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ABSTRACT

Reducing the number of animal subjects used in biomedical experiments is desirable for ethical and practical reasons.
Previous reviews of the benefits of reducing sample sizes have focused on improving experimental designs and methods
of statistical analysis, but reducing the size of control groups has been considered rarely. We discuss how the number of
current control animals can be reduced, without loss of statistical power, by incorporating information from historical
controls, i.e. subjects used as controls in similar previous experiments. Using example data from published reports, we
describe how to incorporate information from historical controls under a range of assumptions that might be made in
biomedical experiments. Assuming more similarities between historical and current controls yields higher savings and
allows the use of smaller current control groups. We conducted simulations, based on typical designs and sample sizes, to
quantify how different assumptions about historical controls affect the power of statistical tests. We show that, under our
simulation conditions, the number of current control subjects can be reduced by more than half by including historical
controls in the analyses. In other experimental scenarios, control groups may be unnecessary. Paying attention to both
the function and to the statistical requirements of control groups would result in reducing the total number of animals
used in experiments, saving time, effort and money, and bringing research with animals within ethically acceptable
bounds.
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I. INTRODUCTION

Treatment for severe spinal cord injuries is usually
investigated with a rodent model. A typical experiment starts
when a surgical procedure is used to produce a complete
transection of the spinal cord on all subjects; experimental
therapy is then applied to half, with the other half serving
as controls. Scientists doing this kind of research know that
mammals with a complete transection of the spinal cord
do not recover spontaneously. However, the majority of
these experiments using live animals still include one or
more control groups, as large as or even larger than the
treatment group (e.g. Ramón-Cueto et al., 1998; Lu et al.,
2002; He et al., 2013). Although rodents used in spinal cord
research have their spinal cord crushed or transected under
anesthesia and with the approval of institutional review
boards, the end result is the same: control animals are
rendered paraplegic or tetraplegic only to demonstrate that
they do not recover spontaneously. Are controls in this kind
of experiment superfluous? If not, can their number be
reduced to minimize the adverse welfare impact of research
with animals?

The focus of this review is to develop a comprehensive
framework, largely in the mixed-models paradigm, to reduce
the number of control animals needed without compromising
the ability to detect a statistically significant treatment effect.
We also explain circumstances when controls may not be
necessary. We believe that the approaches and arguments
outlined here will provide a valuable aid for researchers and
contribute to alleviating the ethical burden of performing
experiments with animals.

II. CONTROLS

Researchers may be uncertain about what the right controls
are for a given experiment or whether they are really needed.
This is not surprising; the conventional statistics textbooks
used by biologists typically have little discussion on controls,
neither their purposes nor how to integrate them into the
experimental design. When mentioned, the advice is to
consider them as another treatment group. The classic text
by Cochran & Cox (1957) includes a short section on the
use of controls, although their advice might be difficult to
apply to current biomedical experiments due to advances in
both technology and statistical design. Ruxton & Colegrave
(2011) discuss ethics, animal welfare, and including control
data from previous experiments, but lack specific instructions
on how to redesign experiments to reduce current control
group size.

The various types of controls used in experiments are
explained clearly in Johnson & Besselsen (2002). They
categorize controls as positive, negative, sham, vehicle (to
test, e.g. the delivery system of a drug by itself), and
comparative (positive control with a known treatment). In
a negative control, control subjects remain in the ‘normal’
pre-experimental state; no change is expected from the
pre-experimental to experimental condition. In a positive
control, subjects receive some kind of pre-treatment (e.g.
a toxin, a lesion) that is expected to cause a change from
the pre-experimental state. The researcher can then see if
a treatment is effective by comparing treated subjects with
subjects that do not receive a treatment. This is the type of
control used in the spinal cord experiment discussed above.
The untreated control subjects may die or remain maimed;
the treated ones may survive or improve. The positive control
guards against miraculous recoveries, the negative control
against spontaneous disease and death. Sham controls are
subjected to a manipulation that mimics the procedure
received by positive controls and treated animals, but nothing
else. This could be as innocuous as a saline or a placebo
injection, or as invasive as an operation where an organ
is removed, then reattached. Placebo controls often are
considered negative controls in some clinical trials, but are
more correctly a type of sham control. In fact, labelling
controls as ‘positive’, ‘negative’, etc, may not provide much
clarity. Often a short explanation is better than a label. It is
important to understand what the purpose of the control is
and whether it is the right kind of control for the experiment;
some experiments may require several kinds of controls. The
main purpose of a control may be to show that animals do
not recover on their own (as in the spinal cord example); in
other cases the control can serve to make sure that animals
have been exposed to the right dose of a toxin or a pathogenic
agent. An alternative categorization of control group types,
specific for clinical trials, can be found in ICH (2000).

How many control subjects are needed in an experiment?
This should depend on the knowledge gained from the
results of prior experiments. The cumulative knowledge in
the field provides historical information that can be put to
good use to reduce the number of animals in current control
groups. The Bayesian statistical framework formally includes
prior information when estimating a statistical model (e.g.
French, Thomas & Wang, 2012). However, medical research
typically does not take advantage of this: most researchers
conducting biomedical experiments on animals continue to
use ‘classical’ Fisherian statistics (Efron, 2013), and there is
little published guidance on how to incorporate information
from prior experiments (Pocock, 1976; Neuenschwander
et al., 2010; Viele et al., 2014). Since controls are included
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in most experiments, in the typical experiment we actually
know far more about the control group than about the
treatment group, either through experience with controls
in similar experiments or through the literature (Schulz &
Grimes, 2005). However, we ignore this prior knowledge
when we analyze the results of an experiment carrying
out a classical statistical analysis, like a t-test or analysis
of variance (ANOVA) using only animals involved in
the current experiment. A laboratory performing similar
experiments over many years will be far more sensitive to
controls responding in unanticipated ways than to peculiar
responses of treatment groups. Why not incorporate this
prior knowledge?

III. INCORPORATING INFORMATION FROM
PREVIOUS EXPERIMENTS (HISTORICAL
CONTROLS)

Controls can be current or historical. Current or concurrent
controls are contemporaneous with the treatment group(s),
whereas historical, retrospective or background controls are
obtained from prior experiments where similar protocols
were applied to controls. Although the use of historical
controls has been widely discussed in the literature, many
researchers are unaware of their potential usefulness or do
not know how to incorporate them into their experimental
designs. In fact, the use of historical controls in biomedical
research appears restricted to some areas of toxicology (e.g.
the micronucleus test, carcinogenicity studies in rodents;
Yanagawa & Hoel, 1985; Hayashi et al., 1989; Yoshimura &
Matsumoto, 1994; Greim et al., 2003; Elmore & Peddada,
2009; Hayes et al., 2009; Keenan et al., 2009; Dinse &
Peddada, 2011), to estimate the incidence of problems
in untreated animals and to detect changes in laboratory
conditions, and to certain kinds of clinical trials involving
humans (e.g. Chang, Shuster & Kepner, 2004; Korn &
Freidlin, 2006; Zhang, Cao & Ahn, 2010; Gsteiger et al.,
2013), where experiments are costly and there may be
ethical reasons to minimize the number of untreated
subjects. In these types of research, the dependent variable is
usually a proportion (dichotomous or binary outcomes),
and historical controls may not come from the same
laboratory, potentially introducing an additional source of
variation, often termed ‘laboratory bias’. A basic concern
about using these historical controls is whether it is valid
to test if the proportions from a current treated group
and from historical controls differ. The answer depends
on whether historical controls provide a good estimate
for what one would have obtained had one used current
controls, and how one handles the data statistically. These
various possibilities have been laid out in a Bayesian context
by Spiegelhalter, Abrams & Myles (2004) and Viele et al.
(2014); they range from ignoring current controls (i.e.
use only information from historical controls) to ignoring
historical controls (traditional analysis). For quantitative data
where normal distribution theory can be applied, there are

additional options for using historical data, as discussed
below.

Historical controls can be used better to estimate
parameters related to the current experiment under a variety
of assumptions. Under the strongest assumption, if one has
a large number of historical controls and one assumes that
they are stable, i.e. neither the mean nor the variance of the
historical controls changes over experiments, then one can
consider the historical control mean and variance to be fixed
and only the current control and treatment groups have
uncertainty associated with them due to sampling error.
In this case, the need for a current control is debatable
(other than to monitor laboratory conditions or to augment
the number of historical controls for future experiments).
One has only to decide whether the treatment group mean
and variance need to be estimated or just the mean, i.e.
assume that the historical control groups provide a better
estimate of the true within-group variance. This essentially
is the framework used in the literature for conditional tests
(conditional on the control group parameters considered
as constants); the interest here is in differences of rates
(proportions) (e.g. Yanagawa & Hoel, 1985; Yoshimura &
Matsumoto, 1994). This use of historical controls can result in
substantial reduction in experimental animal use. According
to Browne (1976), for a given power and significance level,
the estimated sample sizes are between one-quarter and
one-half those needed if no historical controls are used (but
see Lee & Tseng, 2001).

A less stringent assumption holds that there is only
sampling variability in both historical and current controls,
and that all controls vary about the same mean. In that case
historical and current control data can be pooled, i.e. these
observations are exchangeable, giving a larger sample size
to estimate the control mean. If this model is not considered
appropriate, models with even fewer assumptions can be
used, e.g. to allow for random experiment-to-experiment
variation by including a random effect for experiments, or for
treatments and controls to have different variances; in these
cases the observations are not exchangeable. The analysis is
then done in the mixed-models framework, which makes it
possible to ‘borrow’ information from previous experiments
on both means and variances. This is a kind of ‘dynamic’
borrowing of information, the amount of borrowing dictated
by the quantity and characteristics of historical control
data (Viele et al., 2014). A related approach, that we do
not consider further, is subjectively discounting but not
completely ignoring historical control data, as explained in
Spiegelhalter et al. (2004).

A further relaxing of assumptions entails use of historical
controls only to estimate variances since larger sample sizes
are needed for that, and to use the current control group only
for estimating the control mean, i.e. borrowing information
across experiments only for variance estimation. This will
reduce the number of animals compared to using data only
from the current experiment but not as much as for the
stronger assumptions discussed above. Here the gain one
obtains is largely due to the increased residual degrees of

Biological Reviews (2015) 000–000 © 2015 Cambridge Philosophical Society



4 Matthew Kramer and Enrique Font

Fig. 1. Haemoglobin concentrations (g/100 ml) for control rats in eight nutrition experiments used to illustrate how different
assumptions about incorporating historical controls in statistical testing affects outcomes. The historical controls are named A.c -
F.c. In the current experiment, G.c is the control group and G.t the treatment group (rats in the G.t group were actually controls in
the original experiment, but had the highest mean among the control groups, so we use them as the current ‘treatment’ group for
illustrative purposes).

freedom involved in the contrast between the current control
group and the treatment groups since the residual variance
is better estimated by pooling over historical controls from
prior experiments.

In this review we first describe how to incorporate
(i.e. borrow) information from historical controls under
different sets of assumptions using data from a series of
nutrition experiments with rats. We then use simulations to
demonstrate potential savings from using historical controls
and to illustrate a few other points. We provide suggestions
about the use of historical controls for quantitative and
proportion data, when the variance of the control group
differs from treatment groups, and we also discuss situations
in which a control group may not be necessary at all.

IV. EXPERIMENTAL DATA AND SIMULATIONS
ILLUSTRATING POTENTIAL IMPROVEMENTS
USING HISTORICAL CONTROLS

(1) Experimental data

Our exemplary data are haemoglobin concentrations
(g/100 ml), measured using an electronic cell counter,
of Sprague–Dawley rats in a series of copper-deficiency
experiments run over several years (Fig. 1; data from Reeves
& DeMars, 2004; Reeves et al., 2005; Saari et al., 2006;
Relling et al., 2007; Johnson & Johnson, 2009). There were

eight groups of control rats available for our analysis, with
various numbers of individuals per group. As can be seen
in Fig. 1, means of these controls varied among the groups
(13.3–15.0); we chose the control group with the highest
mean to act as the current ‘treatment’ group (G.t in Fig. 1)
and one of the two groups with five observations to act as the
current ‘control’ group (G.c in Fig. 1). While every data set
is unique, these data were chosen because they appear to be
fairly typical of control measurements collected over several
years on a laboratory animal, thus are ‘real data’, even if
group labelling is contrived.

We tested for a difference between a treatment group
and controls using a variety of statistical models with
assumptions corresponding to those outlined above (Table 1;
see Table 2 for underlying statistical models and Fig. 2
for illustrative examples). Models, in decreasing order of
borrowing information, are as follows.

(1) Many historical controls are available and we can
consider controls to have a fixed mean; use a one-sample
t-test to determine if the treatment mean differs from a
constant (the control mean); our exemplary data are not
consistent with these assumptions.

(2) Assume that controls are stable and pool current and
historical controls; use a two-sample t-test or ANOVA to test
if the treatment group mean differs from that of the pooled
control mean; exemplary data are not consistent with these
assumptions.
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Table 1. Summary of assumption sets regarding historical controls

Assumption set

Assumptions 1 2 3 4 5 6 7

Control mean considered
fixed

Yes No No No No No No

Borrow mean information
from HC

NA Yes Yes Yes No No No

Borrow variance
information from HC

No Yes Yes Yes Yes Yes No

Experiment-to-experiment
random effects

No No Yes Yes Yes No No

Within-group variances NA All the same All the same T & C can differ T & C can differ All the same All the same

See text for description of assumption sets.
HC, historical control groups; NA, not applicable; T & C, treatment and control groups.

(3) Assume that historical controls are relatively stable
but allow for an experiment-to-experiment random effect,
i.e. the current control and treatment group comprise one
block; fit a linear mixed model, with experiment as a random
effect, and two levels of the treatment factor (treated versus
control), this contrasts the adjusted treatment mean to the
overall adjusted control mean; exemplary data are consistent
with these assumptions.

(4) Same as (3) but allow the treatment group to have
a different within-group variance than control groups;
fit a linear mixed model as above, with control groups
all sharing one within-group variance and estimate a
different within-treatment group variance; this model is
over-parameterized for our exemplary data.

(5) Assume that historical control means are not
sufficiently stable to use for comparison, and within-control
group variances are stable but they differ from the treatment
variance, allow for an experiment-to-experiment random
effect; use the same linear mixed model as (4) but create
a 1 d.f. contrast between the current treatment and control
groups; over-parameterized for our exemplary data.

(6) Same as (5) except model as a typical ANOVA so all
groups share a common within-group variance; fit a linear
model with each group as a factor level, create a 1 d.f.
contrast between the current treatment and current control
groups; over-parameterized for exemplary data.

(7) Assume that historical control groups are not useful;
test only current controls against the treatment group using
a t-test or ANOVA. This is the typical assumption in most
research laboratories where potentially useful information
from historical controls is ignored; exemplary historical data
ignored.

Results under the various assumptions follow, in reverse
order, with assumption set abbreviated as AS.

AS 7: if only current groups are compared (G.c versus G.t),
the P value from an ANOVA (1, 13 d.f.) on an estimate of
the difference between means of 0.85 (S.E. = 0.47) is 0.094.

AS 6 & 5: if an ANOVA is applied to the whole data set
and an a priori contrast between G.c and G.t made, with

82 d.f., the estimate is still 0.85, but the S.E. is now 0.42
and the P value 0.047. We have borrowed information
from other control groups, so have a better estimate of
the ‘true’ S.E. for the contrast, and have more degrees of
freedom to test it. The same results are obtained if we
model the factor, experiment, as a random effect, with the
experiment-to-experiment variance estimated to be 0.328.

AS 4 & 3: if we assume for these exemplary data that
all control groups share an underlying true common
mean but there is a random experiment-to-experiment
effect, the treatment–control difference is estimated as 0.99
(S.E. = 0.37) with a P value of 0.010; we get similar results
assuming unequal variances.

AS 2: if we had simply pooled over controls, the
treatment–control difference is 1.22 and, using ANOVA,
the P value is 0.0001 on 1 and 88 d.f.

AS 1: if we test the treatment group against a constant control
mean (= 13.79 over all controls, difference with treatment
group = 1.22) using a t-test, on 9 d.f., the P value = 0.0002.

As stronger assumptions are made, P values decrease
and therefore, our ability to detect a statistically significant
treatment effect increases. However, even for the mildest AS,
there is a benefit to including the historical controls; fewer
concurrent controls are needed to achieve the same power if
historical controls are included.

(2) Simulations

To quantify how the various assumptions affect statistical
test results, we ran simulated data sets (N = 5000) testing
for differences between controls and the treatment group
through standard statistical models in R [lm and t.test in base
R (R Core Team, 2013), lme in the nlme package (Pinheiro
et al., 2013)]. We picked a set of characteristics that we felt
would be typical for biomedical studies involving animals,
and similar to those from our exemplary data in the extent
to which control group means differed from each other. We
used the same variance for all groups; models allowing for
different variances are over-parameterized. Thus, AS 3–7
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Fig. 2. Illustrations of underlying assumptions for statistical models discussed in the text and detailed in Table 2 (data simulated). In
all models, samples are drawn from a normal distribution. In assumption set 1 (AS 1), the control group estimate is considered fixed
and measured without error. In AS 2, AS 3, AS 6, and AS 7, all groups have the same variance; in AS 4 and AS 5 the treatment
group has a larger variance than control groups.
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are satisfied, while AS 1 and 2 are not. However in AS 1, the
control is considered fixed; the only control information used
in the test is a fixed mean, so simulation results are not affected
by the violation. AS 2 is not met because control group
means are affected by introduced experiment-to-experiment
variation. We do not give simulation results from AS 2;
power for two-sample t-tests can easily be obtained using
available software.

The simulations were set up with all groups having the
same S.D. of 3, but with group means differing. Means
of historical controls were samples drawn from a normal
distribution with mean 10, S.D. = 1, current control group
with mean 10, current treatment group with mean 14
(effect size, Cohen’s d = 4/3). We varied the sample sizes
of the current treatment and control groups, the number
of historical control groups included when testing, and the
model assumptions as described above (see Table 1). Power
was near 50%, i.e. significance at α = 0.05 was detected
for about half the simulated data sets, which allowed us
easily to see effects of changing assumptions. Note that
these simulations are purposely under-powered; for actual
experiments with similar true differences in means, larger
sample sizes are necessary to reach 80–90% power. We
also ran the same set of simulations, but setting the current
treatment mean to 10, the same as the control means, to see
if the nominal 5% Type I error rate was respected by the
software when making tests. That is, approximately 5% of
the tests for differences between controls and treated should
be flagged as significant, even though the true means do not
differ. We do not give results for this. For the most part,
as expected, approximately 5% of tests were significant, the
exception being tests made under AS 4 above, where values
ranged from 6 to 9%. These liberal values suggest to us that
variances are being slightly under-estimated (downward bias)
by the software. This does not affect the conclusions drawn
from the simulation results that we do report.

We provide results from the simulations in Table 3.
While these results apply directly only to the simulated
data sets we created, the main conclusions drawn should be
generalizable to other data sets with similar characteristics,
like our exemplary haemoglobin concentration data.

Increasing the number of total subjects in control groups
beyond 18 does little to improve power (first four rows, with
four, three, two and one historical control groups) under any
of the assumptions. Considering historical controls fixed (at
mean = 10, AS 1) always had high power (column 5), and
was surpassed only when there were many residual degrees
of freedom involved in the statistical tests due to having large
numbers of historical control subjects available [columns 6
and 7 (AS 3 and 4)]. Allowing for unequal variances had
little effect on power [column 6 versus 7 (AS 3 and 4), and
column 8 versus 9 (AS 5 and 6); note that the true variances
of all groups were the same, so the small differences seen are
due only to the extra parameter estimated]. Large gains in
power can be achieved by using historical controls; including
historical controls always increased power unless a large
number of current controls was used, compare column 10 T
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(AS 7) with columns 6–9 (AS 3–6), for rows 2 and 5–8.
Using current controls only [column 10 (AS 7), the usual
situation in most experiments] had consistently the lowest
power, followed by borrowing information only for variance
estimation [columns 8 and 9 (AS 5 and 6)]. If one can assume
that historical controls are relatively stable, as could be done
for these simulated data, tests had high power [columns
6 and 7 (AS 3 and 4)]. Increasing the number of current
controls (rows 5–8) had the largest impact on tests with the
weakest assumptions [columns 8–10 (AS 5–6)]. Increasing
the sample size of the treatment group (rows 9–10) had
its largest effect when testing against a fixed control mean
[column 5 (AS 1)].

As an example of how many animals could be eliminated
by designing an experiment using historical controls under
the assumption that control means are stable (AS 3 and 4),
using 3 current controls and 20 historical controls yielded
the same power (0.65) as using 12 current and no historical
controls, thus one could eliminate nine animals (i.e. use eight
animals in total instead of 17) from the current experiment
without sacrificing any power. Fewer current controls could
be eliminated if one only borrows variance information from
historical controls, but nonetheless some savings are possible.

V. WHEN CAN HISTORICAL CONTROLS BE
USED?

Compared to other kinds of research, biomedical
experiments are centred on a narrow range of model
organisms, often in highly controlled settings. In many
research laboratories, an experiment is not an isolated
event but one of a sequence of similar experiments using
similar procedures and experimental animals. If treatments
vary but control conditions stay the same for long series of
experiments, there should be no controversy using historical
controls (Festing & Altman, 2002). In less clear cases, one can
rely on a combination of familiarity and expertise with the
system, perhaps with a small pilot study, to make the decision.
The key for designing an appropriate control group is that
it is identical to the treatment group in every way except
for the treatment being tested. To the extent that historical
controls meet this requirement their use – in conjunction
with current controls – will be justified. Generally, it should
be safe to use historical controls from previous experiments
conducted in the same laboratory using the same species and
procedures (Greim et al., 2003; Keenan et al., 2009; Hayashi
et al., 2011). This recommendation pertains to all the various
types of controls.

Consistency between historical and current experimental
conditions should be given paramount consideration in the
decision to incorporate historical controls as part of the
experimental design. In the absence of strong evidence
for heterogeneity, the use of historical data enables one
to reduce the number of subjects allocated to the current
control group. But if historical controls are inconsistent
with current controls, there is a potential for bias and

increased type I error (i.e. concluding there is a treatment
effect when in fact there is none). Drift in control values
over time, e.g. cure rates affected by evolving antibiotic
resistance, are a clear case where historical and current
controls are not consistent. Lack of stability in controls may
also reflect changes in study design-related parameters such
as species/strain, eligibility criteria, route of administration,
vehicle, reagents, chemical and equipment suppliers, feeding
and housing practices, or may be the result of sampling
error as when the measurements of interest have inherently
high variance. Unexplained fluctuations in the frequency
of spontaneous tumours in control rats have been reported
in some research facilities (Ando et al., 2008; Kuroiwa et al.,
2013). However, what little information is available suggests
that, when laboratories are well managed, controls are
repeatable. For example, Hayes et al. (2009) report that
the data for 116 control groups (each group with N = 7
rats) run over several years in the same laboratory were
highly repeatable; the rats served as vehicle controls for the
bone marrow micronucleus test. The authors conclude that
‘no significant experimental variability was seen within or
between control animals’ (p. 423). This conclusion holds
despite the fact that the source of the rats changed midway
through the study. In this example, all control groups
originated from the same laboratory. This differs from
clinical studies in which historical controls are obtained
from sources external to the laboratory conducting the
research (Thomas, 2008). The latter use of historical controls
is controversial because unaccounted differences between
laboratories, researchers, patients or experimental protocols
may render them unsuitable as a reference against which
current treatment groups can be compared (Diehl & Perry,
1986). Thus, even though it is generally agreed that designs
using historical controls are highly desirable for ethical and
economic reasons (e.g. Gehan & Freireich, 1974; Cranberg,
1979), the evidence they provide is often considered weaker
than that afforded by alternative designs, e.g. randomized
clinical trials (Doll & Peto, 1980; Pocock, 1983). Our
proposed use of historical controls is more conservative,
as it is based on the use of control data from previous
experiments conducted in the same laboratory rather than
on external data sources.

The decision whether to use historical controls entails
a trade-off: the potential introduction of some bias in the
current study if experimental conditions have changed
(i.e. ‘historical bias’) needs to be balanced against the
reduction of current controls allowed by adding historical
information.

Unfortunately, there is no automatic, foolproof method
to help the researcher decide whether or not to include
historical controls when only one or two historical control
groups are available. In fact, to make the determination
based on statistics alone would require the large sample sizes
we advocate eliminating. If many historical control groups
are available, we recommend using statistical quality-control
methods. These methods for determining the consistency of
a process are well developed and can be used to monitor
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control animal performance over a series of experiments (for
examples see Festing & Altman, 2002; Hayes et al., 2009);
they may already be instituted in well-run laboratories. There
are control methodologies for both means (X-bar charts)
and standard deviations (S-charts) (Wheeler & Chambers,
1992). The X-bar chart alerts the user that a group
mean is excessively high or low compared to previous
means, indicating that the process is not in control. The
S-chart alerts the user that a group standard deviation is
excessively large or small compared to previous standard
deviations, indicating that the process is not in control. For
example, we created standard quality-control charts for the
eight control data sets of rat haemoglobin concentrations
and found that three of the groups (A.c, D.c, G.t; see
Fig. 1) exceeded the X-bar chart confidence limits (i.e. the
assumption of a common mean is not supported). However,
none exceeded the S-chart confidence limits (i.e. assuming
a common standard deviation or variance is reasonable).
These data would have satisfied AS 6, and also AS 3
if the kind of variation seen in the means was typical
experiment-to-experiment variability, i.e. could be modelled
as a random effect, or had additional information explaining
why these control groups differed, e.g. due to different age
or sex compositions.

What assumptions are applicable in a particular case
depends largely on the type of historical controls available.
If the experimental protocol remains unchanged throughout
the period when historical control data were collected and the
results suggest little variation among controls over time, one
may assume that historical controls have a fixed mean (and
variance) and use them to estimate parameters relating to
the current experiment. With less-stable historical controls
the researcher has to decide whether it makes sense to
incorporate information from their mean and/or variance.
Assuming that historical control groups can be used to
estimate a common control mean and variance allows for a
far greater reduction in animals than assuming that controls
can only be used to estimate a common variance.

Randomization and blinding are essential aspects of
experimental design, but their application to historical
controls is not straightforward. Blinding may be hard
to implement but randomization should not be an issue
in most cases. Subjects should be randomly allocated to
current control and treatment groups, but what about
historical controls? One has to assume that animals will have
been suitably randomized in the experiments from which
the historical controls are taken, but randomizing across
experiments has been constrained, i.e. each experiment can
be considered a constraint on randomization. This is the
classic situation producing a randomized block design. The
mixed models take that into account by considering each
experiment as a block (see Table 2).

(1) Determining sample sizes when using historical
controls

Currently, there is no off-the-shelf software for determin-
ing how to substitute historical controls for current controls

for many of our assumption sets. We suggest determining
sample size using the usual tools for current controls only
(AS 7), then determine how many historical controls can
be substituted for each current control using simulations or
‘rules of thumb’, which will depend on which AS is used.
For AS 2, each historical control is equivalent to one current
control, i.e. there is a 1:1 substitution. AS 6 uses a contrast
from a linear model, so sample sizes can be calculated using
standard statistical software that estimates power, as long
as contrasts can be specified. Based on our simulations for
AS 3, that is, based on characteristics we dictated when
creating data, substitution was conservatively 2:1 (histori-
cal:current). This can be seen in Table 3 by comparing
columns 6 and 10 where power is approximately the same.
In one case, the ratio is 10:6 (historical:current), in another
it is 15:9 (this is after adjusting for the three current con-
trols under AS 3). This result is only loosely generalizable:
a different set of characteristics would yield different ratios.
AS 3–6 are built on mixed models, where assessing power
is not trivial since models can vary in many dimensions;
simulation currently provides the most accurate estimate of
power under different allocations of controls (Johnson et al.,
2015). Software for calculating power and sample size for
experiments like these is readily available for AS 1, 2, and
7. It can also be found for AS 3 (blocks may be labeled
‘clusters’), for example, in the software MLPowSim (which
can write R scripts or call MLwiN for estimation; down-
loadable from http://www.bristol.ac.uk/cmm/software/
mlpowsim/), OD (hlmsoft.net/od/), and GLIMMPSE
(glimmpse.samplesizeshop.org, which uses the general lin-
ear multivariate model parameterization). Another on-line
tool, SMEEACT (research.mdacc.tmc.edu/SmeeactWeb/
Default.aspx) uses a Bayesian approach and can provide the
weight that should be given to historical controls, based on
their stability, for a set of anticipated or realized data. We do
not know of software packages that can be used off-the-shelf
for these purposes for AS 4, 5, 6 and 8; the R code we used
is available from the authors.

(2) Proportion data

We do not advocate borrowing information from historical
controls for analyses using proportion data, e.g. proportion
that improved after receiving a treatment, unless one can
make the assumption that control proportions are constant
over time. This is the basic strategy taken by Korn &
Freidlin (2006) and others dealing with proportion data
(e.g. Yanagawa & Hoel, 1985; Hayashi et al., 1989; Ryan,
1993; Yoshimura & Matsumoto, 1994). The reason for this
lies in the difference between the normal distribution and
other members of the exponential family of distributions
(e.g. binomial, Poisson). The normal distribution has the
property that the mean and variance are independent.
Because of this property, if one assumes that within-control
group variances are relatively constant, it makes sense to
estimate this variance from a large number of observations:
by borrowing information from historical data we increase
the number of observations. However, the binomial and
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Poisson distribution are one-parameter distributions, with a
single parameter and the known sample size determining
both the mean and variance. Unless the control proportion
rate is stable, borrowing information from historical controls
in a proportion data set which is assumed to be generated
by a binomial process would not increase the precision of
the current control proportion since there is no independent
variance estimate. We should use historical control data to
assess whether variability over time in controls is greater
than that expected from sampling error alone (i.e. resulting
in over-dispersion) as a means of monitoring stability in
laboratory conditions. Models for binomial data that include
historical control groups as random effects (Maringwa et al.,
2007) can improve the estimate for the true response
proportion of controls (this is in the generalized linear
mixed-models framework). These models can also allow
for over-dispersion, a common feature of binomial data, and
the additional historical controls will improve the estimate of
over-dispersion.

VI. SHOULD CONTROL GROUPS BE AS LARGE
AS TREATMENT GROUPS?

(1) Balanced versus unbalanced experimental
designs

There is a sizeable literature on the use of animals in
experiments, and many articles deal with sample size
and a related issue, power to detect differences between
treatments or conditions (e.g. Lenth, 2001; Dell, Holleran
& Ramakrishnan, 2002; Devane, Begley & Clarke, 2004;
Lewis, 2006; McCrum-Gardner, 2010). In general, for
sample-size calculations, these articles treat controls as
just another treatment group since a balanced design is
usually optimal for detecting a significant treatment effect.
For many experiments, that is sensible advice, but there
is no statistical theory requiring that control groups be
the same size as treatment groups. In fact, designs with
unequal allocation to treatment and control groups can
in some circumstances be more efficient than traditional
balanced designs (Gail et al., 1976; Bate & Karp, 2014). Most
suggestions found in the literature consist of strategies for
reducing the number of subjects in the treatment group. The
reasoning behind recommending a smaller treatment group
is that subjects in the treatment group may be more costly
to produce or may undergo more invasive manipulations
than controls (e.g. Ruxton & Colegrave, 2011). However,
if the overall goal is to minimize the amount of suffering
caused by experiments there is no reason why the same
logic could not be applied to reducing the number of
subjects in any other group, including the controls. Reducing
the number of controls is also desirable if injury, pain
or discomfort is caused to the animals in the control
groups. Controls may be ‘intact’ animals that are spared
many of the experimental manipulations applied to the
animals in the treatment group, especially in the case of

negative controls. But in many other cases controls undergo
painful or stressful procedures, often without the potential
benefits of an experimental therapy reserved for animals
allocated to the treatment groups. The use of an unduly
large number of controls is problematic even when control
animals are relatively unharmed at the conclusion of the
experiment, because most controls end up being killed as
surplus.

(2) Heterogeneous variances

In general, balanced experimental designs, with the same
number of individuals in the control and treatment groups,
are more powerful than unbalanced designs. However,
this is only true if all groups have the same variance. In
many experiments, controls are not subjected to as many
procedures as individuals in treatment groups, each of which
can add variability to their response. As a result, there is
often less variability among controls, so equal treatment and
control group sizes may not maximize power.

In the spinal cord example, experimental animals need
to be anaesthetized and operated on to expose the spinal
cord for lesioning. To avoid possible confounding effects
of anaesthesia or surgery on the variables being studied,
some animals are allocated to a sham surgery control group.
Animals in the sham group are anaesthetized and operated
on just like the animals in the treatment group but their
spinal cords are left intact. Usually, sham control groups
comprise as many subjects as the treatment group. But,
if one argues that, based on previous work (i.e. historical
controls), the surgical procedures themselves are unlikely to
affect any of the dependent variables (i.e. sham-operated
controls will have low variability), the size of the sham group
can be reduced.

In fact, by including a control group with little or no
variability, a traditional analysis is inappropriate because
the underlying assumption of homogeneity of variance for
ordinary t-tests or ANOVA will have been violated, with
the average residual variance used for calculating P values
below that of any of the ‘real’ treatment groups. This can be
remedied by explicitly modelling the variance or allowing for
different groups to have different variances, as we did in our
simulations; for discussion on t-tests for samples with unequal
variances see Ruxton (2006). As stated above, if the variance
of controls is small, then few are needed to estimate their
mean accurately, allowing the number of control subjects to
be reduced. However, that has to be balanced by estimating
a separate variance parameter for controls and another
for treatment groups, rather than estimating one variance
parameter common to all groups. This is another benefit for
having historical data: one can estimate necessary sample
sizes for control and treatment groups without running an
experiment only to discover that half the controls used
were unnecessary. For binomial data (e.g. proportion that
improved), a control response of zero (with no variability)
will result in estimation problems with current computer
software.
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VII. ARE CONTROLS ALWAYS NECESSARY?

(1) No controls recover

What if prior information indicates that no subjects will
recover if their spines are fully transected, the example
used for opening this review? How many controls do we
need? We argue that, in this type of experiment, none
are necessary, since any improvement by animals with
lesioned spines given a treatment differs from what we
know to be historically true: that a rat that suffers a complete
transection of its spinal cord does not spontaneously recover.
If we have extensive data for a single species, such as
some laboratory rodents, and the event of interest, i.e.
spontaneous recovery from spinal cord transection, has never
been reported, there is no reason to believe that conditions
in a given research laboratory are so unusual that rodents
raised in a standard way would differ from the norm in
any basic way. The same applies to a host of well-tried
experimental procedures that have a highly predictable
endpoint, such as sciatic nerve crush, coronary obstruction,
pancreactectomy, adrenalectomy, gonadectomy, etc. A
similar rationale is used in clinical research with humans. For
example, Byar (1990) states that one criterion for obviating
controls in clinical AIDS trials is that ‘there is sufficient
experience with untreated disease to permit unambiguous
evaluation of the trial result’ (p. S17). Maybe it is worth
checking a few animals to confirm that surgical and other
procedures are working as expected, but why as many as
in treatment groups if it inflicts pain and suffering on the
subjects?

(2) Controls for rare events

Say that one is interested in estimating the incidence of
an allergic reaction to a medication. What is the control?
If subjects do not take the medication, they cannot have
the allergic reaction. This type of situation is actually quite
common, especially in toxicity experiments (Morton, 1998).
Imagine that one is interested in convulsion rates following a
treatment. A normal, healthy animal does not spontaneously
convulse, so how does one compare rates of convulsions
between a treatment and a control group? Note that this is
not the same question as asking what sample size is needed
to determine if the rate or incidence of convulsions is lower
than a certain proportion, say 1/100, in which case standard
formulae can be used (Dell et al., 2002). Again, the answer
lies in prior knowledge. If normal animals do not convulse,
any animals convulsing after receiving a treatment are not
exhibiting the control (normal) response, and there is an
effect of the treatment, even if it occurs in only one out of 100
animals. Formally, the control has zero variance. Using any
of the acceptable generalized linear model links for binomial
data (e.g. logit link, probit link), if any of the treatment
subjects has a response, the variance of the treatment group
will be greater than 0. Estimated 95 or 99% confidence
intervals (on the link scale) of the treatment groups can
approach − ∞ (0%) or + ∞ (100%) but can never attain

them, so will not overlap with the control group, hence they
differ statistically.

VIII. RECOMMENDATIONS

The three Rs of replacement, reduction and refinement
originally proposed by Russell & Burch (1959) provide
a widely accepted framework for conducting animal
experiments. Progress has been made in the replacement,
reduction and refinement of procedures involving animals,
but the use of animals in research remains a highly
controversial issue and much more needs to be done.
One area where progress has been somewhat limited
is in the reduction of the number of animals included
in an experiment. Reduction entails seeking ways of
obtaining comparable levels of information from the use
of fewer experimental animals, or of obtaining more
information from a given number of animals (Festing et al.,
1998). Compared to refinement and replacement, which
often require technical advances, implementing reduction
strategies has an immediate impact on animal welfare.
Reducing the number of animals will also result in a
reduction of the resources and workload required to run
an experiment. Therefore, for both ethical and economic
reasons, experiments should be designed such that they
use the minimum number of animals necessary to achieve
meaningful scientific results. Reduction of the number of
current controls provides a relatively straightforward means
to this end.

Advances in the reduction of numbers of research animals
have been made mainly in the fields of toxicology and
vaccine testing (e.g. Hutchinson et al., 2003; Jeram et al.,
2005). Of wider applicability are several strategies based
on the implementation of more sophisticated experimental
designs and statistical analyses (e.g. Mann, Crouse & Prentice,
1991; Engeman & Shumake, 1993; Festing, 1997; Festing
et al., 1998; Shaw et al., 2002; Puopolo, 2004). However, few of
the available proposals explicitly consider the issue of control
group size (see Morton, 1998; Festing & Altman, 2002).
We believe that, by implementing the procedures described
herein, researchers will be able to reduce the number of
animals they use, thereby saving time, effort and money, and
bringing their research within ethically acceptable bounds.

We are not advocating that researchers eliminate or
arbitrarily reduce control groups. Quite to the contrary,
our aim here is to convince the reader that control groups
deserve far greater attention than is current practice. A
thorough understanding of the role of controls is crucial
to conducting research that is both effective and ethically
acceptable. Experiments in which controls are subjected
to painful or stressful procedures with a highly predictable
endpoint are relatively common and should be given special
consideration. Recent surveys have shown that much animal
experimentation is grossly underpowered (e.g. Button et al.,
2013), and as a consequence a typical researcher may
be hesitant to reduce the number of subjects used in an
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experiment. But if the aim of the controls is simply to
guarantee that experimental procedures work adequately, a
reduction may be fully justified on ethical grounds.

Sometimes the power loss resulting from a reduction
in the number of current controls may be offset by
borrowing information from historical controls. This allows
the researcher to minimize the amount of suffering while
at the same time preserving statistical power. One common
misconception about the use of historical information is
that the researcher has to choose between historical and
current controls, and use only one of the two. But the use
of historical information does not imply dispensing with
current controls and replacing them entirely with historical
controls. Provided that historical controls are available and
can be used (i.e. they are consistent with current controls), a
sensible combination of current and historical controls may
give the best results (see Pocock, 1976). Our simulations
show that there is always a benefit to including historical
controls as fewer current controls are needed to achieve the
desired power. Interestingly, the largest gains in power (up
to 50%) in our simulations are obtained when the number
of animals in the treatment group is increased and historical
controls are used. Thus, a researcher that has discretion over
the number of subjects allocated to different groups may
achieve a more powerful design by incorporating historical
controls and relocating subjects from the current control to
the treatment group.

The current discussion of the use of historical controls
is targeted to biomedical experimentation, which arguably
accounts for the largest number of procedures involving
animals. However, the focus can be fruitfully broadened
to other areas of research using animals. Circumstances
will likely vary among different disciplines but drawing on
historical control data will generally allow a reduction of the
number of animals allocated to current control groups and
therefore contribute to the goal of saving time, resources and
animal lives. Although satisfying the assumptions for one of
the models proposed might be difficult, historical controls
would still be very useful to understand how much variability
there is under ‘normal’ situations.

We make the following practical recommendations for
researchers.

(1) Verify that the experiment requires controls. There
are situations for which a control group does not make sense.
An experiment designed to compare different doses of the
same drug, for example, may not require a control (see also
Ruxton & Colegrave, 2011). Other situations may require
more than one control group. Consider the type of control
needed (positive, negative, sham, etc.). Lack of adequate
controls may result in an inconclusive experiment, which is
hard to justify for ethical reasons.

(2) If controls are necessary, consider strategies that
reduce the number or the size of control groups. For
example, a design that allows experimental animals to act as
their own control may obviate the need for an independent
control group. An incomplete block design, where controls

do not appear in every block, can also reduce the number
of animals used and still allow for comparisons of treatments
and controls, as well as treatments with each other.

(3) If control groups are less variable than treatment
groups, variances should be estimated separately for the
control group, which will provide a more accurate test of
mean differences. If the variance of the control group is
very small relative to that of treatment groups, and this can
be established using historical controls, then fewer current
controls are needed since there will be little uncertainty
about their responses.

(4) If available and it is reasonable to do so (i.e. no obvious
systematic differences exist between current and historical
control groups), consider making use of historical controls in
the data analysis.

(5) If historical controls are used, one needs to decide how
much information to borrow from them (i.e. which set of
assumptions apply in each particular case).

IX. CONCLUSIONS

(1) The three Rs tenet is a widely accepted cornerstone
that provides guidelines for improving the welfare of animals
used in research. The R of reduction seeks to minimize the
number of animals used in an experiment. Control groups
are included in most experiments, and they can offer a
relatively untapped potential to reduce sample size without
sacrificing statistical power. Controls can be categorized as
current or historical. Historical controls are controls from
past experiments that used the same protocols as the current
experiment.

(2) Historical information is part of the design of most
experiments (i.e. to calculate sample sizes based on previously
observed variabilities and effect sizes). However, use of
historical controls is restricted to a few areas of biomedical
research and is regarded with skepticism by many researchers
who are unaware of their potential usefulness or do not know
how to incorporate them into their experimental designs.

(3) We show, using both real data extracted from the
primary literature and computer simulations, how to use
historical controls to improve parameter estimates of the
current experiment (i.e. means and standard deviations)
under various sets of assumptions. In general, use of historical
controls reduces the number of current controls necessary
in an experiment and improves the researcher’s ability to
detect treatment effects.

(4) Borrowing information from historical controls entails
a trade-off between the potential introduction of bias
(if historical controls do not adequately reflect current
experimental conditions) and the reduction of current
control subjects. Consistency between historical and current
experimental conditions should be the most important
consideration in the decision to incorporate historical
controls as part of the experimental design. When
similar experiments are performed repeatedly in the same
laboratory, using the same standard research and husbandry
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protocols and the same animals (e.g. a single strain and sex
of mice), there will often be scope for the incorporation of
historical controls.

(5) Some experiments do not require a control group
or a control group as large as the treatment group.
A smaller current control group provides an easy and
straightforward route to reducing the number of animals
used in an experiment. This applies especially to well-tried
experimental procedures that have a highly predictable
endpoint, such as spinal cord transection, coronary
obstruction, pancreactectomy, etc.

(6) When variability among controls is lower than among
treatment groups, a control group should not be treated as
just another treatment group. Instead, some thought must
be given to the purpose of the controls and how to handle
them appropriately from a statistical perspective, perhaps by
allowing for heterogeneous group variances or not including
them at all in the analysis (e.g. for zero-variance cases).

(7) Understanding the role of controls is crucial to
conducting research that is both effective and ethically
acceptable. An efficient use of controls can reduce the
number of animals required and maximize the information
obtained per experiment. Given the sheer number of animals
that are routinely used as part of control groups, the
procedures we outline can make a substantial contribution
towards the goal of reducing the number of animals used in
biomedical research.
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