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Abstract Wild species-related germplasm is widely used to
introduce new alleles and/or increase heterozygosity in culti-
vated species. Twenty-four SSR markers, specifically de-
signed for cultivated potatoes, were evaluated to determine
the extent of genetic variation within and among ten acces-
sions of Solanum chacoense (chc). Fifteen of these markers
were informative: there was no polymorphism in one of the
markers, four of the markers showed evidence that more than
one locus was being amplified, and the other four markers
failed to consistently amplify products. Heterozygosity in
these 10 accessions ranged from 33% to 87%. Variation
among accessions was the largest proportion of variance for
three markers, variation among genotypes within accessions
was the largest proportion for three markers, and for the other
nine markers variation within genotypes (chromosome to
chromosome) was the largest proportion. Genetic similarity
averaged 29.5% across markers. Where accessions have al-
ready been screened and found to possess the trait of interest,
multiple genotypes from those accessions should be evaluated
to identify genotypes with the greatest expression of the trait.

Resumen El germoplasma relacionado a especies silvestres
se usa ampliamente para introducir nuevos alelos y/o
aumentar la heterozigocidad en especies cultivadas. Se
evaluaron 24 marcadores SSR especificamente disefiados para
papas cultivadas, para determinar la amplitud de la variacion
genética dentro y entre diez introducciones de Solanum
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chacoense (chc). Quince de estos marcadores fueron
informativos: no hubo polimorfismo en uno de los
marcadores, cuatro de ellos mostraron evidencia de que mas
de un locus estaba siendo amplificado, y los otros cuatro
marcadores fallaron para amplificar consistentemente los
productos. La eterozigocidad en estas diez introducciones
vario de 33% a 87%. La variacion entre las accesiones fue la
proporcion mas grande de varianza para tres marcadores, la
variacion entre genotipos dentro de las introducciones fue la
de mayor proporcion para tres marcadores, y para los otros
nueve la variacion dentro de genotipos (cromosoma a
cromosoma) fue la proporcion mas grande. La similitud
genética promedio 29.5% entre los marcadores. En donde
las accesiones ya han sido analizadas y que se encontrd que
poseen el caracter de interés, multiples genotipos de estas
introducciones deberian evaluarse para identificar genotipos
con la mayor expansion del caracter.

Keywords Microsatellites - Potato - Heterozygosity -
Heterosis - Genetic similarity

Introduction

Cultivated potato, Solanum tuberosum L., is an autotetraploid
(2n = 4x = 48) asexually propagated crop, generally consid-
ered to have a narrow genetic base (Mendoza and Haynes
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1974; Hawkes 1978; Love 1999), although the large number
of single nucleotide polymorphisms (SNPs) uncovered by
Hamilton et al. (2011) could potentially challenge this com-
monly held assumption. Nevertheless, both mid-parent and
high-parent heterosis for total tuber yield has been widely
observed in crosses between genetically diverse potato germ-
plasm (Bani-Ameur et al. 1991; Buso et al. 1999a, 1999b,
2000, 2003; De Jong et al. 1981; Ran and Dai 1996; Tai and
De Jong 1997; Veilleux and Lauer 1981).

Heterozygosity is thought to be an important factor in the
heterotic response observed in crosses between diverse germ-
plasm. Chase (1963) proposed using parthenotes and other
diploid stocks to increase heterozygosity at the tetraploid
level. Theoretically, a tetraploid could have as many as four
different alleles per locus. Sanford and Hanneman (1982)
compared complex hybrids containing genomes from
S. tuberosum Group Tuberosum (one-way), and one (two-
way) or two (three-way) other Groups. The two- and three-
way hybrid Groups were superior to the one-way Group, but
not significantly different from each other, suggesting there
might be a heterotic threshold in cultivated potato, beyond
which point more heterozygosity would not result in more
yield or greater vigor. Bonierbale et al. (1993) tested the max-
imum heterozygosity hypothesis for tuber yield in crosses
among adapted tetraploid germplasm and between adapted
and unadapted tetraploid germplasm. Their results supported
the maximum heterozygosity hypothesis in crosses involving
adapted germplasm, but they found no support for the
hypothesis for crosses between adapted and unadapted
germplasm.

Genebanks for numerous crops have been established
worldwide to preserve genetic diversity. Brown (1989) de-
fined the concept of core collections as a way to capture the
genetic diversity of the collection with minimal repetitiveness.
Originally core collections were defined based on quantitative
and/or qualitative traits and/or geographical site of collection
(Huaman et al. 2000). However, del Rio and Bamberg (2002)
found that geographic origin was not very useful in gauging
interpopulation genetic diversity as measured by RAPDs in a
wild species of potato. Jansky et al. (2006) reported that tax-
onomic relationships and ecogeographic data could not be
used to predict where sources of white mold resistance genes
would be found. More recently, molecular markers have been
employed to construct core collections (Bamberg and del Rio
2014; Bamberg et al. 2016a).

Molecular markers would seem to offer an excellent tool to
estimate genetic diversity. However, diversity in such markers
depends on whether they are associated with genes under se-
lection or not. Genes undergoing selection have less genetic
diversity than neutral genes (McKay and Latta 2002). Using
SNPs, Hirsch et al. (2013) found that modern potato breeding
efforts have not noticeably changed the percentage of hetero-
zygous loci or the frequency of homozygous, single-dose, and
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duplex loci on a genome level in cultivated potato. The only
changes they observed were for alleles in biosynthetic path-
ways important for market class-specific traits, such as pig-
mentation for specialty market varieties and carbohydrate
metabolism for processing varieties. Reed and Frankham
(2001) found that the correlation between neutral molecular
markers and quantitative variation was weak.

Studies using molecular markers have suggested that there
is greater genetic diversity among wild species accessions
than within (Bamberg and del Rio 2014, 2016; van Treuren
etal. 2004). However, several researchers have suggested that
the amount of heterozygosity in the wild species is low. Using
SNPs, Hirsch et al. (2013) estimated heterozygosity in the
wild species at 7%. Also using SNPs, Hardigan et al. (2015)
estimated heterozygosity in S. chacoense at 6%. However, in
the later study, single plants from only three accessions of
S. chacoense were investigated.

Solanum chacoense (chc) is a wild diploid species
(2n = 2x = 24) that has been widely utilized in potato breed-
ing. Resistance to Colorado potato beetle (Bamberg et al.
1996), verticillium wilt (Lynch et al. 1997), silver scurf
(Rodriguez et al. 1995), root knot nematodes (Janssen et al.
1996; De Vito et al. 2003), late blight (Micheletto et al. 2000),
soft rot (Bains et al. 1999) and potato leafroll virus (Brown
and Thomas 1994) has been reported in S. chacoense. S.
chacoense has also been reported to be tolerant to drought
(Ekanayake and DeJong 1992), salinity (Bilski et al. 1988),
and heat (Reynolds and Ewing 1989). In addition, Errebhi
et al. (1998) found the two accessions of chc they screened
to have good nitrogen uptake efficiency.

Based on Errebhi et al. (1998) and Bilski et al. (1988) re-
sults, we evaluated additional accessions of c/hc for root bio-
mass (associated with N uptake efficiency) (Christensen et al.
2017) and salinity tolerance (Zaki et al. 2016). As part of this
effort, SSRs were used to determine if there was greater vari-
ability among or within accessions of cic. Simple sequence
repeats (SSRs) are particularly useful molecular markers as
they are ubiquitous, co-dominant, multi-allelic, reproducible,
have high levels of polymorphism, and require low amounts
of DNA (Mc Gregor et al. 2000; Milbourne et al. 1997).

Simple sequence repeats (SSRs) have been used for an
array of applications in potato including diversity and classi-
fication (Spooner et al. 2007), tracing germplasm migrations
(Rios et al. 2007), fingerprinting (Moisan-Thiery et al. 2005),
and genetic linkage mapping (Feingold et al. 2005). Recently,
a more selective group of SSRs has been used to fingerprint
742 potato landraces (Ghislain et al. 2009). Potatoes included
ranged in ploidy level from diploid to pentaploid. That study
developed a new potato genetic identity (PGI) kit based on 24
SSR markers with two markers per chromosome that allowed
for the discrimination of 93.5% of the 742 potato races com-
pared to previous studies that used kits with 50 SSR markers
(Spooner et al. 2007).
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The purpose of this study was to use SSRs to determine
how much genetic diversity exists in a random sample of plant
introductions of chc. This information will be used to guide
future breeding strategies utilizing chc germplasm.

Materials and Methods
Plant materials and DNA Extraction

The diploid Solanum chacoense (chc) genotypes used in this
study came from ten randomly chosen accessions obtained
from the NRSP-6 United States Potato Genebank in
Sturgeon Bay, WI (Table 1) (www.ars-grin.gov/npgs/acc/
acc_queries.html) with nine random genotypes from each
accession for a total of 90 chc genotypes. Six of the
accessions were collected in Argentina, three in Paraquay,
and one in Bolivia. Since the genetic diversity in this
material was unknown, we tried to balance the number of
accessions with the number of genotypes within an
accession. Five cultivars of Solanum tuberosum (tbr) were
also included as positive controls to reference back to the
potato genetic identity kit of Ghislain et al. (2009).

True seed of the chc accessions were planted in flats of
ProMix in the greenhouse in Beltsville, Maryland and
transplanted into 15 ¢cm pots of ProMix approximately four
weeks later.

Total DNA was extracted from young leaves of these ac-
cessions and the cultivars grown in a greenhouse using
GenElute TM Plant Genomic DNA Miniprep Kit (Sigma,
St. Louis, MO) according to the manufacturer’s instructions.

Table 1  List of plant materials used

Accession/Clone Species  Ploidy ~ Where Collected/Originated
P1275136 che 2x Jujuy, Argentina

PI 275142 che 2x Salta, Argentina

PI 320286 che 2x Cordoba, Argentina

PI 320288 che 2x Cordoba, Argentina
P1320294 che 2x Buenos Aires, Argentina
PI 414153 che 2x Presidente Hayes, Paraquay
PI 537025 che 2x Chuquisaca, Bolivia

P1 566738 che 2x Asunccion, Paraquay

P1 566739 che 2x Asunccion, Paraquay

P1 566743 che 2x La Rioja, Argentina
Atlantic tbr 4x USA

Dark Red Norland  tbr 4x USA

Lamoka tbr 4x USA

Red Pontiac tbr 4x USA

Snowden tbr 4x USA

Simple Sequence Repeat Primer Pairs and PCR
Conditions

All 24 SSR primer pairs in the potato genetic kit of Ghislain
et al. (2009) were used. To amplify the microsatellite loci,
PCR was performed in a 20 pl volume containing 2 ng of
genomic DNA, 1 ul of each primer (10 mM), 2 ul of dNTP
(10 mM), 1 ul of 10 x reaction buffer (Takara, Japan), and 1
unit of 7ag polymerase (Takara, Japan). PCR amplification
followed the protocols provided by Ghislain et al. (2009).
Two replicate PCRs were run for each SSR primer pair.

Separation of PCR products was achieved using the
AdvanCE™ FS96 capillary electrophoresis system
(Advanced Analytical Technologies, Inc., Ames, 1A, USA).
All separations were run using DNF-900 gel for detecting
fragments in the 35-500 bp range. Each reaction was run twice
and the consistent alleles scored with PROSize™ 2.0 data
analysis software (Advanced Analytical Technologies, Inc.,
Ames, 1A, USA). Inconsistent alleles between the two reps
were scored as missing.

Data Analysis

Not all markers were deemed reliable. We used a subset of 15
(STGO001, STI0004, STM0037, STM1104, STM5121,
STG0010, STI0030, STM1052, STM1106, STM5127,
STG0025, STI0033, STM1053, STM5114, STPoAc58), and
excluded the known tetraploid cultivars from the genetic anal-
yses. Percent heterozygosity for each accession, genotype
within accession and cultivar was calculated as the number
of polymorphic loci divided by 15.

Genetic similarity (GS), defined as the probability of ran-
domly choosing two individuals having the same genotype
from a population of these ten accessions, was calculated for
each marker as the sum of the probabilities of each allelic
combination squared. For the simplest example of two alleles
(STM1053):

* the probability that one individual is
(169,169) = (0.83*0.83) = 0.6889;

* the probability that one individual is
(169,174) = (0.83*0.17%2) = 0.2822; and,

* the probability that one individual is
(174,174) = (0.17%0.17) = 0.0289.

So, the probability that any two randomly chosen geno-
types are the same = the probability that both are
(169,169) + the probability that both are (169,174) + the prob-
ability that both are (174,174) = 0.68897 + 0.2822° +
0.0289% = 0.5551. Obviously, this assumes that the population
(of ten accessions) is in Hardy-Weinberg equilibrium, which
given the population sizes of this study and the method of
advancing the population in the genebank (by accession)
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would not be true. Nevertheless, it does give some indication
of how similar individuals would be if the population was in
H-W equilibrium.

Finally, in order to compare chc, a diploid, with #r, a
tetraploid, each accession of chc was theoretically made tetra-
ploid by combining any two of the nine genotypes within that
accession in all possible combinations. The expected percent
heterozygous loci was then calculated.

For each marker, the amounts of variation among acces-
sions, among genotypes within an accession, and within the
genotype (i.e. chromosome to chromosome) were calculated
using the R poppr (ver. 2.0.2) package (Kamvar et al. 2014).
An analysis of molecular variance (AMOVA) (Excoffier et al.
1992), as implemented in the R ade4 package (Dray and
Dufour 2007; called by poppr) was conducted looking at all
markers together and then each marker individually.

Results and Discussion

We found one of the markers, STI0014, to be monomorphic in
the 90 genotypes of chc evaluated. Four of the markers failed
to amplify bands in many of the chc accessions: STI0012,
STI0032, STMO0019, and STMO0031. As with chc, band am-
plification was inconsistent for three of these same SSR
markers in tbr: STI0032, STMO0019 and STMO0031.
Published PCR conditions for these four markers may not
have been ideal for this germplasm and may require additional
refinement. Four of the markers showed evidence that more
than one locus in chc was being amplified: STG0016,
STIO001, STIO003, and STM1064. The inconsistencies be-
tween the results of this study and others may be due to
cross-species amplification problems. Cross-species amplifi-
cation problems, whereby markers developed for one species
cannot be utilized in another species, have been widely report-
ed for numerous plant species including Allium sp. (Lee et al.
2011), Bambusa sp. (Nayak and Rout 2005), Capsicum sp.
(Nagy et al. 2007), Glycine sp. (Peakall et al. 1998),
Gossypium sp. (Guo et al. 2006), Lolium sp. (Jensen et al.
2007), Prunus sp. (Cipriani et al. 1999), Rubus sp. (Lopes
et al. 2006), Solanum sp. (Salim et al. 2011), Trifolium sp.
(Kolliker et al. 2001), and Vicia sp. (Raveendar et al. 2015).
Ascertainment bias may be another source of the inconsis-
tencies between the results of this study and others. STI0014 is
a prime example of this problem. STI0014 was originally
chosen because it was informative in the cultivated potato
genepool, but was not informative in this sample of chc.
Bamberg et al. (2015) found that the relatedness of a species
to S. tuberosum, for which SNPs for the Infintum 8303 Potato
SNP Array were developed, was inversely related to the num-
ber of polymorphic SNPs it contained. The same could rea-
sonably be expected to be true for other molecular markers
developed for one species but applied to a different one.
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Thus, of the 24 SSR markers suggested by Ghislain et al.
(2009) in order to standardize testing and reporting across
laboratories, only 15 were finally scored and found to be in-
formative. Assuming the SSR markers scored occurred in the
same general location in chc as reported for the landraces
(Ghislain et al. 2009), no markers were scored for chromo-
somes IV and VII, and only one marker was scored on chro-
mosomes I, V, VI, VIII, and IX.

Solanum chacoense

Of the 15 markers scored, the number of alleles ranged from
two (STM1053 and STM5127) to eleven (STM0037) in che,
with an average of five (Table 2). All together, 75 alleles were
scored. These 75 alleles were able to discriminate among all
90 che genotypes, i.e., each genotype had a unique banding
pattern. Nineteen of the alleles occurred with a frequency less
than 5%. Two of the alleles were very common, occurring
with a frequency > 95%.

In general, the number of alleles we found for the SSR
markers in chc was lower than reported by Ghislain et al.
(2009). The lower number of alleles in this chc germplasm
may partially be the result of the way seed was increased at the
NRSP-6 United States Potato Genebank. Typically, 20 plants
per accession were planted periodically for seed increase and
inter-mated within the accession. However, in two of the ac-
cessions (PI 275142 and PI 566738) a genetic bottleneck oc-
curred during seed increase when only two plants were avail-
able for seed increase, and in one accession (PI 566739) only
five plants were available for seed increase (John Bamberg,
personal communication).

Overall, chc averaged 64% heterozygosity for these 15 loci
(Table 3). Among the accessions, heterozygosity ranged from
33 to 80%. The range of heterozygosity within an accession
was always lower than for the accession as a whole as a result
of the presence of alleles with low frequencies (Table 2). PI
275142, one of the accessions with only two plants initially,
was heterozygous at eight of the markers, whereas P1 566738,
the other accession with only two plants initially, was hetero-
zygous at 12 of the markers. PI 566739, the accession with
only five plants initially, was heterozygous at 13 of the
markers (Table 3). Clearly these accessions entered the
genebank with a high degree of heterozygosity. Although
there was no genetic bottleneck reported during seed increase
at the genebank, PI 320294 and PI 566743 were less hetero-
zygous for many of the markers, indicating that some alleles
may have been fixed prior to the accessions’ introduction into
the genebank. Our estimates for cic were similar to the esti-
mates obtained by Bamberg and del Rio (2004) for S. jamesii,
another diploid outcrosser, as is chc: They estimated hetero-
zygosity as 70% using RAPDs and 51% using SNPs. In con-
trast, Hardigan et al. (2015) found that heterozygosity in 12
South American wild diploid species ranged from about 2% to
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Table 2 SSR marker, allele sizes and frequencies for ten accessions of Solanum chacoense and the estimate of genetic similarity (GS) for any two
individuals randomly sampled from the population of these accessions
SSR Marker Allele Sizes (bp) Allele Frequencies GS
STG0001 127, 133, 139, 145 0.09, 0.31,0.47,0.13 17.6%
STG0010 149, 156, 162, 166 0.13, 0.47,0.39, 0.01 23.2%
STG0025 191, 197, 202 0.27,0.57,0.15 24.2%
STI0004 80, 83, 86 042, 0.51,0.07 29.1%
STI0030 83, 85, 89,93, 97, 102, 106, 117, 123 0.08,0.14,0.31, 0.13, 0.12 4.9%
0.11, 0.02, 0.08, 0.01
STI0033 100, 107, 113, 117, 121, 127, 133, 141 0.02, 0.03, 0.08, 0.04, 0.24, 0.46, 0.12, 0.01 12.3%
STMO0037 71,73, 80, 84, 87,91 95, 100, 114, 119, 125 0.02, 0.05, 0.08, 0.23, 0.12 0.22, 0.22, 0.02, 0.01, 0.02, 0.01 5.3%
STM1052 197, 207, 212 0.01, 0.92, 0.07 73.3%
STM1053 169, 174 0.83,0.17 55.5%
STM1104 170, 175, 179, 185, 189 0.24, 0.16, 0.40, 0.12, 0.08 11.0%
STM1106 130, 141, 147, 156,163, 172 0.15, 0.46, 0.11, 0.07,0.16, 0.05 11.0%
STM5114 278, 283, 290, 297, 303 0.09, 0.31, 0.46, 0.12, 0.03 16.5%
STM5121 274,278, 285, 293 0.08, 0.31, 0.54, 0.06 22.2%
STM5127 237,264 0.99, 0.01 96.1%
STPoAc58 225,230, 237, 245,249, 257 0.78, 0.06, 0.03, 0.08,0.02, 0.02 39.9%
Average 29.5%

13%, depending on species. However, their data was based on
a single genotype for each accession of the wild species, with
most wild species represented by three accessions. Their
values were in the lower ranges for individual genotypes ob-
tained in this study. Hardigan et al. (2015) ‘suggest that

Table 3  Percent heterozygous loci for 15 SSR markers in nine
accessions of Solanum chacoense and five S. tuberosum cultivars, and
the range in percent heterozygous loci for the same 15 SSR markers for
the nine individual genotypes within each accession. Expected percent
heterozygous loci for the same 15 SSR markers assuming these nine
accessions of S. chacoense were tetraploid

Accession % Range Expected % heterozygosity
Heterozygosity Assuming Tetraploidy

PI 275136 73 13-43 80

PI1275142 53 20-33 93

PI320286 53 7-33 67

PI320288 73 14-29 73

PI 320294 47 726 73

PI 414153 73 747 93

PI 537025 67 2047 73

PI 566738 80 21-47 93

P1 566739 87 20-53 87

P1 566743 33 0-27 60

Atlantic 47

Dark Red Norland 40

Lamoka 47

Red Pontiac 60

Snowden 47

selection pressures within natural populations and breeding
programs support allelic diversity at discrete loci and that the
SNPs for which a heterozygous state confers agricultural ben-
efit in cultivars have limited overlap with those for which
heterozygosity is selected in wild populations.” Thus, it is
possible that unbiased markers may indicate a higher level
of heterozygosity in the wild species. Since the majority of
the wild potato species are diploid outcrossers, our results for
chc and Bamberg and del Rio’s (2004) results with S. jamesii
suggest that heterozygosity will likewise be high in other self-
incompatible diploid potato species.

The lower number of alleles in this chc germplasm
may also be the result of the numbers sampled. Based
on intra-accession heterogeneity using RAPD markers,
Bamberg and del Rio (2004) estimated that 25-30 plants
would need to be sampled to adequately determine the
genetic diversity within the accession. However, nearly
all RAPDs are dominant and unable to distinguish be-
tween the homozygous dominant and its heterozygous
counterpart. In contrast, SSR markers are co-dominant
and thus allow both alleles of the heterozygote to be
visualized.

Hosaka and Hanneman (1991) examined phenotypic vari-
ation for potato seed protein using electrophoresis in several
potato species, including chc. Their index of variation, which
measured the proportion of segregating protein bands per total
protein bands detected among 10 individuals of an S, popu-
lation of chc was 49%, and decreased with increasing gener-
ations of selfing. This estimate of phenotypic variation is in
the range reported for genotypic variation in c/c.
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Genetic similarity for these markers ranged from a
low of 4.9% for STI0030 to a high of 96.1% for
STMS5127 (Table 2), with an average across all markers
of 29.5%. These values were calculated assuming that
the population was in Hardy-Weinberg equilibrium,
which was not true for any of the markers (data not
shown). However, with random mating, as population
size increases, observed GS values would more closely
approximate predicted GS values. Obviously, though,
the population is extremely heterogeneous. Bamberg
and del Rio (2004) looked at the apparent GS of two
random samples from the same population and found
that for outcrossing species samples, bulked samples of
five or more genotypes would give GS estimates of
90% or more; that is, based on two alleles (RAPD
bands present or absent) there was a 90% or greater
probability of finding both alleles in the samples. The
data in our study clearly demonstrate that estimates of
GS depend on the number of alleles and the frequency
of the predominant allele(s).

The analysis for all markers estimated the among accession
variance proportion at 31.4%, genotypes within accessions at
22.1%, and within genotypes (chromosome to chromosome
variance) at 46.5% (Table 4). For individual marker analysis,
variation among accessions ranged from a low of 6.3% to a
high of 51.2%; variation among genotypes within accessions
ranged from —6.0% to 64%; and variation within a genotype
ranged from 4% to 100%. Clearly genotypes within an

Table 4 Percentage variation among accessions, among genotypes
within accessions, and within a genotype (i.e. chromosome to
chromosome) for 15 SSR markers individually and over all 15 markers
as revealed by AMOVA

SSR Marker Among Among genotypes Within
accessions (accessions) genotypes
STG0001 29.0 36.9 34.1
STG0010 29.6 15.4 55.0
STG0025 13.4 25.4 61.1
STI0004 47.1 7.7 452
STI0030 51.2 20.9 279
STI0033 36.9 22.0 41.1
STM0037 33.8 —6.0 72.2
STM1052 11.8 64.0 242
STM1053 379 58.1 4.0
STM1104 26.2 19.6 54.2
STM1106 40.1 37.6 223
STMS5114 26.3 355 38.2
STM5121 21.1 16.3 62.6
STM5127 6.3 —6.3 100.0
STPoAc58 19.0 0.6 80.4
Over all 314 22.1 46.5
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accession are not identical for these markers, though they are
more similar to each other than they are to genotypes of other
accessions. Van Treuren et al. (2004) found that 91% of the
observed variation in AFLPs from the series Acaulia could be
found among accessions. Individual marker analysis is far less
reliable than overall marker analysis, in part due to problems
estimating parameters with small data sets and in part to
markers with very little variation. Indicative of the problems
with individual marker analysis, two markers, STM0037 and
STMS5127, had a negative variance estimate and should be
considered to be zero.

One assumption in studies such as this one is that general
neutral marker diversity is expected to be an indicator of gen-
eral useful phenotypic diversity. Thus, one might expect that
higher levels of heterozygosity within an accession would
translate into greater phenotypic variation, resulting in both
superior and inferior phenotypes. Conversely, lower levels of
heterozygosity within an accession would translate into less
phenotypic variation, resulting in a smaller range of
phenotypic values. Recent research by Christensen et al.
(2017) examined rooting characteristics in tissue culture in
some of the same accessions used in this study: genotypes
were clustered into clusters representing good, moderate,
and poor rooting characteristics. PI 566743 and PI 320294
had the lowest levels of heterozygosity in this study at 33%
and 47%, respectively. Christensen et al. (2017) found that
one genotype of PI 566743 clustered in the group with good
rooting characteristics, while the other genotype clustered in
the moderate group. One genotype of PI 320294 clustered in
the good group, while the other clustered in the poor group.
There were three accessions with high levels of heterozygosity
in this study: PI 566738 at 80%, PI 275136 at 73%, and PI
320288 at 73%. In the study by Christensen et al. (2017) PI
566738 genotypes clustered in the moderate and poor clusters;
PI 275136 genotypes clustered in the good and moderate
clusters; and, PI 320288 genotypes clustered tightly in the
moderate cluster. Thus, there was no apparent correlation
between marker diversity and phenotypic variation for
rooting characteristics. This agrees with studies by Spooner
etal. (2009) and Jansky et al. (2015) where there appears to be
a disconnect between genetic diversity and phenotypic
diversity. However, Bamberg and del Rio (2014) established
a core collection of S. microdontum using AFLPs and found
that the core collection contained 25 of 26 of the most
desirable phenotypic traits, suggesting that there is a
relationship between genetic and phenotypic diversity. In a
later study, Bamberg et al. (2016b) found visual impression
cogs to be a rapid, low-tech and low-cost first step to detecting
pools of genetic diversity within species. Obviously, the rela-
tionship between genetic and phenotypic diversity will de-
pend on a number of factors, among them the kinds and num-
ber of markers (Ghislain et al. 2006), whether the marker is
neutral or associated with the trait in question, the number of
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genes governing the trait, the mode of gene action, and
whether the trait is quantitative or qualitative.

Another general assumption is that genetic diversity is im-
portant for generating phenotypic diversity. Tarn et al. (1992)
discuss this as one of the two main reasons for utilizing diploid
species in breeding. On the other hand, little segregation is
expected in crosses between highly homozygous parents.
However, Endelman and Jansky (2016) crossed a doubled
monoploid with a (theoretically) highly homozygous clone
of S. chacoense. The progeny were expected to be heterozy-
gous but homogeneous; however, the progeny tubers showed
tremendous phenotypic variation. The powerful genetic tools
developed and continuing to be developed reveal that potato
breeding is full of surprises.

Solanum tuberosum L.

Of the 15 markers scored in common with ckc, the number of
alleles ranged from one to six in S. tuberosum. Two of the
markers had only one allele across all five cultivars:
STM1053 and STMS5121. Heterozygosity ranged from 40%
to 60% for each cultivar. Over all markers and all cultivars,
heterozygosity averaged 48%. This is in close agreement with
the 59% reported by Hirsch et al. (2013) for chip processing
cultivars. Also, Bamberg and del Rio (2004) reported that
genetic heterogeneity in S. sucrense, another tetrasomic
outcrosser, was 44%.

In order to compare chc to tbr at the same ploidy level,
within each accession chc was theoretically made tetraploid
by combining any two of the nine genotypes within that ac-
cession in all possible combinations. The expected percent
heterozygous loci was then calculated (Table 3). The expected
percent heterozygous loci at the tetraploid level was higher
than the observed value at the diploid level when the homo-
zygous diploid was heterogeneous at that locus, for example
when both A;A; and A, A, genotypes were found in that
accession. The expected heterozygosity in tetraploid chc was
usually much higher than the observed heterozygosity in the
tetraploid tbr varieties included in this study and reported by
others (Hirsch et al. 2013). If heterozygosity per se is impor-
tant in the observed heterotic responses frequently observed in
potato when unrelated germplasm is crossed, obviously there
is considerable room for increasing heterozygosity. However,
Bonierbale et al. (1993) found that heterozygosity was impor-
tant for yield in adapted germplasm but not for unadapted
germplasm. Tetraploid chc have been synthesized (Sanford
et al. 1997) and our results suggest that intercrossing these
tetraploids could result in a tetraploid population with greater
heterozygosity than is currently present in commercial varie-
ties. Nevertheless, the fact that the heterozygosity of commer-
cial varieties hovers around 50% suggests that after over a
century of breeding efforts, not all traits are impacted equally
by heterozygosity.

Conclusions

Ninety genotypes of Solanum chacoense, represented by nine
genotypes within each of ten accessions were subject to ge-
netic analyses using SSR markers from the potato genetic
identity kit proposed by Ghislain et al. (2009). These markers
revealed a high level of heterozygosity in chc. Where acces-
sions have already been screened and found to possess the trait
of interest, multiple genotypes from those accessions should
be evaluated to identify genotypes with the greatest expression
of the trait. However, where accessions have not previously
been screened for a given trait, sampling should focus on
trying to balance a reasonable number of accessions with a
reasonable number of genotypes within those accessions.
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