 

both Pullman, WA, and Salinas, CA, seed depositories, breed-

ing lines and released germplasm from our breeding programs, 

and F
8
 recombinant inbred lines (RILs) from the Salinas 88 × La 

Brillante mapping population (Hayes et al., 2011). Lettuce plants 

were seeded in two rows on 1 m wide beds and were thinned to 

obtain a spacing of about 30 cm between plants. All trials were 

grown in Salinas, CA, with a single exception of one experiment 

grown in Yuma, AZ, to assess shelf life. Standard commercial 

practices for the area were used for irrigation and fertilization; 

however, downy mildew infection was not controlled.

Postharvest Quality
Plants at harvest maturity were harvested, processed into salad, 

and packaged in 22.8 by 30.5-cm clear fi lm bags as described 

in Hayes and Liu (2008). In total, 178 accessions from 18 trials 

were tested for postharvest quality. Bags of salad-cut lettuce 

were stored at 3.5°C and deterioration of material was evalu-

ated by one of the three methods.

1. Method of Hayes and Liu (2008). Evaluations were con-

ducted when some bags of salad reached 100% deteriora-

tion. To evaluate the degree of deterioration, deteriorated 

pieces were collected and weighed. The percentage of 

deteriorated pieces out of all tissue was recorded as degree 

of deterioration on a scale of 0 to 100%.

2. Evaluations were conducted when a bag with the highest 

rate of deterioration reached approximately 50%. All bags 

were visually rated (without opening) on a scale of 1 to 

5, in which 1 indicated no deterioration and 5 indicated 

100% deterioration. Rating of bags was performed six 

times at weekly intervals and a mean score for each bag 

was calculated from these six evaluations.

3. Evaluations of bags were conducted at weekly intervals, 

starting the fi rst week after processing and continuing 

until the last bag reached 100% deterioration. Rating of 

deterioration was visually performed without opening 

the bags on a rating scale ranging from 0 to 10 that corre-

sponds to the estimated percentage of deteriorated tissue 

divided by 10. The area under the deterioration progress 

stairs (AUDePS) was calculated from individual evalua-

tions to combine progress of deterioration into a single 

value (Simko and Piepho, 2012).

Resistance to the Downy Mildew Disease
Lettuce reaction to downy mildew was assessed on 582 acces-

sions grown in 53 trials. Trials were not artifi cially inoculated 
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“projected” values (that is, projected to a common axis determined 

by the accessions in common in the two trials; accessions that are 

unique to one or the other of the two trials are projected onto 

this common axis using the parameters from the PCA so that the 

projected axis includes values for all accessions from the two tri-

als). Random resamplings and calculations were then repeated 999 

additional times. The whole process was then started again, but 

this time drawing random samples from the projected values; this 

was iterated until the scores stabilized. The number of iterations 

depended on the original data set; we found convergence typi-

cally occurred after a few hundred iterations (and sometimes far 

less). This entire procedure was repeated 30 times and the resulting 

scores used to calculate a mean and variance for each accession in 

the core set. Well-represented accessions that performed consis-

tently in trials had small variances; rarer accessions, especially if 

they performed inconsistently in trials, had large variances. Finally, 

values for accessions that were originally eliminated from the core 

set were incorporated through linear regression into the common 

score axis. The main assumption underlying this method is that 

there is some underlying “true” axis for the trait of interest that 

the accessions lie on and that the “noise” (both inherent biological 

noise and that caused by any accession × trial interaction) can be 

averaged over. Note that the variance estimates produced repre-

sented the variability in fi nal scores (which had several compo-

nents, such as how often the accession appeared in trials) and did 

not represent the variability one saw in the fi eld. The scores can be 

easily converted into rankings, with an accompanying measure of 

the uncertainty of the ranking.

The PV approach requires that correlation between trials is 

generally positive (although a few pairs of negatively correlated 

trials is acceptable, as might occur when one accession has a 

very unusual score in the trial, as long as these trials are posi-

tively correlated when paired with the other trials in the data-

set). This allows PCA to merge the data from the trials, and as 

trials are added and resampling is performed, all accessions are 

forced into a linear relationship (Ehlenfeldt et al., 2010). The 

PV approach also requires that a pair of trials has at least three 

overlapping accessions to calculate a principal component axis 

(if not, the trials still get used, they just get merged with other 

trials until suffi  cient overlap of accessions exists to start merg-

ing the intermediate projected value scores). The resampling 

method used by PV allows estimating stability of rating and 

ranking results (Supplemental File S4) for each accession that 

was tested in at least two trials.

Combining Data by the Rank 
Aggregation Approach
The rank-aggregating approach uses a relative ranking of acces-

sions in individual trials to calculate the overall performance 

rating (Simko and Linacre, 2010; Simko and Pechenick, 2010). 

Calculations were performed using the polytomous partial 

credit model for rank-ordered data (Linacre, 1992; Masters, 

1982; Wright and Masters, 1982) that is an extension of the 

Rasch model (Rasch, 1993). The model assumes that there are 

as many score categories as accessions in each trial and that each 

score category is occupied by a single accession (or multiple 

accessions, if tied rankings are present) (Simko and Linacre, 

2010; Simko and Pechenick, 2010). Overall performance of 

an accession was calculated from the accession’s performance 

with B. lactucae, as natural infection occurred in all experi-

ments. Resistance to the disease was evaluated under fi eld con-

ditions by one of the three methods.

1. Method of Grube and Ochoa (2005). Evaluation of resis-

tance was performed when the majority of plants in the 

fi eld were at the harvest maturity. Disease symptoms were 

evaluated on 10 plants per plot as described by Grube and 

Ochoa (2005). The disease rating scale of 0 (no disease) to 

5 (nearly 100% disease) combined both symptom severity 

and the number of symptomatic leaves per plant (Grube 

and Ochoa, 2005).

2. Single evaluation of disease at harvest maturity. Disease on 

plants was visually rated on a scale of 1 to 5, in which 1 

indicated no disease and 5 indicated very heavy infection 

and plants with many dead leaves. An overall disease score 

was given to the whole plot (approximately 60 plants).

3. Continuous evaluations of disease progress. Evaluations 

started when the most susceptible accession was mod-

erately infected and continued at weekly intervals until 

harvest maturity. Disease was rated on a scale of 0 to 5, 

in which 0 indicated no disease and 5 indicated nearly 

100% infection. This approach was diff erent than evalua-

tion method A in that the overall disease score was visu-

ally estimated for the whole plot (approximately 15–30 

plants) rather than counting the number of diseased leaves 

on selected plants. The area under the disease progress 

stairs (AUDPS) was calculated from individual evalua-

tions to combine the disease progress data into a single 

value (Simko and Piepho, 2012).

Combining Data by the Projected 
Values Approach
Data from individual trials were combined into a single rating as 

described in Ehlenfeldt et al. (2010) with minor modifi cations. 

First, a core set of accessions and trials were selected. This core 

set consisted of accessions that were tested in at least two trials 

and their rating was neither the highest nor the lowest in all of 

their participating trials. If an accession was tested in just a few 

trials and was rated the best or worst in all of them, its score was 

unnaturally high or low if left in the core data set. Therefore these 

accessions were excluded from the core set and their rating was 

calculated later. Trials that were selected into the core set con-

tained at least three accessions that were tested in at least two or 

more trials and were linked to other accessions through testing 

in some other trials. Gradual elimination of accessions and tri-

als was performed until the core set was determined. The shelf 

life data core set contained 176 accessions and 17 trials. The core 

set of downy mildew data contained 575 accessions and 53 trials. 

After the core set was determined, the projected value approach 

(Ehlenfeldt et al., 2010) was applied to calculate estimates for all 

accessions in the core set. We outline the method below; the R 

code (R Development Core Team, 2008) is given in Supplemental 

File S3. This approach uses a combination of principal component 

analysis (PCA) and resampling. A PCA determines an axis that 

best goes through datasets of two randomly selected trials with 

at least a few accessions in common, thus allowing calculation of 
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in multiple trials, the mean performance of other accessions 

included in those trials, and a category calibration:

log (P
kij

/P
ki( j – 1)

) = B
k
 – D

i
 – F

ij
,

in which P
kij

 is the probability that accession k tested in trial i is 

observed in category j, P
ki( j – 1)

 is the probability that accession 

k tested in trial i is observed in category j – 1, B
k
 is the perfor-

mance of the accession k, D
i
 is the mean performance of the 

accessions included in trial i (the diffi  culty measure of trial i), 

and F
ij
 is the calibration of category j relative to category j – 1 

in trial i. All analyses were performed using the Winsteps 3.65.0 

computer program (Linacre, 2008). Winsteps calculates a cen-

tral estimate of performance for each accession and calibrations 

for trials and categories based on performance of all accessions 

tested in these trials. The calculation is repeated several times 

and in each iteration, a new performance of an accession is cal-

culated from the performance and calibration values obtained 

in the previous iteration. Calculations are repeated until the 

estimation procedure has reached an acceptable level of conver-

gence, or the maximum number of iterations has been reached, 

or the estimates are not improving. Detailed explanations of the 

calculation and the parameters are described in the Winsteps 

manual. Only accessions that were tested in two or more trials 

were included in this data analysis.

Normalization of Ratings, Calculation 
of the Mean of Normalized Values, 
and Detection of Outliers
Both the projected value and the rank-aggregating methods 

produce ratings on latent scales. To compare results calculated 

by the two approaches ratings were normalized as

z = (X – X )/s,

in which X is the rating value to be normalized, X  is the arith-

metic mean of all rating values, and s is the standard deviation 

of all rating values. Because values estimated by PV and RA 

approaches were highly correlated, we averaged normalized 

ratings of PV and RA to calculate the mean of normalized val-

ues (MNV). The MNV was the measure we used to identify 

the best and the worst performing accessions.

Suspected outliers and outliers were identifi ed through the 

interquartile range (IQR) approach (Tukey, 1977), in which IQR 

is the diff erence between the fi rst and the third quartiles. Sus-

pected outliers are values 1.5 × IQR either below the fi rst quartile 

or above the third quartile. Values more than 3 × IQR below the 

fi rst or above the third quartile were defi ned as outliers.

Mean Correlation Coeffi cient
To estimate a mean correlation coeffi  cient among trials, indi-

vidual correlations between pairs of trials were calculated and 

then transformed using Fisher’s r-to-z transformation (Corey 

et al., 1998):

z
i
 = (1/2)ln[(1 + r

i
)/(1 – r

i
)],

in which r
i
 is the correlation coeffi  cient between a pair of trials. 

A weighted z′ score was calculated from individual z
i
 scores 

and the respective sample size N
i
:

z′ = ∑(N
i
z

i
)/∑N

i
.

The average z′ score was subsequently back transformed to 

obtain the mean r′ value:

r′ = [e2z′ – 1]/[e2z′ + 1].

Only pairs of trials that had at least 50 accessions in common 

were used in this analysis.

RESULTS

Rating of Lettuce Postharvest Quality
The rate of deterioration was evaluated at least twice on 
178 accessions tested in 18 trials. However, because not 
every accession was tested in every trial, the accessions 
× trials matrix contained only 728 data points, which is 
approximately 22.7% of all data points in the complete 
matrix (178 × 18 = 3204). Normalized ratings for the 
projected value approach ranged from −2.43 (the best 
shelf life) to 1.81 (the worst shelf life) (Fig. 1). For the 
rank-aggregating approach, normalized ratings ranged 
from –2.26 to 2.57 (Fig. 1). Although ratings of accessions 
by the two approaches were not identical (Supplemental 
Table S1), the overall correlation between the PV and RA 
ratings was high (r = 0.803, p < 0.0001) (Fig. 2). The 
MNV of the two ratings was used to identify accessions 
with the best and the worst shelf life.

Approximately 70% of accessions had MNV in the 
range of –1 to 1; 13% (23 accessions) had MNV below –1 (the 
slowest rate of deterioration) whereas 17% (31 accessions) 
had MNV above 1 (the fastest rate of deterioration) (Fig. 
1). A group of the best performing accessions (MNV < 
−1) tested in at least two trials included eight cultivars: 
Calmar, Autumn Gold, Tiber, Silverado, Glacier, Salinas 
88, Darkland, and Salinas. With the exception of Darkland, 
which is a romaine lettuce, all other cultivars are iceberg 
type lettuces (Table 1). A morphologically more diverse 
group of 10 cultivars had the worst shelf life (MNV > 
1) and consisted of four romaine lettuces (Bandit, Dark 
Green Romaine, Lee Tal, and Triple Threat), three Latin 
type lettuces (Pavane, Little Gem, and Barnwood Gem), 
two butterhead lettuces (Cobham Green and Tinto), and a 
single Batavia type lettuce (La Brillante). The overall best 
MNV of –2.21 was calculated for the iceberg breeding 
line RH09-1700 tested in two trials whereas the worst 
MNV of 1.89 was calculated for Latin-type cultivar 
Pavane tested in four trials (Fig. 3; Supplemental Table 
S1). No outliers or suspected outliers were identifi ed in 
the PV, RA, and MNV data for shelf life (Fig. 1).

Rating Of Lettuce Resistance 
to Downy Mildew
Resistance to downy mildew was assessed at least twice 
on 582 accessions tested in 53 trials. The accessions × trial 
matrix contained only 1996 data points, which is approxi-
mately 6.5% of all data points in the complete matrix (582 
× 53 = 30,846) (Fig. 4). Normalized ratings ranged from 



CROP SCIENCE, VOL. 52, SEPTEMBER–OCTOBER 2012  WWW.CROPS.ORG 2135

–2.34 (highest resistance) to 3.54 (highest susceptibility) for 
PV, from –2.13 to 2.79 for RA, and from –2.12 to 2.34 for 
MNV (Fig. 1). Thirteen accessions (2.2%) in the PV dataset 
and seven accessions (1.2%) in the RA dataset were identifi ed 
as suspected outliers, all with a high susceptibility to downy 
mildew. Although suspected outliers identifi ed in the PV and 
RA datasets were diff erent, correlation between normalized 
ratings was high (r = 0.748, p < 0.0001) (Fig. 2). The MNV 
of the two ratings was used to identify accessions with the 
highest resistance and susceptibility to downy mildew.

Approximately 70% of accessions had MNV in the 
range from –1 to 1; 14% (83 accessions) had MNV below 
–1 (the highest resistance) whereas 16% (91 accessions) had 
MNV above 1 (the highest susceptibility) (Fig. 1). Twenty-
four cultivars were in the group of accessions with highest 
resistance (MNV < –1). This group contained lettuces from 
fi ve horticultural types: Batavia (eight), leaf (six), butterhead 
(six), stem (three), and iceberg (one). From examined 
cultivars, the highest level of fi eld resistance to downy 
mildew was observed in Holborn Standard (Batavia) (–2.11) 
tested in 14 trials, Iceberg (Batavia) (–1.99) tested in 37 trials, 
and Lolla Rossa (leaf-type) (–1.81) tested in eight trials. The 
overall lowest score of –2.12 was observed for the leaf-type 
accession 04G642 that did not show any disease symptoms 
in the two trials it was tested in. The group of accessions 
with the highest susceptibility to downy mildew (MNV > 
1) included 22 cultivars from six types of lettuces: iceberg 
(nine), romaine (four), Latin (three), butterhead (three), 
stem (two), and Batavia (one). The highest susceptibility 

was recorded for cultivars Pavane (Latin) (2.24) tested in 
seven trials, Celtuce (stem) (2.22) tested in three trials, Vista 
Verde (iceberg) (2.12) tested in four trials, Da Ye Wo Sun 
(stem) (1.90) tested in fi ve trials, and Sturgis (romaine) (1.86) 
tested in three trials. The overall highest score indicating 
the highest level of susceptibility to downy mildew was 
calculated for the romaine-type PI 491224 (2.34) tested in 
four trials.

We observed large diff erences among horticultural 
types of lettuces in their reaction to B. lactucae infection. 
If cultivars with an MNV < –1 are labeled “resistant” and 
with an MNV > 1 “susceptible,” lettuce types with the 
highest ratio of resistant to susceptible cultivars were leaf 
(six vs. zero), Batavia (eight vs. one), butterhead (six vs. 
three), and stem (three vs. two) lettuces. The lowest ratios 
were observed for iceberg (one vs. nine), Latin (zero vs. 
three), and romaine (zero vs. four) types (Table 1).

Accessions Tested for Both Traits
One hundred and forty-eight accessions were tested for 
both traits in at least two trials. The correlation was not 
signifi cant between the MNV for shelf life and downy 
mildew (r = –0.150, p = 0.0698) (Fig. 3). Some accessions 
showed a desirable combination of both traits (good shelf 
life and high resistance to downy mildew) whereas others 
performed poorly when tested for these traits. The group 
of accessions with low MNV (favorable combination) for 
both traits included Batavia cultivars, Holborn Standard, 
Iceberg, and Batavia Reine de Glaces, stem-type cultivar 

Figure 1. Distribution of the normalized values for shelf life (top row, 178 accessions) and downy mildew resistance (bottom row, 582 

accessions) calculated with the projected values (PV) approach and the rank-aggregation (RA) approach. The last column shows 

distribution of the mean of normalized values (MNV) calculated from averaging the two approaches. The left part of each panel shows 

the frequency of normalized values and their distribution. The right part of each panel shows a boxplot diagram. The box identifi es the fi rst 

and the third quartile, the band in the middle of the box is the median. The ends of the whiskers represent the minimal and the maximal 

values. If suspected outliers were identifi ed, these are plotted as small circles and the end of the respective whiskers represent the end 

of the 1.5 × interquartile range above the third quartile.
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Balady Banha, and the recombinant inbred line RH08-
0112 originating from the Salinas 88 × La Brillante 
mapping population (Fig. 3). In the group that included 

accessions with both poor shelf life and high susceptibility 
to downy mildew were three Latin-type cultivars (Pavane, 
Little Gem, and Barnwood Gem), two romaine accessions 

Figure 2. Correlation between the normalized values calculated by the projected values approach and the rank-aggregation approach. 

The top panel shows values for 178 accessions tested for shelf life and the bottom panel shows values for the 582 accessions tested for 

resistance to downy mildew.

Table 1. Distribution of the postharvest quality and the resistance to downy mildew in lettuce cultivars from different 

horticultural types.

Type
Good shelf life

MNV† < –1
Poor shelf life

MNV > 1
High resistance

MNV < –1
High susceptibility

MNV > 1

Batavia 0‡ 1 8 1

Butterhead 0 2 6 3

Iceberg 7 0 1 9

Latin 0 3 0 3

Leaf 0 0 6 0

Romaine 1 4 0 4

Stem 0 0 3 2

Total 8 10 24 22

†MNV, mean of normalized values.

‡Values correspond to the number of cultivars from each horticultural type that belongs to the respective category. The number of cultivars that belong to the intermediate 

category (MNV from –1 to 1) is not shown.
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(PI 491224 and Dark Green Romaine), and a single but-
terhead cultivar (Cobham Green) (Fig. 3; Table 1).

DISCUSSION

Rating of Lettuce Postharvest Quality
The mean correlation among postharvest quality trials 
was r′ = 0.705 (p < 0.001), indicating a limited acces-
sion × trial interaction. Combining phenotypic observa-
tions from 18 trials allowed identifi cation of accessions 
with either slow or fast rate of deterioration. Most of the 
best performing cultivars (seven out of eight) were ice-
berg type lettuces (Autumn Gold, Calmar, Glacier, Sali-
nas, Salinas 88, Silverado, and Tiber) with fi rm, compact 
heads and overall high phenotypic (Simko et al., 2011) 
and genetic (Simko, 2009) similarity. There were three 
Latin cultivars and two butterhead cultivars in the group 
of accessions with the fastest deterioration (MNV > 1) and 
none in the group with the slowest deterioration (MNV 
< –1). Combined results from 18 trials indicated that both 
of these types had generally poor shelf life when processed 
for salad (Supplemental Table S1).

Based on F
8
 RILs from the Salinas 88 × La Brillante 

mapping population tested in multiple trials, we 
approximated the number of days to 100% deterioration. 
Although diff erences among trials existed, accessions with 

the fastest deterioration (MNV > 1) reached 100% on 
average in about 25 to 30 d whereas accessions with the 
best shelf life (MNV < –1) reached 100% deterioration in 
approximately 65 to 90 d. Our results confi rmed very large 
phenotypic variability in the postharvest quality of lettuce 
(Hayes and Liu, 2008) that can be used to develop material 
with improved shelf life (Simko et al., 2010).

One of the shelf life evaluation methods (method C) 
was used to observe deterioration process until profound 
cell lysis was evident (Fig. 5). Such highly deteriorated 
salad cannot be used for human consumption; however, 
evaluating the dynamics of deterioration allows the study 
of mechanisms that are not evident from assessments at a 
single time point. For example, two diff erent genes may 
autonomously initiate the beginning of deterioration 
at a similar time but at a dissimilar progress rate. Thus, 
detailed analysis of deterioration progress allows detection 
of genes involved in postharvest quality (R.J. Hayes and 
I. Simko, unpublished data, 2012) that can be targeted 
for marker-assisted selection. Overall, the AUDePS of 
deterioration signifi cantly correlated (r = 0.874, p < 
0.0001) with the number of days that salad was suitable 
for retail (rating of 0 on a scale of 0–10). Moreover, 
the AUDePS score signifi cantly correlated (r = 0.841, 
p = 0.0045) in a blind experiment with evaluation of 
postharvest quality performed by Fresh Express (Salinas, 

Figure 3. Scatter plot of the mean of normalized values (MNV) for 148 accessions that were tested for both shelf life and resistance to 

downy mildew. Circles show MNV and whiskers indicate the normalized values calculated by the projected value approach and the rank-

aggregating approach. For example, the normalized values for shelf life of accessions PI 491224 are projected values (PV) = 0.22, rank 

aggregation (RA) = 1.06, and MNV = 0.64. Therefore the circle on x-axis is at 0.64 and the whiskers extent from 0.22 to 1.06. Similarly, 

the values for the disease resistance are PV = 3.54, RA = 1.15, and MNV = 2.34; therefore, the circle on y-axis is at 2.34 and the whiskers 

indicate interval from 1.15 to 3.54. Accessions having desirable values for both traits (good shelf life and high resistance) are close to the 

lower left corner (–3, –3 value). Accessions having undesirable values for both traits (poor shelf life and high susceptibility) are close to the 

upper right corner (3, 4 value). Abbreviations for accessions are RH, RH08-0112 (recombinant inbred line); BRG, Batavia Reine de Glaces 

(Batavia type); BB, Balady Banha (stem type); HS, Holborn Standard (Batavia type); Ic, Iceberg (Batavia type); PI, PI 491224 (romaine 

type); Pa, Pavane (Latin type); BG, Barnwood Gem (Latin type); LG, Little Gem (Latin type); CG, Cobham Green (butterhead type); and 

DGR, Dark Green Romaine (romaine type).
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CA), a major salad-processing company (R.J. Hayes and I. 
Simko, unpublished data, 2009).

Rating of Lettuce Resistance 
to Downy Mildew
Resistance of lettuce to downy mildew is conferred either 
by major genes (qualitative resistance), or minor genes 
(quantitative resistance), or a combination of the two 

(Grube and Ochoa, 2005; McHale et al., 2009). Minor 
genes usually provide less resistance but the level of resis-
tance conferred is similar against most of the races of B. 
lactucae (Crute and Norwood, 1981). Major genes, on the 
other hand, usually provide complete resistance against 
specifi c races of downy mildew but are rendered com-
pletely ineff ective by virulent races of the pathogen (Crute, 
1998; Grube and Ochoa, 2005). We did not observe any 
pathogen race × accession interactions in which an acces-
sion would be disease free in one trial but highly suscep-
tible in another trial. The mean correlation between trials 
was r′ = 0.342 (p < 0.001). All isolates of downy mildew 
collected from our fi eld trials were fully avirulent to Dm17 
and Dm38 resistance genes (data not shown).

The most resistant accession from those that were 
tested in at least two trials was 04G642 (MNV = –2.12) 
that is used as a diff erential to identify avirulence genes 
in B. lactucae isolates. Resistance in this line is based on 
Dm17, a major dominant gene that still provides resistance 
against most of the downy mildew races detected in the 
Salinas-growing region (Michelmore et al., 2011). If races 
that defeat the Dm17 gene were to appear in our trials, 
resistance in 04G642 would likely be substantially or 
completely reduced. On the other hand, the high level 
of resistance observed in the cultivars Holborn Standard, 
Iceberg, Lolla Rossa, Grand Rapids, and some others 
appears to be conferred mostly by a race-nonspecifi c 
combination of genes with minor eff ects. In almost all 
trials, small amounts of infection were observed on these 
cultivars, but infection was usually limited to relatively few, 
small lesions with a minimal sporulation of the pathogen. 
Our observations are in line with previous studies that 
did not fi nd any evidence of race-specifi c resistance in 
cultivars Grand Rapids and Iceberg (Norwood et al., 
1983; Grube and Ochoa, 2005).

Comparison of diff erent horticultural types of lettuces 
revealed that their resistance to B. lactucae infection 
substantially varies. Some lettuce types, such as leaf and 
Batavia, comprise several cultivars with high resistance 
while no cultivar from iceberg, Latin, and romaine type 
was included in this group (Table 1). The single exception 
was the iceberg cultivar Ice Cube with a relatively high 
resistance to downy mildew (Supplemental Table S2). 
However, this cultivar is a “mini” lettuce that was not 
developed for a large-scale commercial production. 
Because genetic and phenotypic variability within 
romaine and especially iceberg types is relatively small 
(Simko, 2009, Simko et al., 2009), our analysis indicated 
that novel genes for quantitative resistance against downy 
mildew need to be introgressed into these genepools from 
other horticultural types or lettuce species. Therefore we 
are developing iceberg and romaine breeding lines with 
resistance genes originating from several Batavia, stem, 
and leaf-type accessions.

Figure 4. Distribution of 1996 data points that were used to 

calculate overall ratings of lettuce resistance to downy mildew. 

Columns represent 53 trials, rows show information for 582 

accessions, and black squares indicate distribution of data points. 

If every accession were tested in every trial, the complete matrix 

would contain 582 × 53 = 30,846 data points.
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Comparison of the Results from the Projected 
Values and Rank-Aggregation Methods

When testing all accessions simultaneously is not practicable 
or possible, combining phenotypic data from multiple tri-
als into the overall rating is an eff ective approach. We used 
two relatively new approaches: PV (Ehlenfeldt et al., 2010) 
and RA (Simko and Linacre, 2010; Simko and Pechenick, 
2010) as well as averaging across them to identify accessions 
with the slowest rate of deterioration after processing for 
salad and the highest resistance to downy mildew.

Rank-aggregation based methods have previously 
been used for combining data from biological experiments 
recorded on diff erent rating scales (Simko and Linacre, 
2010; Simko and Pechenick, 2010; Lin, 2011). This 
approach requires a certain level of diff erence in 
rankings in diff erent trials to construct linear measures 
from ranked data. Perfectly ordered observations do 
not provide enough information to calculate distances 
between accessions (Linacre, 1992; Simko and Linacre, 
2010). The advantage of RA-based methods is that they 
are invariant to transformation and normalization (as long 
as relative ordering is preserved), independent of rating 
scales, distribution free, robust to outliers, and require 
only two accessions per trial as minimum (DeConde et 
al., 2006; Conlon et al., 2007; Simko and Pechenick, 
2010; Lin, 2011). However, when ranked data are used to 
calculate an overall rating, some information is inevitably 
lost compared with eff ect size-based methods (Choi et al., 
2003; Lin, 2011), such as PV.

Although the PV and RA methods use diff erent approaches 
to calculate overall rating, we found a high correlation between 
the fi nal estimates. The correlation between the PV and RA 
ratings calculated for shelf life data on 178 accessions was r = 

0.803 (p < 0.0001) whereas the correlation for downy mildew 
data on 582 accessions was r = 0.748 (p < 0.0001). Similar 
results were reported for approaches used in web metasearch, 
where rank-based methods performed comparably to score-
based methods (Renda and Straccia, 2003) even though the 
underlying assumptions diff ered. The largest diff erences in 
ratings estimated by the PV and RA methods were observed 
when an accession performed very well or very poorly in 
some trial(s). In such cases, ratings based on PV were usually 
more distal on a normalized scale whereas those based on RA 
were closer to the center of a normalized scale. For example, 
the largest diff erence between the PV and RA normalized 
values for resistance to downy mildew was observed for 
the cultivar White Paris (PV 3.21, RA –0.36) and for the 
accession PI 491224 (PV 3.54, RA 1.15). White Paris, tested 
twice, performed very poorly in one of the trials. Therefore, 
it was not included in the core set of accessions and its PV 
value was calculated from linear regression on the common 
score axis. Plant introduction 491224 was tested four times 
and it also performed very poorly in one of the trials. The 
diff erence between the PV and RA ratings refl ected the fact 
that RA did not take into consideration actual values, only 
relative rankings. However, the opposite situation, when PV 
values were closer to the center of a normalized scale than RA 
values, can also happen. For example, the largest diff erence 
between the PV and RA normalized values for shelf life was 
observed for the cultivars Cobham Green (PV 0.519, RA 
2.268) and Tinto (PV 0.486, RA 2.136). Both of these cultivars 
were tested twice and consistently ranked among the worst 
performing accessions in those trials. However, their shelf 
life values were not substantially diff erent from other poorly 
performing accessions; therefore, the absolute values of RA for 
both cultivars were higher than their respective PV values.

Figure 5. Example of postharvest deterioration that is accompanied by a profound cell lysis. Material was processed for salad and stored 

at 3.5°C for 4 wk. Breeding line SM09A (left) (Simko et al., 2010) shows slow deterioration while PI 491224 that is a parent of SM09A 

shows a very high rate of deterioration with most of the cells already disrupted.
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In the present work, only accessions tested in at least 
two trials were used for analyses. However, 155 more 
accessions were tested only once for shelf life, and 1266 
more accessions were tested only once for resistance to 
downy mildew (data not shown). Although observations 
from only a single experiment do not provide enough 
information, these data were used to identify accessions 
with potentially high resistance to downy mildew and 
good shelf life. These results need to be confi rmed in 
additional experiments. When estimates based on a single 
experiment were added to datasets, the correlation between 
the PV and RA ratings calculated for shelf life data on 333 
accessions was r = 0.677 (p < 0.0001). The correlation 
for downy mildew data on 1848 accessions increased 
to r =  0.790 (p < 0.0001), indicating a good match for 
estimates calculated by the PV and RA approaches.

Limitations of the Projected Values 
and Rank-Aggregation Methods
Although both the PV and RA methods can calculate rat-
ings and rankings from sparse accession × trait matrices, 
there are certain limitations that need to be considered 
before combining heterogeneous phenotypic data across 
multiple experiments. These are

1. All accessions that are to be placed into a common 
linear scale need to be compared, either directly or 
indirectly, through intermediary accessions.

2. Both approaches assume transitivity of data; if acces-
sion A outperforms accession B, and accession B 
outperforms accessions C, it is assumed that acces-
sion A also outperforms accession C.

3. Results of evaluations based on diff erent rating scales 
have to be providing similar information. Data that 
were used to combine both shelf life and downy 
mildew evaluations into the respective overall rat-
ings originate from diff erent ratings scales. How-
ever, results of evaluations based on diff erent rating 
scales (for both traits) were strongly correlated when 
comparative testing was performed in selected trials 
(I. Simko, unpublished data, 2010). Before combin-
ing data from diff erent rating scales, it is critical to 
ensure that all rating scales evaluate the same trait. 
If individual rating scales provide dissimilar infor-
mation, combining data from these diff erent scales 
should not be performed.

4. Negative correlation between a pair of trials. Com-
bining a pair of trials with many overlapping acces-
sions that are negatively correlated is a conceptual 
problem. Essentially, that means that accessions that 
perform well in one trial may perform relatively 
poorly in another trial and vice versa. If such dif-
ference in relative rankings exists, calculating an 
overall ranking from negatively correlated trials may 
have limited meaning. However, if combining trials 

with negative correlation is deemed necessary, RA 
approach can be used.

5. Accession × trial interactions can signifi cantly aff ect 
the relative ranking of accessions. If the interaction is 
strong, it is not possible to estimate values for missing 
observations reliably. For example, assume that resis-
tance to downy mildew was tested on a set of acces-
sions, each with a diff erent single resistance gene. If 
diff erent trials were infected with races of B. lactucae 
having diff erent avirulence genes, a signifi cant acces-
sion × trial interaction would occur. If the interaction 
eff ect is large, it will mask the additive eff ect of acces-
sion and make apparent resistance a function of which 
trial the accession appeared in (i.e., the same acces-
sion was highly rated in one trial and poorly rated in 
another). This situation did not happen often in our 
trials, which had signifi cant and positive mean cor-
relations (shelf life r′ = 0.705, p < 0.001, and downy 
mildew r′ = 0.342, p < 0.001). Therefore, observa-
tions from individual trials could be combined into 
the overall rating. However, it is imperative to pro-
ceed with caution when combining data from trials 
where a strong accession × trial interaction might 
exist, such as disease-resistance trials (example of a 
strong interaction that precludes combining of data is 
shown in Simko and Linacre, 2010).

6. An eff ect of consistently the best or worst perform-
ing accessions. When an accession performed consis-
tently the best (or worst) in all trials it was tested in, 
then calculation of the overall rating for this acces-
sion would not be possible by the RA approach. To 
avoid this kind of problem, a small value is added to 
each ranking before calculations (Simko and Lina-
cre, 2010; Simko and Pechenick, 2010). This modi-
fi cation has a relatively small eff ect on the overall 
rating scores, and as the number of comparisons 
among accessions increases the eff ect becomes negli-
gible. The PV approach avoids instability caused by 
consistently the best (or the worst) performing acces-
sions by eliminating these values from the core set. 
Once estimates are calculated from the core set, the 
eliminated accessions are added back to the dataset 
and their overall rating is calculated.

CONCLUSIONS
In recent years, there has been considerable interest in 
adopting methods for combining data from diff erent bio-
logical trials or experiments (Lin, 2011). If the objective is 
to compute an overall linear rating that estimates perfor-
mance of all accessions across a set of trials, such ratings 
can be constructed even for accessions that were never 
tested together and their evaluations were performed on 
diff erent scales. Combining data from multiple experi-
ments into a single rating provides more reliable results 
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than individual studies (Lin, 2011). For example, marker–
trait associations tend to be more signifi cant when calcu-
lated from combined data than from each of the individual 
trials (Simko and Pechenick, 2010). Both PV and RA sta-
tistical approaches can also be used to combine data from 
diff erent laboratories (accession × laboratory matrix) or 
databases (accession × database matrix), thus improving 
the major bottleneck in obtaining phenotypic data for 
large-scale studies (e.g., association mapping).

We combined evaluations of lettuce postharvest 
quality and fi eld resistance to downy mildew from 
multiple trials using two approaches, PV and RA. There 
was high correlation between the two approaches for 
both postharvest quality and resistance to downy mildew. 
Combining data from multiple experiments allowed us to 
detect accessions with high disease resistance and a slow rate 
of deterioration. Accessions with desirable traits identifi ed 
in this study are being incorporated into our breeding 
programs. In addition, our analysis indicates that there are 
substantial diff erences among horticultural types of lettuce 
for both traits. For example, iceberg cultivars tend to have 
a slow rate of deterioration and high susceptibility to 
downy mildew; Latin-type cultivars are generally highly 
susceptible to downy mildew and deteriorate quickly 
after processing for salad whereas several Batavia cultivars 
show good resistance to downy mildew. The shortage of 
well-performing cultivars from some horticultural types 
indicates that, to achieve improvement in shelf life and/or 
resistance to downy mildew, novel genes (or alleles) need 
to be introgressed into these types, for example, from 
other well-performing types or wild lettuce species.

Supplemental Information Available
Supplemental material is available at http://www.crops.
org/publications/cs.

Supplemental Table S1. Rating 178 accessions for the 
rate of deterioration after processing for salad. Columns 
show the number of trials each accessions was tested, nor-
malized ratings calculated by the projected values (PV) 
and rank-aggregation (RA) methods, and the mean of the 
two normalized values (MNV). Lower ratings indicate a 
slower rate of deterioration.

Supplemental Table S2. Rating 582 accessions for the 
resistance to downy mildew. Columns show the number 
of trials each accessions was tested, normalized ratings cal-
culated by the projected values (PV) and rank-aggregation 
(RA) methods, and the mean of the two normalized val-
ues (MNV). Lower ratings indicate a higher resistance.

Supplemental File S3. The R-code for calculating 
combined ratings by the projected values approach. More 
information about the code can be obtained directly from 
Matthew Kramer (matt.kramer@ars.usda.gov).

Supplemental File S4. Example of resampling results 
calculated for cultivars Hilde, Holborn Standard, and Ice 

Cube by the projected values approach. Panels on the left 
show projected rankings while those on the right show 
projected ratings for resistance to downy mildew before 
normalization. Cultivar Hilde was tested in six trials, 
Holborn Standard in 14 trials, and Ice Cube in fi ve tri-
als. Lower ranking and rating indicate a higher resistance 
to the disease. Bars that are close to each other (e.g., for 
Holborn Standard rankings or Ice Cube ratings) indicate 
small variability of resampled estimates.
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