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Abstract. Mummy berry (Monilinia vaccinii-corymbosi) is an important disease of
cultivated blueberry (Vaccinium spp.). The disease has two distinct phases: a blighting
phase initiated by ascospores and a fruit infection stage initiated by conidia during
bloom. In this study, we investigated, in a nursery setting, blueberry cultivar resistance to
both phases of the disease and, using multiple ‘‘standards’’ with a range of susceptibil-
ities, examined, over 9 to 12 years, factors affecting disease incidence in controlled
inoculations. The analyses of our data show that a minimum of 8 years of testing is
necessary to obtain stable rankings of cultivar susceptibility for the fruit infection phase
of the disease. Insufficient years of data were available to estimate this for the blight
phase. Eight years are necessary largely as a result of uncertainty arising from the large
environment · genotype interaction, estimated to be more than double any other source
of observed variation, other than that resulting from sampling/individual plants. For
individual cultivars, temperature and the amount and frequency of precipitation in
January to March (when neither plant nor pathogen were presumed active and when
both were in cold frames somewhat protected from environmental conditions) were
predictive of later disease incidence. For most cultivars, the same weather variables at the
same time period were found to be predictive for independently modeled cultivars.
Additional cultivars, with only a few years’ data, were grouped with the standard with
which they shared similar environmental (year) responses and possibly similar disease
predictive models.

Mummy berry is one of the most impor-
tant diseases of blueberry in North America
(Eck and Childers, 1966). The disease affects
all cultivated species, including highbush
(Vaccinium corymbosum L.), lowbush (V.
angustifolium Aiton), and rabbiteye (V. ashei
Reade = V. virgatum Aiton) (Hildebrand
et al., 1995). Wild species of blueberry such
as V. myrtilloides Michaux and V. elliottii
Chapman are also susceptible (Hildebrand
et al., 1995). The disease is caused by the
fungus Monilinia vaccinii-corymbosi (Reade)
Honey. There are two distinct infection
phases, each of which must be completed
for the disease to persist. The primary phase
results in blighting of shoots and sometimes
flower clusters. This phase is initiated by
germination of pseudosclerotia that form

apothecia (Batra, 1983). The ascospores pro-
duced by the apothecia are wind-dispersed to
young vegetative blueberry tissues during
and shortly after bud break (Cox and Scherm,
2001). Conidia, produced on the blighted
tissues, are bee-dispersed to the stigmatic
surface of open flowers (Batra and Batra,
1985). The conidia germinate and grow down
the stylar canal and colonize the ovaries. The
fungal thallus that grows within the infected
fruit forms pseudosclerotia that fall to the
ground and serve as the overwintering stage.

Several early studies documented levels
of resistance to M. vaccinii-corymbosi in
limited collections of highbush blueberry
cultivars (Nelson and Bittenbender, 1971;
Pepin and Toms, 1969; Varney and Stretch,
1966). The most methodical screening for
blight resistance (primary phase) was an
evaluation of 52 highbush blueberry cultivars
using concentrated inoculum in a nursery-
type setting (Stretch et al., 1995) that identi-
fied several cultivars with good horticultural
quality and high levels of resistance. In a later
study, Ehlenfeldt et al. (1997) manipulated
shoot elongation of resistant and susceptible
cultivars to evaluate the nature of resistance.
In susceptible cultivars, susceptibility was

highest at short shoot lengths (i.e., young
shoots) and decreased as shoot length in-
creased (more mature shoots). Among re-
sistant cultivars, there were indications of
resistance resulting from both avoidance
(through delayed bud break) and biochemical
or structural factors. Lehman and Oudemans
(1997b) similarly demonstrated that sus-
ceptibility decreased as shoots elongated,
suggesting the development of ontogenic
resistance. Ehlenfeldt et al. (1996) evaluated
cultivar differences in a 48-cultivar subset of
those evaluated by Stretch et al. (1995) and
found a significant positive correlation (r =
0.74) between blight incidence and average
shoot length during the first week of asco-
spore release. Fruit susceptibility in the
mummy berry disease cycle was also in-
vestigated by Stretch and Ehlenfeldt (2000).
No correlation was found between blight
resistance and resistance to fruit infection
(r = 0.15), but several cultivars appeared to
offer good resistance to both phases. Bio-
chemical or host resistance is thought to play
a part in fruit infection resistance because
growth of the fungus along the gynoecial
pathway was shown to be slower in resistant
cultivars (Lehman et al., 2007).

In this study, we compiled data from
many years of screening blueberry cultivars
for resistance to both phases of mummy berry
disease. In developing resistance rankings,
we found that even the cultivars included as
standards varied in response from year to
year and occasionally shifted ranks. To de-
termine the number of years necessary for
stable rankings, we decided to more fully
analyze the response of the standards and
better quantify the components of disease
resistance beyond simply plant genotype. We
applied variance decomposition methods to
assess the contributions of: cultivar (genetic
factors), year (weather and other environ-
mental factors), and their interaction. As part
of year and year · cultivar interaction, we
investigated if weather variables such as
temperature, rainfall, and humidity were use-
ful predictors of disease incidence. The year ·
cultivar interaction is typically considered to
be an ‘‘unpredictable’’ part of the cultivar ·
environment interaction (Lin and Binns,
1988). However, we found that weather vari-
ables from earlier in the year, in part, could
explain year-to-year ranking shifts among
cultivars. Thus, unique predictive equations
for average disease incidence, based on
weather variables and the cultivar’s long-
term mean resistance, may be derived for
each cultivar.

Materials and Methods

Blight screening materials
Based on data from earlier screenings

(Ehlenfeldt and Stretch, 2000; Stretch and
Ehlenfeldt, 2000; Stretch et al., 1995), the
following cultivars were selected as shoot
blight standards to represent both highbush
(HB) and rabbiteye (RE) genotypes and a
broad range of responses from low to high.
The cultivars that were included across 1996
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to 2007 were: ‘Bluejay’ (HB), ‘Brightwell’
(RE), ‘Callaway’ (RE), ‘Coastal’ (RE), ‘Coville’
(HB), ‘Northblue’ (HH, a half-high type, i.e.,
a lowbush · highbush hybrid), ‘Sunrise’
(HB), and ‘Toro’ (HB). ‘Climax’ (RE) was in-
cluded from 1996 to 2006. An additional 36
cultivars were coscreened for 3-year periods
and analyzed against the shoot blight stan-
dards (Table 1).

Fruit infection screening materials
Similarly, six cultivars were selected as

fruit infection standards based on data from
earlier screenings (Stretch and Ehlenfeldt,
2000) and because they represented a range
of responses from low to high. The cultivars
that were included across 1995 to 2007 in-
cluded: ‘Atlantic’ (HB), ‘Bluejay’ (HB),
‘Blueray’ (HB), ‘Northsky’ (HH), ‘Rancocas’
(HB), and ‘Sierra’ (HB). An additional 32
cultivars were coscreened for 3-year periods
and analyzed against the fruit infection stan-
dards (Table 2). Detailed background and
pedigree information on the cultivars used
in either screening test may be obtained by
request from the authors. Additional informa-
tion on some cultivars is available in the
Germplasm Resources Information Network
online database (GRIN; http://www.ars-grin.
gov/npgs).

Blight screening methods
The tests were conducted outdoors in

randomized complete block designs with five
replicates (potted plants) per cultivar. Pots
were arranged in a grid pattern in each
replicate with the specific dimensions of the
grid determined by the number of entries
(cultivars) and the space allocated each year.
The space between plants averaged 0.45 m
and blocks were laid out linearly. The plants
were potted in 2.84-L pots in a sand:peat mix
(1:1). Plants for blight evaluation were typ-
ically 30 to 60 cm and were 5- to 6–year-old
plants that had been cut back and allowed
to regrow several times. The M. vaccinii-
corymbosi pseudosclerotia (mummies) used
in each test were collected from the P.E.
Marucci Center for Blueberry and Cranberry
Research, Chatsworth, NJ. Pseudosclerotia
were collected in September and October
from the field, transplanted into soil-filled
(1:1 sand:peat mix) 0.92-L plastic pots, and
overwintered in plastic-covered cold frames.
At the start of each test (early April), pots
containing pseudosclerotia with emerging
apothecia were removed from the covered
cold frames and placed at evenly spaced in-
tervals within and around the periphery of the
experiment area to provide an even distribu-
tion of inoculum. To enhance the infection
process, the entire plot received supplemental
misting for 1 h every evening during asco-
spore release (applied volume �5 mm/d).

Trials were typically initiated the first
week of April with the timing determined
by initiation of shoot development in the
earliest emerging cultivars. Until the start of
each test, the plants were sheltered in well-
ventilated, plastic-covered cold frames. Dur-

ing the test, plants were examined for
blighted shoots on a weekly basis between
early May, when symptoms became visible,
and late May/early June, when blighting was
essentially complete. At each inspection,
blighted shoots were tabulated and removed.
At the end of the blight period, remaining
healthy shoots were counted on each plant so
that the percentage of blighted shoots could
be calculated. Cultivars to be evaluated were
included for 3 years and sometimes as many
as 4 to 6 years if widely variable results were
observed.

Fruit infection screening methods
The plants were maintained in 2.84-L pots

in a sand:peat (1:1) planting mix. The test
was typically conducted in a cold frame
covered with shadecloth (55% transmission)

as a randomized complete block design of
five replicates (potted plants) per cultivar.
Plants for fruit infection evaluation were
typically 50 to 80 cm and were also 5- to 6–
year-old plants that had been cut back and
allowed to regrow several times. The space
between plants averaged 0.45 m between
rows and 0.36 m between plants within rows.
In all years, blighted plants of ‘Bluehaven’
and ‘Blueray’ (also in 2.84-L pots) with
sporulating blighted tissue were evenly dis-
tributed between every two rows of plants to
serve as inoculum sources located within 0.5
m or less of the plants to be tested. In previous
studies, ‘Bluehaven’ and ‘Blueray’ had aver-
aged 63.9% and 35.6% blight, respectively,
and had ranked as two of 47 and 11 of 47 with
respect to susceptibility (i.e., highly suscep-
tible) (Ehlenfeldt et al., 1996). Additional

Table 1. Means and SDS of the blighted proportion (disease incidence) of shoots for cultivar standards and
cultivars with a similar yearly disease incidence pattern.

Cultivar standards
for shoot blightz

Blighted
proportion of
shoots—mean

and (SD) Cultivars with similar yearly responsesy

Bluejay (HB)x 0.20 (0.23) Bluebelle, Chanticleer, Clara, Cumberland, Echota, Pearl
River, Putte, Sampson, Scammell, Tifblue

Toro (HB) 0.22 (0.24) Clara, Goldtraube, Jubilee, Olympia, O’Neal, Tifblue,
Wolcott

Coastal (RE) 0.36 (0.27) Bluebelle, Collins, Tifblue
Callaway (RE) 0.37 (0.32) Ascorba, Bluegem, Bluebelle, Chandler, Clara, Cooper,

Olympia, Pender, Santa Fe, Wolcott
Sunrise (HB) 0.45 (0.32) Ascorba, Bluegem, Briteblue, Chandler, Ethel,

Friendship, Misty, O’Neal, Ozarkblue, Pender,
Santa Fe, Tifblue

Coville (HB) 0.58 (0.35) Black Giant, Denise Blue, Goldtraube, O’Neal,
Powderblue, Sunshine Blue

Baldwin (RE) 0.60 (0.38) Clara, Friendship, Goldtraube, Misty, O’Neal, Putte,
Sampson, Suwanee, Tifblue

Brightwell (RE) 0.62 (0.35) Clara, Collins, Denise Blue, Goldtraube, Premier,
Suwanee, Tifblue

Northblue (HH) 0.77 (0.24) Concord, Jewel, Jubilee, Reka, Tifblue
zStandards for shoot blight incidence have 8 years of data. Standards are ordered from most resistant to
least resistant.
ySimilarity does not imply similar levels of disease incidence, but rather a high correlation of response for
years in common. Some of the standards were similar to each other, so cultivars may be similar to more
than one standard.
xRE = rabbiteye; HB = highbush; HH = half-high.

Table 2. Means and SDS of the infected proportion (disease incidence) of berries for cultivar standards and
cultivars with a similar yearly disease incidence pattern.

Cultivar standards for
fruit infectionz

Infected
proportion of

berries—mean
and (SD) Cultivars with similar yearly responsesy

Northsky (HH)x 0.02 (0.03)
Bluejay (HB) 0.10 (0.11) Collins, Croatan, Harrison, June, Morrow,

Murphy, Northblue, Windsor
Rancocas (HB) 0.22 (0.22) Cabot, Cape Fear, Croatan, Friendship, Nelson,

Northblue, Ornablue, Polaris, Reka, Sunrise,
St. Cloud

Blueray (HB) 0.35 (0.30) Greta, Zuckertraube
Sierra (HB) 0.41 (0.29) Bluetta, Blue Rose, Bonifacy, Echota, Gila,

Goldtraube, Northblue, Zuckertraube
Atlantic (HB) 0.53 (0.26) Elizabeth, Elliott, Grover, Ivanhoe, Katherine,

Legacy, Wareham
zStandards for fruit infection incidence have 11 to 12 years of data. Standards are ordered from most
resistant to least resistant.
ySimilarity does not imply similar levels of disease incidence, but rather a high correlation of response for
years in common. Some of the standards were similar to each other, so cultivars may be similar to more
than one standard.
xHH = half-high; HB = highbush.
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plants of ‘Bluehaven’ and ‘Blueray’ were
added over time, as necessary, to maintain
inoculum levels. To facilitate transfer of
conidia from the blighted tissue to the stig-
mata, two hives of honeybees were placed in
the netted cold frame, one at each end of the
experimental area. To ensure that the re-
sultant fruit developed only under the im-
posed conditions of the experiment, open
flowers were removed from the test plants
before setting the inoculum plants and bees
in the cold frame. The experimental area
was sprinkler-irrigated (22 mm/d) every
evening during conidia production. Fruit
were picked while still green, �4 to 6 weeks
after flowering, and stored at 2 �C until eval-
uated. To evaluate for infection, each fruit
was sliced in half crosswise and observed for
the distinctive white fungal growth pattern
of the mummy berry pathogen. For purposes
of analysis, the incidence of mummy berry
fruit infection was expressed as an unin-
fected proportion of berries. As with blight
screening, cultivars were typically evaluated
for 3 years, but sometimes longer if widely
divergent results were observed within a
cultivar.

Statistical methods
Minimum estimate for reliable resistance

ratings. To determine the number of years of
testing necessary to obtain reliable estimates
of percent infection, we had data available
from six standard cultivars present across
either 11 or 12 years to assess mummy berry
fruit infection (Table 2) and nine cultivars
present across 8 years to assess shoot blight
(Table 1). After preliminary evaluation, we
suspected that there were insufficient years
of data (especially for shoot blight) to de-
termine exactly how many years were
needed to produce a stable estimate for each
cultivar, but believed there were sufficient
years to provide a lower bound (minimum)
for the number of years required. An intuitive
way to do this is to determine when the
estimated variance of the average disease
incidence reaches its asymptotic value (or,
equivalently, to determine how many years
are necessary for this variance estimate to
stop declining). Preliminary results sug-
gested that this strategy would not be viable
because the variance estimate was still de-
clining at the maximum number of years for
all cultivars.

As an alternative, we asked whether the
estimated variance of disease resistance of
varying subsets of years of data differed
significantly from the variance calculated
on the total set of available years conducted
separately for each cultivar and based on
results from resampling years of data. We
also compared, for each subset of years, the
variance of the estimated means (from the
resampling) with the average model estimate
of the variance of the mean. In other words,
did the actual variance of the means, based on
resampling, match what the models estimate
this value to be? If they are not close, then the
model estimate (typically published as a SE of
the mean to convey the uncertainty in a dis-

ease resistance estimate) is suspect because
too few years of data are used.

For each standard cultivar data set, we
resampled the data set 1000 times across
different numbers of years beginning with
the maximum available (total years –1) and
decreasing to 2 years. We then fit a general-
ized linear mixed model to each subsampled
subset, in which the dependent variables were
the counts of uninfected and infected obser-
vations and the independent variables were
a random year and a random year · plant
interaction using the lmer function (lme4
package) from the R statistical computing
software (R Development Core Team, 2007).
The interaction term was added to account for
any additional effects that might influence the
estimate of the mean. We saved parameter
estimates from each fit so that we could
examine trends in the estimates as the number
of years in the model decreased. As a measure
of change, we calculated the mean square
error (variance + bias squared) for the mean
(the logit of the proportion of uninfected
observations). The bias is the difference
between the estimate for all years (the mean
for all data for that cultivar) and the average
estimate from models with 1 or more years of
data dropped. To determine whether the
variance estimate for total years differed
significantly from model-based estimates
from resampling, we asked ‘‘where in the
distribution of model-based variance esti-
mates from resampled data did the total years
estimate lie?,’’ i.e., was it in the bottom 5% or
above this value? Recall that the average
model-based variance estimate from resam-
pled data sets was always greater than the
total years estimate.

Weather variables. Several weather vari-
ables were evaluated as a likely source of year-
to-year variation in infection incidence. Avail-
able weather data included: daily minimum-,
maximum-, and mean- temperature, daily pre-
cipitation, and relative humidity (U.S. National
Oceanic and Atmospheric Administration).
Weather variables were assessed over the
period of 1 Jan. to 30 May (ordinal Days 1 to
150). Growing degree days [average of the
daily maximum and minimum temperatures
compared with a 7.2 �C (45 �F) base temper-
ature] were calculated from these data and
evaluated along with the weather variables.

Variables were grouped by 10-d incre-
ments (i.e., mean maximum temperature for
ordinal Days 1 to 10, ordinal Days 11 to 20,
and so on) because this produced the best
compromise between resolution and a mean-
ingful average (i.e., gave the highest pro-
portion of significant correlations). Five-d
and 20-d increments were also initially eval-
uated. For each of the cultivar standards, the
correlation between the mean disease inci-
dence (on both the logit and arcsine square
root-transformed scales) and each of the
weather variables for each 10-d increment
was calculated. If at least two cultivar stan-
dards had significant correlations with the
weather variable for that time period, we
investigated the relationship further by look-
ing at scatterplots of disease incidence versus

weather variable to verify that the correlation
was not the result of one or two outliers and
that the relationship between the weather
variable and other (nonsignificant) cultivars
was not grossly different. This analysis pro-
vided us with a pool of candidate regressors.
We then performed stepwise regression sep-
arately for each cultivar (evaluating both the
logit and arcsine square root-transformed
scales). The resulting model was inspected
and occasionally reduced to remove border-
line significant weather variables whose in-
fluence on R2 was slight. The typical result
was a model with one to three weather vari-
ables and an R2 above 0.5 using data trans-
formed with an arcsine square root variance
stabilizing transformation. The R2 value can
be interpreted as the proportion of year-to-
year variation that can be explained by the
weather model.

Comparison of variance decomposition
from cultivar and year. Variance decomposi-
tion was performed using the R lmer function
for the two disease phases using arcsine square
root-transformed data and weighting by the
square root of the sample size (to reduce the
influence of small samples). The sources of
variation in the model were cultivar, year,
cultivar · year, and plant-to-plant variation +
residual (sampling error and any other source
of variation not previously accounted). For
each cultivar, the part of the year-to-year
variation attributable to the regression weather
model is estimated by the weather model’s R2

value (see previous section).
Similarities between standards and cultivars

with fewer years of data. Some cultivars with
fewer years of data than the standards might
have yearly patterns similar to one or more of
the standards. For those with at least 3 years
of data in common with one of the standards,
we tested the correlation between the two.
We accepted any cultivar as being similar to
a standard in yearly pattern (although not
necessarily similar in average disease inci-
dence) if the correlation coefficient between
the two was statistically significant (P < 0.05)
and positive.

Results

Disease incidence in the standards. We
first analyzed the fruit infection results be-
cause this data set had more years of data
available. Preliminary line plots of fruit
disease incidence over years for the standards
were roughly parallel across some periods of
years, but shifted ranks in others, indicating
existence of a genotype–by-environment in-
teraction (Fig. 1). To determine the number
of years necessary to obtain reliable estimates
of percent disease, we used the data for six
cultivars over an 11- to 12-year period for
assessing incidence of fruit infection. The
analysis was conducted separately for each
cultivar. We present the results for ‘Atlantic’
(ATL) and ‘Northsky’ (NOS) as examples
(Fig. 2A–B).

For ATL, the 11-year estimate {all esti-
mates are on the logit scale; the logit scale is
log [p/(1 – p)], where p is the estimate of
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disease incidence} of the variance of the
mean is y = 0.13 (horizontal dotted line on
graph). This is the model ‘‘population’’ esti-
mate. The solid line gives the mean square
error (MSE). The figure also shows the sum
of the squared bias and the variance of
estimates of the mean from resampling. The
contribution of the squared bias is small. For
each number of years resampled, we also
plotted the average estimate of the variance
of the mean from modeling (each time we
resampled the data, we modeled it and
estimated the variance of the mean, then
averaged those estimates) referred to sub-
sequently as model estimates. Note that the
MSE from resampling for 4 or more years is
smaller than the model estimates for partial
years, as would be expected, because the
former is based on resampling a ‘‘population’’

of 11 years, whereas the latter is attempting to
estimate this parameter for an infinite pop-
ulation of years.

Several important results are shown in
Figure 2A. The curve of the MSE does not
flatten appreciably until �8 years of data are
available. With only 2 years of data, the
variance of the mean (often reported as its
square root, i.e., the SE of the mean) estimated
by the model is considerably smaller than the
estimate from resampling. Thus, with only 2
years of data, the SE of the mean from a model
estimate would be misleadingly small, which
would result in differences between cultivars
being assigned far too liberally. This was also
true for 3-year estimates for all standards,
except ATL.

The average of the model estimates for
partial years for ATL does not show any

indication that it has reached an asymptote at
10 years, so we assume an asymptote is still
several years beyond this. At 8 to 10 years,
the 11-year estimate was above the bottom
5% of the model estimates from resampling
(data not shown). At 7 years, the 11-year
estimate crossed into the bottom 5% (data not
shown), suggesting that 8 years is the mini-
mum number of years that can be used for
a reliable resistance estimate for this cultivar.
For less than 7 years, the distribution of the
model estimates of the variance from resam-
pling widens such that the 11-year estimate is
no longer found in the tail of the distribution.

The patterns for fruit infection in the
remaining five standards were very similar
to ATL, except for NOS, in which the
resampling variances for 2 or 3 years of data
were very large (Fig. 2B). For this cultivar,
only the variance estimates from resampling
are depicted for 2 and 3 years of data. The
model estimates are not shown; they were so
large as to be judged unreasonable (that is,
anyone analyzing these data would reject
those modeling results). This occurred be-
cause NOS is a resistant cultivar and there
were many infection-free plants; on the logit
scale, this value (one) gets pushed toward
infinity, so variance estimates of the mean are
inflated. For ‘Blueray’, the 12-year variance
estimate crossed into the tail of the model
estimates from resampling at 7 years (sug-
gesting a minimum of 8 years is necessary).
For ‘Rancocas’, the 12-year variance esti-
mate crossed into the 5% tail at 5 years (but
was below the 10% tail starting at 8 years).
For the two other cultivars (Bluejay and
Sierra), the distribution of the resampling
variance estimates never became sufficiently
narrow for the total years variance estimate to
fall into the tail.

Results for blighting were similar (not
shown) for the nine standards with 8 years of
data. Overall, variances tended to be larger

Fig. 1. Model estimates of fruit infection means (disease incidence, on logit scale) for six standard
cultivars, 1995 to 2007. The standard cultivars included Atlantic (ATL), Bluejay (BJA), Blueray
(BRA), Northsky (NOS), Rancocas (RAN), and Sierra (SIE).

Fig. 2. Estimates of the variance of the mean, the mean square error (MSE), the sum of the squared bias, and the variance of estimates of the mean from resampling
across 10 years for mummy berry disease incidence (on logit scale) in blueberry cultivars, (A) Atlantic and (B) Northsky. The mean estimate from modeling
the variance of the mean is also included for each number of resampled years. Note the relative magnitude of the y-axis scale. Mean model variance estimates
for ‘Northsky’ for 2 and 3 years are not depicted because they are so large.
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with the same gross underestimates of the
model-based variance of the mean with only
2 years of data. The larger variances showed
that resistance to shoot blight was more
variable over years than was fruit infection.
In only one cultivar, Sunrise, did the 8-year
variance estimate fall into a 10% tail for 5 and
fewer years (i.e., this would suggest that for
‘Sunrise’, 6 years of evaluation are sufficient
to estimate a variance based on 8 years of
data). The distributions of the resampling
variance estimates were generally wider for
these data than for the fruit disease incidence
data, so statistical power was low.

Predictive weather variables. Weather
variables were evaluated for possible corre-
lations with disease incidence for both shoot
blighting and fruit infection in each standard
cultivar. We give results for these models in
Tables 3 and 4, respectively. These models
show that disease incidence in the spring can
be well-predicted based on weather condi-
tions from earlier that same year, although
there are differences among the cultivar
models.

For shoot blighting (Table 3), the most
important predictors were precipitation
weather variables, either rain frequency, Pf

(on ordinal Days 91 to 100, i.e., end of March),
or average amount of precipitation, Pavg (on
ordinal Days 21 to 30, i.e., end of January)
based on arcsine square root-transformed
data. These models have high R2 values rang-
ing from 0.50 for ‘Toro’ to 0.95 for ‘Baldwin’
and ‘Sunrise’ and therefore should do a good
job predicting average disease incidence.
These values show a general trend of R2

being higher for more susceptible cultivars,
suggesting better predictability of disease
incidence in such cultivars. For mummy
berry fruit infection (Table 4), the common
predictive variable for all models is the
average maximum temperature across ordi-
nal Days 51 to 60 (late February). For fruit
infection, R2 values had less predictive value
than for shoot blight, ranging from 0.31 for
‘Atlantic’ to 0.76 for ‘Blueray’, and did
not show any trend with disease incidence
ranking.

Variance decomposition. The sources of
variation in the model were cultivar (geno-
type), year (environment), cultivar · year
(genotype · environment interaction), and
plant-to-plant variation + residual (sampling
error and any other source of variation not
previously considered) (Table 5). For each
cultivar, the year-to-year variation can be
further decomposed into that part resulting
from weather and that part resulting from
other year-to-year effects, because the R2

values in Tables 3 and 4 for each standard
estimates the ratio of variation explained by
the model (weather variables) to the total
year-to-year variation.

The variance component estimates for the
two disease phases were similar. The largest
variance component was that resulting from
the sum of plant-to-plant variation, sampling
error, and other unknown sources. Although
we did not separate the sampling error vari-
ance from other sources of variation for this

component, sampling error is readily calcu-
lated for each sample, because it depends
only on n, the size of the sample (number of
berries or shoots), and the parameter, p,
estimating disease incidence. It is small when
n > 100 and is likely responsible for less than
10% of this variance component for these
data, because n was typically greater than 50
(on the arcsine transformation scale, sam-
pling error variance is�0.005 for n = 50 with
a disease incidence of 50%). The cultivar
main effect is relatively small and, for both
phases of the disease, the cultivar · year
interaction was larger than either of the two
main effects (cultivar and year).

Ranking of standard cultivars for disease
incidence. The standards, with many years of
data, are ranked in Tables 1 and 2. Although
these rankings are based on arcsine square
root-transformed data, they are reported in
the table as percentages. SEs are slightly
larger for shoot blight data, because they
are based on fewer years than the fruit
infection. Because there were only a few
years of data on all other cultivars not used

as standards, a ranking of them would not be
stable. Cultivars with yearly patterns similar
to one of the standards are given in Tables 1
and 2.

Discussion

Our analysis of fruit disease incidence
in the standard cultivars over 11 years in-
dicated significant and large genotype–by-
environmental interactions. This means that
rankings of resistance (fruit infection) are not
stable from year to year and that the 2 or 3
years of data typically used for publication
are insufficient to reliably estimate disease
resistance. Because most cultivars are only
tested for 2 to 3 years, this could lead to erro-
neous rankings depending on which years
were sampled. There is a large body of
literature on the stability of crop yield, both
across locations and over years, and various
definitions of stability (Lin and Binns, 1991),
and our finding of a large cultivar-by-year
interaction is not uncommon, although we
measured disease incidence rather than yield.

Table 3. Predictive equations for Monilinia vaccinii-corymbosi shoot blight incidence based on weather
variables.z

Cultivar Equation Adjusted R2 F statistic P

Baldwin (RE)y y = 0.09 + 0.24 Pf + 0.88 Hmin 0.95 F2, 4 = 56.20 0.001
Bluejay (HB) y = 0.33 + 1.65 Pavg 0.59 F1, 4 = 8.05 0.047
Brightwell (RE) y = 0.17 + 0.29 Pf 0.86 F1, 5 = 37.09 0.002
Callaway (RE) y = 0.49 + 1.88 Pavg 0.58 F1, 5 = 9.26 0.029
Coastal (RE) y = 0.51 + 1.80 Pavg 0.72 F1, 5 = 16.69 0.009
Coville (HB) y = 0.10 + 0.28 Pf 0.76 F1, 6 = 23.54 0.003
Northblue (HH) y = 0.91 + 1.03 Hmin 0.92 F1, 5 = 74.72 <0.001
Sunrise (HB) y = –0.17 + 0.18 Pf + 2.72 Hmin

– 1.16 Havg

0.95 F3, 3 = 44.55 0.005

Toro (HB) y = 0.08 + 0.21 Pf 0.50 F1, 6 = 7.94 0.030
zThe dependent variable is the arcsine square root-transformed proportion of infected stems. The
independent variables are as follows: Pf = average rain frequency on ordinal Days 91 to 100, Hmin =
average minimum humidity on ordinal Days 1 to 10, Pavg = average amount of rain (cm) on ordinal Days 21
to 30, Havg = average of mean humidity on ordinal Days 41 to 50.
yRE = rabbiteye; HB = highbush; HH = half-high.

Table 4. Predictive equations for Monilinia vaccinii-corymbosi fruit infection incidence based on weather
variables.z

Cultivar Equation Adjusted R2 F statistic P

Atlantic (HB)y y = 0.85–0.24 Tmax 0.31 F1, 9 = 5.50 0.044
Bluejay (HB) y = 0.28–0.15 Tmax 0.50 F1, 9 = 11.09 0.009
Blueray (HB) y = 1.01–1.00 Tmax

+ 1.45 Pavg + 0.83 GDDavg

0.76 F3, 8 = 12.56 0.002

Northsky (HH)x y = –4.56–1.53 Tmax 0.51 F1, 6 = 8.24 0.028
Rancocas (HB) y = 0.46–0.29 Tmax 0.61 F1, 10 = 18.00 0.002
Sierra (HB) y = 0.69–0.42 Tmax 0.70 F1, 10 = 26.14 <0.001
zUnless otherwise noted, the dependent variable is the arcsine square root-transformed proportion of
infected berries. The independent variables are as follows: Tmax = average maximum air temperature on
ordinal Days 51 to 60, Pavg = average amount of rain (cm) on ordinal Days 51 to 60, GDDavg = average
growing degree days, with 7.2 �C (45 �F) as the lower cutoff on ordinal Days 51 to 60.
yHH = half-high; HB = highbush.
xLogit transformed, i.e., y = logit (p), where p = disease incidence.

Table 5. Sources of variation of Monilinia vaccinii-corymbosi fruit infection and shoot blight evaluations.

Source of variation
Fruit infection variance

component and (percent)
Shoot blight variance

component and (percent)

Cultivar 0.017 (5.4) 0.021 (4.7)
Year 0.037 (11.5) 0.048 (10.8)
Cultivar · year 0.075 (23.3) 0.126 (28.2)
Individual plant + sampling error 0.192 (59.8) 0.252 (56.3)
Total 0.321 (100.0) 0.447 (100.0)
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Our question differs from that commonly
asked in yield stability literature, because
we wanted to know how many years of data
would be necessary to obtain a good measure
of year–to-year variability rather than which
cultivar tends to produce similar yields over
various locations and years.

Our data show the curve of the MSE takes
several years to begin flattening, and even
with 11 years of data, the curves did not
flatten completely (this was true for all
standards). The results suggest that for culti-
vars that do not vary excessively from year to
year (i.e., the distribution of the model
variance estimates from resampling is not
too wide), 8 years of data are necessary for
a resistance estimate that is roughly as good
as an 11- or 12-year estimate and that fewer
years may produce unreliable estimates. This
assumes that the 8 years are a fair represen-
tation of all the years sampled in the in-
ference period. Our blight disease incidence
results showed larger variances over similar
time ranges; hence, it is likely that to reliably
evaluate resistance, more years of data would
be necessary than were used for fruit in-
fection estimates.

Because accumulating 8 or more years of
infection data on large numbers of cultivars is
not generally feasible, we sought to deter-
mine if weather data before and during
manifestation of the disease could be used
to help predict disease incidence occurring
that same year. We found the most important
predictor of blight to be either average
amount of precipitation at the end of January
or rain frequency at the end of March. The
most important predictor for fruit infection
was found to be the average maximum
temperature in late February.

We have shown that one or more weather
variables can be statistically linked to disease
incidence. Our models have high R2 values,
suggesting they should do a good job predict-
ing average incidence of the disease, but it
was unclear how these factors are actually
linked to disease incidence. Weather vari-
ables in the context of our screenings (except
perhaps temperature) were not directly
causal. Our plants and mummies were in
covered cold frames until early April so that
precipitation could not have had a direct
impact. However, precipitation often is ac-
companied by decreased light, increased
humidity, and increased soil moisture, and
any of these factors, not directly measured,
could influence some aspect of plant or
fungus physiology and the subsequent dis-

ease incidence. Thus, the weather variables
found useful in the modeling can be thought
of as proxies for the true variables that affect
infection.

For blighting, genetic effects among
pseudosclerotia affect the infection process.
Lehman and Oudemans (1997a) demon-
strated mummy berry populations from lo-
calized areas were influenced by natural
selection to adapt to better match the phenol-
ogy of their host plant population. Similarly,
fruit infection results from the interaction of
many factors. Lehman et al. (2007) suggest
differences in pollinator activity, attractive-
ness of cultivars to pollinators, and differ-
ences in cultivar phenology may all account
for environmental differences between years.

Variance decomposition indicated that,
for both phases of the disease, the cultivar ·
year interaction was larger than either main
effect. Thus, not only will overall disease
incidence (or pressure) and cultivar response
differ from year to year based on prevailing
weather conditions and other factors, but they
will not vary in a consistent manner.

Despite year-to-year variability, it is pos-
sible to group cultivars that respond similarly
to the established standards with the idea that,
by using the weather variable models derived
for each standard cultivar, we might now be
able to better understand the year-to-year
responses of these ‘‘similar cultivars.’’ Sim-
ilarity of response does not imply similarity
of resistance, but does imply that within the
years used for the comparison, these cultivars
ranked consistently above or below the stan-
dard with which they are grouped (i.e., had
a similar cultivar · year interaction). Thus, by
defining groups that share similar responses
to environmental factors (e.g., possibly
weather variables), we may be able to im-
prove predictions of disease incidence for
individual cultivars within these groups.
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