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Toward variances for X-11 seasonal adjustments 
William R. Bell and Matthew Kramer 1 

Abstract 
We develop an approach to estimating variances for X-11 seasonal adjustments that recognizes the effects of sampling error 
and errors from forecast extension. In our approach, seasonal adjustment error in the central values of a sufficiently long 
series results only from the effect of the X-11 filtering on the sampling errors. Towards either end of the series, we also 
recognize the contribution to seasonal adjustment error from forecast and backcast errors. We extend the approach to 
produce variances of errors in X-11 trend estimates, and to recognize error in estimation of regression coefficients used to 
model, e.g., calendar effects. In empirical results, the contribution of sampling error often dominated the seasonal 
adjustment variances. Trend estimate variances, however, showed large increases at the ends of series due to the effects of 
fore/backcast error. Nonstationarities in the sampling errors produced striking patterns in the seasonal adjustment and trend 
estimate variances. 
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1. Introduction  
The problem of how to obtain variances for seasonally 

adjusted data is long-standing (President’s Committee to 
Appraise Employment and Unemployment Statistics 1962). 
Model-based methods of seasonal adjustment (see Bell and 
Hillmer 1984, for a discussion) use results from signal 
extraction theory to produce estimates and associated error 
variances of the seasonal and nonseasonal components. 
Most official seasonal adjustments, however, are made 
using empirical methods, most notably X-11 (Shishkin, 
Young and Musgrave 1967) or X-11-ARIMA (Dagum 
1975). These methods are based on fixed filters, not models, 
and so it is not obvious how to calculate variances of the 
seasonal adjustment errors. Various approaches for 
obtaining variances for X-11 seasonal adjustments have 
been proposed, as summarized below. 

Wolter and Monsour (1981) suggested two approaches. 
They recognized that many time series that are seasonally 
adjusted are estimates from repeated sample surveys, and 
thus are subject to sampling error. Their first approach 
accounts only for the effect of sampling error on the 
variance associated with seasonal adjustments. Their second 
approach tries to also reflect uncertainty due to stochastic 
time series variation in the seasonal adjustment variances. 
However, this second approach assumes that, apart from 
regression terms, the time series is stationary. This type of 
model is now seldom used for seasonal time series. Also, 
their second approach contains a conceptual error: it 
produces the variance of the seasonally adjusted estimate, 
instead of the desired variance of the error in the seasonally 
adjusted estimate. 

Burridge and Wallis (1985) investigated use of the 
steady-state Kalman filter for calculation of model-based 
seasonal adjustment variances, and applied this approach to 

a model they obtained previously (Burridge and Wallis 
1984) for approximating the X-11 filters. They suggested 
that this approach could be used to, “provide measures of 
the variability of the X-11 method when it is applied to data 
for which it is optimal,” (page 551), but cautioned against 
doing this when the X-11 filter would be suboptimal (i.e., 
very different from the optimal model-based filter). 
Hausman and Watson (1985) suggested an approach to 
estimating the mean squared error for X-11 when it is used 
in suboptimal situations. Bell and Hillmer (1984, section 
4.3.4) pointed out a problem with the use of model-based 
approximations to X-11 for calculating seasonal adjustment 
variances. The problem is that X-11 filters (or any seasonal 
adjustment filter, for that matter) are not sufficient to 
uniquely determine models for the observed series and its 
components. 

Pfeffermann (1994) developed an approach that 
recognizes the contributions of sampling error and 
irregular variation (time series variation in the irregular 
component) to X-11 seasonal adjustment variances. The 
properties of the combined error (sampling error plus 
irregular) are estimated using the X-11 estimated 
irregular. These properties are then used to estimate two 
types of seasonal adjustment variances. A drawback to 
this approach is that it relies on an assumption that       
the X-11 adjustment filter annihilates the seasonal 
component and reproduces the trend component. (Note 
Pfeffermann (1994, page 90), discussion surrounding 
equation (2.7).) Violations of this assumption in practice 
compromise the approach to an extent which appears 
difficult to assess. Thus, this assumption seems to us 
highly questionable and also, in any particular case, 
uncheckable. A second drawback is that one of the 
variance types proposed by Pfeffermann assumes that the 
X-11 seasonally adjusted series, rather than the trend 
estimate, is taken as an estimate of the trend. Breidt 
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(1992) and Pfeffermann, Morry and Wong (1993) further 
develop Pfeffermann’s general approach. 

The goal of this paper is the development and application 
of an approach to obtaining variances for X-11 seasonal 
adjustments accounting for two sources of error. The first 
error source is sampling error. The second is error that arises 
from the need to extend the time series with forecasts and 
backcasts before applying the symmetric X-11filters. These 
latter errors lead to seasonal adjustment revisions (Pierce 
1980). Note that revisions eventually vanish as sufficient 
data beyond the time point being adjusted become available. 
Also note that a seasonally adjusted series will not contain 
sampling error if the corresponding unadjusted series does 
not. This is the case for certain economic time series, e.g., 
export and import statistics for most countries. 

Our approach assumes that the X-11 seasonal adjustment 
target (what we assume application of X-11 is intended to 
estimate) is what would result from application of the 
symmetric linear X-11 filter (with no forecast and backcast 
extension required) if the series contained no sampling 
error. While this definition of target might be criticized for 
ignoring time series variation in the underlying seasonal and 
nonseasonal components, we think this may be appropriate 
for typical users of X-11 seasonally adjusted data. Such 
users are most likely to be concerned about uncertainty 
reflected in differences between initial adjustments and final 
adjustments, i.e., in revisions. Some of these users will also 
be aware that the unadjusted series consists of sample-based 
estimates of the true underlying population quantities, and 
will realize that the effects of sampling error on adjustments 
should also be reflected in seasonal adjustment variances.  

Our development is based on use of the symmetric linear 
X-11 filters. We assume that the symmetric filters are 
applied to the series extended with minimum mean squared 
error forecasts and backcasts. In practice, the forecasts and 
backcasts are obtained from a fitted time series model. This 
is in the spirit of the X-11-ARIMA method of Dagum 
(1975), but with full forecast and backcast extension, as 
recommended by Geweke (1978), Pierce (1980), and 
Bobbitt and Otto (1990). Our results apply directly to the 
use of additive or log-additive X-11 (with forecast and 
backcast extension), and the log-additive results are 
assumed to apply approximately (Young 1968) to 
multiplicative X-11. 

Section 2 of this paper develops our approach, which 
builds on the first approach of Wolter and Monsour (1981). 
The differences between the two approaches are discussed 
in section 2.4. Section 3 then discusses three extensions to 
the results of section 2. The first is to note that our approach 
works equally well with seasonal, trend, or irregular 
estimates, and that more generality is easily accommodated 
by allowing different filter choices for different months. The 
second extension produces variances of estimates of 
month-to-month or year-to-year change. Finally, when 
seasonal adjustment involves estimation of regression 
effects (e.g., for trading-day or holiday variation), the results 

are extended to allow for additional variance due to error in 
estimating the regression parameters.  

Section 4 then presents several examples illustrating the 
basic approach and the extensions given in section 3. One 
thing evident from the examples is that for time series with 
sampling error, our seasonal adjustment variances will often 
be dominated by the contribution of the sampling error. In 
the center of the series, our results effectively reduce to the 
first approach results of Wolter and Monsour. Our results do 
differ from those of Wolter and Monsour near the end of the 
series. This is important since the most recent seasonally 
adjusted values receive the most scrutiny. Also, the 
contribution of forecast and backcast error to trend estimate 
variances can be very large at the ends of a time series. 
Other results of particular interest are the effects of certain 
nonstationarities in the sampling errors. The examples of 
section 4 show that nonstationarities such as sampling error 
variances that change over time, or periodic independent 
redrawings of the sample, can yield striking changes in the 
pattern of the variances of seasonally adjusted data or trend 
estimates over time.  

Section 5 provides concluding remarks.  
2. Methodology  

Define the observed unadjusted time series as ty  for 
1, ..., .t n=  Time series that are seasonally adjusted are 

often estimates obtained from repeated (monthly or quar-
terly) sample surveys, and thus can be viewed as composed 
of a true underlying time series ,tY  and a series of sampling 
errors te  assumed uncorrelated with .tY  (See Bell and 
Hillmer 1990.) In vector notation, ,o o o= +y Y e  where the 
subscript o  indicates that the time span of these vectors is 
the set of observed time points 1, ..., .n  In certain cases ty  
may arise from repeated censuses (as is typically the case 
for national export and import statistics, for example), in 
which case there is no sampling error, i.e., 0.te =  

The development that follows assumes that both tY  and 
te  follow known time series models. The model for tY  will 

generally involve differencing, as in ARIMA (auto-
regressive-integrated-moving average) and ARIMA com-
ponent (structural) models. The model for tY  may be 
extended to include regression terms. (This will be consi-
dered in section 3.3.) The series te  is assumed to not require 
differencing, but it may nonetheless exhibit certain nonsta-
tionarities, such as variances that change over time. Any 
such nonstationarities are assumed to be accounted for in the 
model for .te  In practice, the models will be developed 
from observed data, as is discussed by, e.g., Bell and 
Hillmer (1990, submitted), Binder and Dick (1989, 1990), 
and Tiller (1992). 

In applying a symmetric X-11 filter of length 2 1m +  for 
seasonal adjustment with full forecast and backcast exten-
sion, the vector oy  needs to be augmented by m  backcasts 
and m  forecasts. The vector holding the m  values               
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of ty  prior to the observed data, and the corresponding 
1m ×  vectors for ,tY  and ,te  are denoted , ,b by Y  and .be  

The analogous vectors of the m  future values of , ,t ty Y  and 
te  are denoted , ,f fy Y  and .fe  Thus, 

.
b b b

o o o

f f f

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟= +
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

y Y e
y Y e
y Y e

 (2.1) 

The full vectors in (2.1), hereafter denoted as , ,y Y  and ,e  
have length 2 .n m+  

The backcasts and forecasts used to augment oy  are 
assumed to be minimum mean squared error (MMSE) linear 
predictions of by  and fy  (using )oy  obtained from the 
known time series model. (In practice, the model will be 
fitted to the data .)oy  Under normality, the backcasts and 
forecasts are ( )b oE |y y  and ( ).f oE |y y  The vector of 
observed data augmented with the backcasts and forecasts is 
denoted ˆ ˆ ˆ( , , ) ,b o f′ ′ ′ ′=y y y y  where ˆ ( )b b oE= |y y y  and 
ˆ ( ).f f oE= |y y y  To simplify notation, from now on we 

will take expressions such as ˆ ˆ( , , )b o fy y y  to mean the 
column vector ˆ ˆ( , , ) .b o f′ ′ ′ ′y y y  

Let the linear symmetric X-11 seasonal adjustment filter 
be written ( ) ,jm

m jB B−∑ω = ω  where B  is the backshift 
operator and the jω  are the filter weights ( ).j j−ω = ω  
Calculation of the jω  is discussed by Young (1968) and 
Wallis (1982). Results of Bell and Monsell (1992) were 
used here. Application of ( )Bω  to the forecast and backcast 
extended series can be written as ˆ,yΩ  where Ω  is a matrix 
of dimension ( 2 ).n n m× +  Each row of Ω  contains the 
filter weights 0( , ..., , ..., ),m m−ω ω ω  preceded and followed 
by the appropriate number of zeroes such that the center 
weight of the X-11 filter 0( )ω  multiplies the observation 
being adjusted. Thus, in the first row of Ω  there are no 
preceding zeroes and 1n −  trailing zeroes, in the second 
row there is one preceding zero and 2n −  trailing zeroes, 
etc. For the default X-11 filter, m = 84. Choice of alter-
native seasonal or trend moving averages in X-11 changes 
the value of m  from a low of 70 to a high of 149. 

The question arises as to what ŷΩ  is estimating. As noted 
in the introduction, we define the “target” of the seasonal 
adjustment as the adjusted series that would result if there 
were no sampling error and there were sufficient data before 
and after all time points of interest for the symmetric filter to 
be applied. The target is thus ( ) ,tB Yω  or in vector notation 

,YΩ  and the seasonal adjustment error vector is =v  
ˆ( ).−Y yΩ  We are interested in the variance-covariance 

matrix var ( ) =v Ω var ˆ( ) .′−Y y Ω  This can be easily 
computed once var ˆ( )−Y y  is obtained. From here through 
section 2.3 we discuss the calculation of var ˆ( ).−Y y  

We start by writing ˆ ˆ( ) ( , , ) ,− = − − = −Y y y e y b 0 f e  where 
ˆb b= −b y y  is the 1m×  vector of backcast errors, and =f  

ˆf f−y y  is the 1m×  vector of forecast errors. Given the mod-
els for tY  and ,te  we calculate var ˆ( )−Y y  by separately com-
puting var( ), var( , , ),e b 0 f  and cov[( , , ), ],b 0 f e  as discussed in 
sections 2.1 to 2.3. Then, var ˆ( )−Y y  easily follows as 
var( , , ) var( ) cov[( , , ), ] cov[( , , ), ].′+ − −b 0 f e b 0 f e b 0 f e  Thus, 

var( ) {var( , , ) var( ) cov[( , , ), ]
cov[( , , ), ] } .

= + −
′ ′−

v  b 0 f e b 0 f e
b 0 f e

Ω
Ω

 

Example – U.S. 5+ Unit Housing Starts. As the computa-
tions for each piece of var ˆ( )−Y y  are explained, we 
illustrate the results graphically for an example series: 
housing starts in the U.S. for buildings of five or more units 
from January 1975 through November 1988 (167 observa-
tions). The original series, seasonally adjusted series, and 
estimated trend are shown in Figure 1. In practice, seasonal 
adjustment at the Census Bureau of this series uses a 
multiplicative decomposition with a 3 9×  seasonal moving 
average and a 13-term Henderson trend filter. The following 
model for this series was developed in Bell and Hillmer 
(submitted): 

12

2 12

2

2 2

(1 ) (1 )

(1 0.67 0.36 ) (1 0.8753 ) ,

0.0191

(1 0.11 0.10 ) , 0.00714.

t t t

t t

a

t t b

y Y e B B

Y B B B a

e B B b

= + − −

= − + −

σ =

= − − σ =

 

(2.2)

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
Figure 1 U.S. housing starts with five or more units. The top panel 

gives the original series from January 1975 through 
November 1988. The strong seasonality of the series is 
apparent from the yearly dips that typically occur during the 
winter months. The bottom panel gives the X-11 seasonally 
adjusted series (solid line) and trend estimate (dotted line) 
for the same period. The seasonal adjustment is multiplica-
tive using a 3 9×  seasonal moving average and 13-term 
Henderson trend filter 
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Here, ty  denotes the logarithms of the original time series 
( ),tye  so that (2.2) implies a multiplicative decomposition 
for the original series ( ).t t ty Y ee e e=   
2.1 Computation of var(e)  

If te  follows a stationary ARMA model, then var(e) can 
be computed from standard results, e.g., McLeod (1975, 
1977), Wilson (1979). If var ( )te  changes over time, we 
write ,t t te h e= �  where 2 var( ),t th e=  and te�  has variance 
one and the same autocorrelation function as .te  (See Bell 
and Hillmer submitted.) Then, writing ,=e He�  where 

1diag( , ..., ),m n mh h− +=H  we have var( ) var( ) .′=e H e H�  
Var ( )e�  is the autocorrelation matrix of ,e  and it can be 
computed as just noted using the model for .te�  

If the sample is independently redrawn at certain times, 
then var ( )e  will be block diagonal, with blocks correspon-
ding to the time points when each distinct sample is in 
effect. Each diagonal block of var ( )e  be computed as just 
discussed. These two types of nonstationarities in te −  
variance changing over time and “covariance breaks” due to 
independent redrawings of the sample – are those that arise 
in the examples of section 4.  
Example – U.S. 5+ Unit Housing Starts (continued).  Auto-
covariances for the MA(2) model for te  given in (2.2) are 
easily computed. The resulting var ( )e  is a band matrix, with 
var ( )te  = 0.007298 on the diagonal, cov 1( , )t te e − =  

0.000707−  on the first sub- and super-diagonals, and 
cov 2( , ) 0.000714t te e − = −  on the second sub- and super-
diagonals. The rest of var ( )e  is zero. Following pre- and 
post multiplication by the seasonal adjustment filter 
matrices Ω  and ′Ω  the contribution of the sampling error 
to the variance of the seasonally adjusted series is constant 
for each observation (Figure 2). This occurs because the 
result of a time invariant linear filter applied to a stationary 
series ( ( ) )tB eω  is a stationary series, which has a constant 
variance.    
2.2 Computation of var (b, 0, f )  
 

The central n  rows and n  columns of var ( , , )b 0 f  are 
all zeroes. We require computation of var ( ),b  var ( ),f  and 
cov ( , )b f  for the corner blocks of var ( , , ).b 0 f  Although 
computation of variances of forecast (or backcast) errors for 
given models is standard in time series analysis, it is compli-
cated here by the component representation of ty  as 

,t tY e+  and by differencing in the model for .tY  Although 
computations for such models are often handled by the 
Kalman filter (Bell and Hillmer submitted; Binder and Dick 
1989, 1990; Tiller 1992), this is inconvenient here since we 
require covariances of all distinct pairs of random variables 
from among the m  forecast and m  backcast errors. We 
instead use a direct matrix approach due to Bell and Hillmer 
(1988). 

Assume that the differencing operator required to render 
tY  stationary is ( ),Bδ  which is of degree .d  Since te  is 

assumed not to require differencing, ( )Bδ  is also the 

differencing operator required by .ty  Define ( ) ,t tB y wδ =  
thus ( ) ( ) .t t tw B Y B e= δ + δ  We introduce the matrix ,Δ  
corresponding to ( ),Bδ  defined such that =Δy w  is the 
vector of differenced .y  The vector ( , , ),b o f=w w w w  
which is of length 2 ,n m d+ −  is partitioned so that bw  
and fw  are 1m ×  vectors, and ow  is the n d−  vector of 
differenced observed data. Thus, Δ  has dimensions 
( 2 ) ( 2 ).n m d n m+ − × +  Note that, because d  observa-
tions are lost in differencing, bw  and ow  start d  time 
points later than by  and ,oy  respectively. That is, by  and 

oy  start at time points 1 m−  and 1, but bw  and ow  start at 
time points 1 m d− +  and 1.d +  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2 U.S. 5+ units housing starts: Variance decomposition after 

X-11 Seasonal Adjustment. The top panel gives the variance 
of the seasonally adjusted series as the total of the three 
components. The second panel give the contribution of 
sampling error (e), which is the largest component and 
constant across the series. The third panel gives the 
contribution of back/forecast error (b 0 f), which is zero in the 
middle of the series, where no back/forecasts are needed, but 
increases towards either end of the series as more 
back/forecasts are used. The bottom panel is the sum of the 
two covariance terms (cov(e, (b 0 f)) + cov((b 0 f), e)), which 
tend to offset the contribution from back/forecast error 
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Define 1( , ..., ) .m d n mu u− + + ′= =u ΔY  The time series 
tu  is stationary. Since ,= +w u Δe  with u  and e  un-

correlated with each other, var ( ) var( ) var( ) .′= +w u Δ e Δ  
We partition var ( )w  as 

11 12 13

21 22 23

31 32 33

var( ) ,
∑ ∑ ∑
∑ ∑ ∑
∑ ∑ ∑

⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠

w  

where 11∑  is var ( ),bw 12∑  is cov ( , ),b ow w  etc. 
Since ,y  when differenced to w  using ( ),Bδ  has lost 

d  data values, y  cannot be obtained from w  without also 
knowing a sequence of d  “starting values”. Consider 
obtaining fy  from fw  and starting values =*y  

1( , ..., ) .n d ny y+ − ′  Theorem 1 in Bell (1984a) can be used to 
show that  

*f f= +y Ay Cw  (2.3) 

for matrices A  and C  determined by ( ).Bδ  The rows of 
the m m×  matrix C consist of the coefficients of ( )Bξ =  

2 1
1 21 ( )B B B −+ ξ + ξ + = δ…  in the form 

1

2 1

1 2 1

1 0 0 0
1 0 0

C 0 0 .
1 0

1m m− −

⎛ ⎞
⎜ ⎟ξ⎜ ⎟

= ξ ξ⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟ξ ξ ξ⎝ ⎠

"

%
# # %

"

 

A  is an m d×  matrix which accounts for the effect of the 
d  starting values in *y  on .fy  The exact form of A  is 
given in Bell (1984a) and, since it will exactly cancel in our 
application, it will not be given here. In (2.3) *y  is known 
since it is part of ,oy  the observed data. Thus, from (2.3) the 
MMSE forecast of fy  is *ˆ ˆ ,f f= +y Ay Cw  where ˆ fw  is 
the MMSE forecast of .fw  Therefore, ˆf f= − =f y y  

* * ˆ ˆ( ) ( ),f f f f+ − + = −Ay Cw Ay Cw C w w  and var ( ) =f  
ˆvar( ) .f f ′−C w w C  

Under Assumption A of Bell (1984a), which leads to the 
standard results for forecasting nonstationary series (as in, 
e.g., Box and Jenkins 1976, Chapter 5), 1

32 22ˆ .f o
−= ∑ ∑w w  

Note that this uses only the differenced data ow  in 
forecasting .fw  Then, from standard results on linear pre-
diction, var 1

33 32 22 32ˆ( ) .f f
− ′− = −w w ∑ ∑ ∑ ∑  Thus, var ( ) =f  

1
33 32 22 32( ) .− ′ ′−C C∑ ∑ ∑ ∑  

To obtain var ( )b  and cov ( , )b f  we note that results 
obtained by Bell (1984a, page 651) imply similar calcu-
lations hold for the backcast errors .b  In fact, it can be 
shown that ˆ( 1) ( ),r

b b′= − −b C w w  where ˆ bw  is the 
MMSE backcast of ,bw  and r  is the number of times 
(1 )B−  appears in the polynomial ( ).Bδ  (The appearance 
of ′C  in this expression instead of C  stems from the 
indexing of bw  and ˆ bw  forward through time although the 
backcasting process proceeds backwards through time.) 
Thus, ˆvar( ) var( )b b′= −b C w w 1

11 12 22 12( ) .−′ ′= −C C C∑ ∑ ∑ ∑  
Similarly cov ( , ) ( 1)r= −f b 1

31 32 22 12( ) .−−C C∑ ∑ ∑ ∑  In 
practice, to avoid inverting 22,∑  var ( ),f  var ( ),b  and 

cov ( , )f b  can be computed using the Cholesky decom-
position of 22.∑  (See Appendix A.)   
Example – U.S. 5+ Unit Housing Starts (continued). The 
contribution to seasonal adjustment variance from 
var ( , , )b 0 f  is shown in Figure 2. This is zero or essentially 
zero for observations in the middle of the series, where no or 
few fore/backcasts need be made to apply the symmetric 
adjustment filter. Towards the ends of the series, the 
contribution of fore/backcast error becomes more substan-
tial since an increasing number of observations need to be 
fore/backcast to apply the filter. The jumps in the graph 
occur when an additional fore/backcasted observation is 
multiplied by a weight in the adjustment filter that is a 
multiple of the seasonal period, since these weights have the 
greatest magnitude (Bell and Monsell 1992). Note that the 
contributions from var ( , , )b 0 f  at the very ends of the 
series are smaller than the contributions from var ( ),e  but 
are not negligible.  
2.3 Computation of Cov[( ), ]b 0 f e   

To compute cov ( , ),f e  we first note from results of the 
preceding section that ˆ ˆ( ) (f f f f f= − = − = −f y y C w w C w  

1
32 22 )o

− =w∑ ∑ 1 1
32 22 32 22[0 ] [0 ]m m

− −|− | = |− |C I w C I∑ ∑ ∑ ∑ ∑  
.Δy  Since cov ( , ) cov( , ) 0 var( ),= + = +y e Y e e e  we see 

that 1
32 22cov( , ) [0 ] var( ).m

−= | − |f e C I Δ e∑ ∑  Cov ( , )b e  
is computed in an analogous fashion by noting that, =b  

ˆ( 1) ( )r
b b′− − =C w w 1

12 22( 1) ( ) ( 1)r r
b o

−′ ′− − = −C w w C∑ ∑  
1

12 22[ 0] ,m
−| − |I Δy∑ ∑  so that cov ( , ) ( 1)r ′= −b e C  
1

12 22[ 0] var( ).m
−| − |I Δ e∑ ∑   

Example – U.S. 5+ Unit Housing Starts (continued).  Figure 
2 shows that the contribution of cov[( , , ), ]b 0 f e  is zero or 
near zero in the middle of the series, but it becomes increas-
ingly negative towards the ends of the series, in a pattern 
similar, though opposite in sign and of smaller magnitude, to 
that of var ( , , ).b 0 f  At the very ends of the series, however, 
the pattern reverses and the covariance increases. The 
elements of cov[( , , ), ],b 0 f e  are mainly positive, so its 
contribution to the seasonal adjustment variance is negative 
because cov[( , , ), ]b 0 f e  and its transpose are subtracted 
from var ( ) var( , , ).+e b 0 f  The net effect is that subtracting 

{cov[( , , ), ] cov[( , , ), ] }′ ′+b 0 f e b 0 f eΩ Ω  tends to offset 
the effect of adding var( , , ) ′,b 0 fΩ Ω  except near the very 
ends of the series. Thus, the graph of the variances of the 
seasonally adjusted series in Figure 2 is very similar to the 
graph of the contribution of var ( ),e  except near the very 
ends of the series. We observed this type of “cancellation 
effect” in several other examples, including those of section 4.  
2.4 Comparison with the first approach of Wolter 

and Monsour  
The first approach of Wolter and Monsour (1981) pro-

posed use of var( )wm o wm′eΩ Ω  as the variance-covariance 
matrix of the X-11 seasonal adjustment errors, where wmΩ  
is an n n+  matrix whose rows contain the X-11 linear 
filter weights, both symmetric and asymmetric. That is, the 
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middle rows (rows t  such that 1,m t n m< < − +  
assuming 2 )n m>  of wmΩ  contain the X-11 symmetric 
filter weights, but the first and last m  rows of wmΩ  contain 
X-11’s asymmetric filter weights. The middle rows of wmΩ  
and Ω  thus contain the same filter weights, but the first and 
last m  rows do not. This means that our approach will give 
the same results as that of Wolter and Monsour for 

1,m t n m< < − +  that is, for time points at which the 
symmetric filter is being used. The results of the two 
approaches will differ for the first and last m  time points. 
Since the most recent seasonally adjusted data receive the 
most attention, this difference is potentially important. 

Wolter and Monsour also considered use of a matrix *Ω  
instead of wmΩ  where *Ω  is ( 12) ( 12)n n+ × +  to 
include 12 additional rows of weights corresponding to 
year-ahead seasonal adjustment filters. Though year-ahead 
adjustment was the common practice through the early 
1980s, it has now mostly been replaced in the United States 
by concurrent adjustment (McKenzie 1984). 

The differences between our approach and that of Wolter 
and Monsour can be viewed in two ways. One view is that 
since Wolter and Monsour did not consider forecast and 
backcast extension, their approach ignores the contribution 
of forecast and backcast errors to seasonal adjustment error. 
This contribution affects results for the first and last m  time 
points, although the examples of section 4 show that this 
contribution is often small. However, in some cases it is not 
small, including those time series not subject to sampling 
error. For such series Wolter and Monsour’s approach 
would assign zero variance to the adjustments, even though 
initial adjustments would be revised as new data became 
available. 

The other way to view the differences between the 
approaches centers on the difference in “targets”. The 
seasonal adjustment error under Wolter and Monsour’s 
approach can be thought of as ( ) .wm o o wm o− = −Y y eΩ Ω  
Since this results in zero error for series with no sampling 
error ( ),o o−Y y  Wolter and Monsour implicitly define the 
seasonal adjustment target to be .wm oYΩ  This definition of 
target has the undesirable property that the target value for a 
given time point changes as additional data are acquired, 
since the rows of wmΩ  contain different filter weights. Our 
target value for any given time point t  is always ( ) .tB Yω   
Example – U.S. 5+ Unit Housing Starts (continued). We 
compared results using our methodology with that of Wolter 
and Monsour’s using the default X-11 seasonal adjustment 
filter although, as noted earlier, this example series is 
adjusted using the optional 3 × 9 seasonal moving average 
filter. This comparison used the default filter for 
convenience: asymmetric X-11 filter weights are needed to 
obtain results for the Wolter-Monsour approach and we 
were given a computer program by Nash Monsour that 
produced them only for the default filter. Figure 3 gives the 
results for both approaches. The non-constant variances 
over time from the Wolter-Monsour approach result from 
applying different filters at different time points. An 

interesting consequence of this is that, despite the station-
arity of the sampling error, the Wolter-Monsour seasonal 
adjustment variance is noticeably higher in the middle of the 
series than for many time points toward (but not close to) 
either end of the series. This carries the implausible 
implication that use of less data produces estimators with 
lower variance. Similar behavior can be observed in several 
examples presented by Pfeffermann (1994). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   
 

Figure 3 U.S. 5+ units housing starts: Comparison with approach of 
Wolter and Monsour (1981). The panel descriptions are as for 
Figure 2. The Wolter and Monsour approach (dotted lines) 
uses the asymmetric X-11 filters for the ends of the series and 
accounts only for sampling error. Our approaches agree in the 
middle of the series where there is no contribution from 
back/forecast error. The Wolter and Monsour variances 
inappropriately decrease near the ends of the series, suggesting 
that use of less data produces estimates with lower variances. 
The results here, in contrast to Figures 1, 2, 4, 5, and 6, use 
default X-11 filters. (See text.) 
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The results from using the default X-11 seasonal adjust-
ment filter with our approach are also useful for comparing 
with the 3 × 9 seasonal moving average filter, for which 
results are given in Figure 2. Differences between results 
from using the two filters are not great. The contribution of 
the sampling error is somewhat lower and that of the 
fore/backcast error somewhat higher when using the default 
seasonal adjustment filter.  

3. Extensions to the methodology  
This section discusses three extensions to the general 

methodology of section 2. The first two extensions are 
straightforward, the third more involved.  
3.1 Variances for seasonal, trend, and irregular 

estimates; variances with time–Varying filters  
The only way the nonseasonal (seasonally adjusted) 

component is distinguished in the derivation of section 2 is 
through the filter weights placed in the matrix .Ω  There-
fore, corresponding variances for X-11 estimates of the 
seasonal, trend, and irregular components follow from the 
same expressions simply by changing the matrix Ω  to 
contain the desired filter weights. This also changes the 
dimension of ,Ω  since the length of the seasonal adjust-
ment, trend, and irregular filters (for given options) differs, 
and the filter length determines the size of .Ω  

A similar extension handles the case of different seasonal 
moving averages (MAs) selected for different months (or 
quarters), an option allowed by X-11. This changes the 
seasonal adjustment (and seasonal, trend, and irregular) 
filters applied in the different months. The results of section 
2 also accommodate this extension through a simple 
modification of .Ω  Since the rows of Ω  correspond to the 
time points being adjusted, we simply define row t  of Ω  to 
contain the weights (along with sufficient zeroes) from 
whatever filter is being applied in month .t  Some care must 
be taken to dimension Ω  appropriately if the longest 
selected MA is not used in the first and last months of the 
series.  
Example – U.S. 5+ Unit Housing Starts (continued). Figure 
4 shows the variance of the X-11 trend estimate, using the 
3 ×  9 seasonal MA and 13-term Henderson. The most 
obvious difference from the seasonal adjustment results is 
the substantial effect of fore/backcast error at the very ends 
of the series. This occurs because the largest weights of the 
trend filter ( )( ( ))T Bω  are the center weight ( )( )T

oω  and the 
adjacent weights ( ) ( ) ( )

1 2 3( , , )T T Tω ω ω  that are applied to data 
immediately before and after the observation being adjusted 
(Bell and Monsell 1992). At the very ends of the series, the 
weights ( ) ( ) ( )

1 2 3( , , )T T Tω ω ω  apply to fore/backcasted obser-
vations, which results in large increases in the contribution 
of fore/backcast error there. The result is that uncertainty 
about the trend increases sharply at the ends of the series. In 
the center of the series, however, the trend variances of 

Figure 4 are substantially lower than the seasonal adjust-
ment variances of Figure 3, due to the smoothing of the 
sampling error by the trend filter. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4 U.S. 5+ units housing starts: Variance decomposition of the 
trend estimate. The panel descriptions are as for Figure 2. 
Note the large jump in trend estimate variances at the ends 
of the series due to the contribution of back/forecast error 
(third panel)  

3.2 Variances for seasonally adjusted 
month-to-month and year-to-year changes  

The variances of the errors of the seasonally adjusted 
estimates of month-to-month change are the quantities 
var 1( ), 2, ..., .t tv v t n−− =  Given var ( ),v  the complete er-
ror covariance matrix for the seasonally adjusted month-to-
month changes can be calculated as 1 1var( ) ,′Δ v Δ  where  
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is of dimension ( 1) .n n− ×  The error covariance matrix for 
the seasonally adjusted year-to-year changes in a quarterly 
series is calculated similarly as 4 4var( ) ,′Δ v Δ  where 

4
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is of dimension ( 4) .n n− ×  The corresponding ( 12)n n− ×  
matrix 12Δ  for monthly series follows a similar pattern with 
additional zeroes. 

Variances of month-to-month or year-to-year changes in 
the trend are also easily obtained, as can be seen from this 
discussion and that of section 3.1.  
Example – U.S. 5+ Unit Housing Starts (continued). We 
produced the standard errors for seasonally adjusted month- 
to-month and year-to-year changes for this series (Figure 5). 
Since this time series has been log transformed, standard 
errors can be approximately interpreted as percentages on 
the original (unlogged) scale. Compared to the standard 
errors for the seasonally adjusted series, there are slight 
increases in the standard errors of the month-to-month 
changes near the ends of the series, but the standard errors 
of the year-to-year changes show almost no such increase. 
Thus, for this series and filter, the uncertainty about month- 
to-month and year-to-year percent change in the seasonally 
adjusted data is almost constant across the series. The 
standard errors of the month-to-month and year-to-year 
changes are both about 50 percent higher than those for the 
seasonally adjusted series.  
3.3 Variances of X-11 seasonal adjustments with 

estimated regression effects 
 

Seasonal adjustment often involves the estimation of 
certain regression effects to account for such things as 
calendar variation, known interventions, and outliers 
(Young 1965; Cleveland and Devlin 1982; Hillmer, Bell, 
and Tiao 1983; Findley, Monsell, Bell, Otto, and Chen 
submitted). (Outlier effects are often estimated in the same 
way as known interventions even though inference about 
outliers should ideally take account of the fact that the series 
was searched for the most “significant” outliers.) This 
section shows how the results already obtained can be 
extended to include the contribution to seasonal adjustment 
error of error in estimating regression parameters. We still 
assume the other model parameters, which determine the 
covariance structures of Y  and ,e  are known. In practice 
these other model parameters will also be estimated, but 

accounting for error in estimating them is much more 
difficult. A Bayesian approach for doing so in the context of 
model-based seasonal adjustment is investigated by Bell and 
Otto (submitted). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 

Figure 5 U.S. 5+ Units housing starts: Standard errors. These panels 
contrast the standard errors (not variances, as in previous 
figures) of the seasonally adjusted data (top panel) with the 
larger standard errors of seasonally adjusted month-to-
month (middle panel) and year-to-year (bottom panel) 
change estimates 

 
We extend the model for tY  to include regression terms 

by writing ,t t tY x Z′= β +  where x t  is the vector of 
regression variables at time ,t β  is the vector of regression 
parameters, and tZ  is the series of true population quantities 
with regression effects removed. Extending our matrix-
vector notation, we write , o o= β+ = β+Y X Z Y X ,oZ  etc. 
The regression matrix X  can be partitioned by its rows 
corresponding to the backcast, observation, and forecast 
periods: ( ) .b o f′ ′ ′ ′= | |X X XX  We assume te  has mean zero, 
so its model does not involve any regression effects. We 
then have ( ) ,= + = β + +y Y e X Z e  with the usual 
partitioning applying. Letting tz  denote the series ty  with 
the regression effects removed, we have = −z y β =X  

.+Z e  
An additional partition is needed of the matrix X  and 

vector .β  This is because some of the regression effects in 
t′βx  may be assigned to the nonseasonal component while 
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others, such as trading-day or holiday effects, may be 
removed as part of the seasonal adjustment. See Bell 
(1984b) for a discussion. Partition t′x  as ( )St Nt′ ′|x x  where 

Ntx  represents the regression variables assigned to the non-
seasonal and Stx  the variables whose effects are to be 
removed in the seasonal adjustment. Correspondingly 
partition β  so t St S Nt N′ ′ ′β = β + βx x x  and S Sβ = β +X X  

N Nβ =X ( ) ( ) .S N S N′ ′ ′| β | βX X ( St Sβx  is assigned to the 
“combined” seasonal component.) The matrix X  can thus 
be partitioned two ways: by seasonal versus nonseasonal 
regression effects, and by the backcast, observation, and 
forecast periods. Thus we write  

.
Sb Nb

So No

Sf Nf

⎡ ⎤
⎢ ⎥=
⎢ ⎥
⎢ ⎥⎣ ⎦

X X
X X X

X X
 

If β  were known we could compute o o o= − β =z y X  
,o o+Z e  forecast and backcast extend this series (call the 

extended series ˆ),z  adjust ẑ  by X-11 ˆ( ),zΩ  and add back 
the required regression effects .No NoβX  The target of the 
seasonal adjustment would be No No No Noβ + = β +X Z XΩ  

( ),− βY XΩ  and the seasonal adjustment error would then 
be ˆ ˆ( ) ( ) ( ).No No No Noβ + − β + = −X Z X z Z zΩ Ω Ω  Thus, 
if the regression parameters were known they would not 
contribute to the seasonal adjustment error, and the results 
already given could be used to compute ˆvar( ( )).−Z zΩ  

In practice, β  will be estimated as part of the model 
fitting, say by maximum likelihood assuming normality. 
Given the estimates of the other model parameters, and 
taking these parameters as if they were known, the maxi-
mum likelihood estimate of β  and its variance are given by  

1 1 1
22 0 22

ˆ [ ]o o o o o o o
− − −′ ′ ′ ′β = X Δ Δ X X Δ Δ y∑ ∑  (3.1) 

1 1
22 0

ˆvar( ) [ ] ,o o o
− −′ ′β = X Δ Δ X∑  (3.2) 

where oΔ  is of dimension ( ) ,n d n− ×  containing that part 
of the larger matrix Δ  which differences the observed series 

.oy  The expressions (3.1) and (3.2) are generalized least 
squares results using the regression equation for the 
differenced data, ( ) ( ),o o o o o= = β+ +w Δy ΔX u Δe  where 
the error term, ,o o+u Δe  has covariance matrix var( )o =w  

22,∑  which is determined by the other model parameters. 
Given the estimated regression parameters ˆ,β  the 

seasonally adjusted series would be obtained by subtracting 
the estimated regression effects from the data (call the 
resulting series ˆˆ ),o o o= − βz y X  extending this series with 
forecasts and backcasts using the model (denote this 
extended series ˆ ˆ ˆ ˆ[ , , ]),ˆ ˆ ˆ ˆb o f=z z z z  applying X-11 to the 
extended series ˆ( ),ẑΩ  and adding back the estimated 
regression effects assigned to the nonseasonal component 

ˆ ˆ( ).ˆ No No+ βz XΩ  The target of the seasonal adjustment is 
still ,No Noβ +X ZΩ  discussed above. The seasonal adjust-
ment error is then ( )No No= β + −v X ZΩ ˆ ˆ( )ˆ No No+ β =z XΩ  

ˆˆ( ) ( ).ˆNo No Noβ − β + −X Z zΩ  

The expression for v  can be simplified by rewriting ˆ.ẑ  
First, let [ ] ,′ ′ ′= | |G B I F  where F  is the matrix that 
produces forecasts ˆ fy  from oy  and B  is the corresponding 
matrix that produces backcasts ˆ by  from .oy  We will not 
need explicit expressions for F  or .B G  applied to oz  
produces ẑ  while G  applied to ˆ̂

oz  produces ˆ.ẑ  Therefore, 
ˆ ˆ( )ˆ ˆ ˆ ˆ ˆ= − − = −z z z z z ˆ[ ( ) ( )]o o o o− β − − β =G y X G y X  

ˆˆ ( ).o+ β − βz GX  Note that oGX  is obtained by applying 
the procedure for forecast and backcast extension (from the 
model for )tz  to each column of .oX  The approach we 
used to do this is described in Appendix B. Continuing, we 
have 

ˆ ˆˆ( ) [( ) ( )]

ˆˆ( ) {[ ] }( ).

No No No o

No o

= β − β + − − β − β

= − + | − β − β

v X Z z GX

Z z 0 X GX

Ω

Ω Ω
 

Now, ˆ ˆ [ ] .− = − − = | | −Z z z e z b 0 f e  Note that 
[ ],| |b 0 f  the error vector from projecting z  on oz  or ,oy  
is orthogonal to (uncorrelated with) ˆ,β − β  since β̂  is a 
linear function of the data .oy  Therefore, letting =K  
[ ] ,No o| −0 X GXΩ  we have the variance-covariance matrix 
of the seasonal adjustment error allowing for error in 
estimating :β  

ˆˆvar( ) var( ) var( )

ˆ ˆcov( , ) cov( , )

′ ′= − + β

′ ′+ β + β

v Z z K K

e K K e

Ω Ω

Ω Ω
 

(3.3)
 

where ˆvar( )β  is given by (3.2). In (3.3) ˆvar( ) ′−Z zΩ Ω  is 
computed by the results of section 2, and computation of 

ˆvar( ) ′βK K  is straightforward once oGX  has been 
computed. To compute the other two terms requires 

1 1 1
22 22

1 1 1
22 22

1 1
22

1
22

ˆcov( , )

cov([ ] , )

cov([ ] [ ], )

[ ]

[ ]var( ).

o o o o o o o o

o o o o o oo o o o

o o o o

o o o n m n n n m

− − −

− − −

− −

−
× × ×

β

′ ′ ′ ′=

′ ′ ′ ′= +

′ ′=

′ ′ | |

e

X Δ Δ X X Δ Δ y e

X Δ Δ X X Δ u Δ e e

X Δ Δ X

X Δ Δ 0 I 0 e

∑ ∑

∑ ∑

∑

∑

 

(3.4)

 

Note that [ ]var( ) [cov( , ) var( )n m n n n m o b o× × ×| | = | |0 I 0 e e e e  
cov( , )]o fe e  is the middle n  rows of var( ).e  Using (3.4) 
and the aforementioned results, (3.3) can be computed. We 
can compare the resulting diagonal elements of var( )v  with 
those of the sum of the last three terms in (3.3), to see if 
allowing for the error due to estimating the regression 
parameters is important. 

There is an important qualification to make about the 
results of this section. Since the first term on the right hand 
side of (3.3), ˆvar( ) ,′−Z zΩ Ω  is the seasonal adjustment 
variance we would get by ignoring error in estimating the 
regression parameters, it is tempting to interpret the sum of 
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the last three terms in (3.3) as the contribution to seasonal 
adjustment variance of error due to estimating regression 
parameters. Unfortunately, this sum is not itself a variance 
(it can in fact be written as ˆvar( β ) var( )),+ −K e eΩ Ω  and 
so it can actually be negative. When this happens the 
seasonal adjustment variances that allow for error due to 
estimating regression parameters are actually lower than 
those that ignore this error. We were in fact able to achieve 
such a result by artificially modifying model parameters in 
the following example with trading-day variables (though, 
as in the results shown, the effects were quite small). This 
situation contrasts with comparable results for model-based 
approaches which express the seasonal adjustment error as 
the sum of two orthogonal terms: the error when all para-
meters are known, plus the contribution to error from esti-
mating regression parameters. The seasonal adjustment 
variance in this case is thus the sum of the variances of these 
two terms, and so the “regression contribution” is always 
nonnegative. This result is analogous to ˆvar( ) ′− +Z zΩ Ω  

ˆvar( ) ′βK K  in (3.3). The problem in (3.3) is that the X-11 
estimate zΩ  is not an optimal (MMSE) estimator of the 
target ,ZΩ  hence the error ˆ( )−Z zΩ  is correlated with β̂  
through the sampling error ,e  leading to the two covariance 
terms in (3.3). This situation results partly from our choice 
of target ( )β +X ZΩ  and partly from the fact that X-11 
cannot be assumed to produce an optimal estimator of 
anything (note comments related to this in the Introduction).  
Example – U.S. 5+ Unit Housing Starts (continued). We use 
the same example to illustrate the contribution to seasonal 
adjustment error of adding trading-day variables (Bell and 
Hillmer 1983), although the corresponding regression coef-
ficients were not statistically significant when estimated 
with this series. Figure 6a shows the results. In this illus-
tration, the lowest line is the “contribution” to the seasonal 
adjustment variance from estimating the trading-day effects 
(but see remarks above). When added to the original esti-
mate of variance (dotted line), we obtain the variance of the 
seasonally and trading-day adjusted series, allowing for 
error in estimating the trading-day coefficients (top solid 
line). We see that, for this example, the increase in variance 
due to including estimated trading-day effects in the model 
is slight. Figure 6b gives results for the trend filter. Here the 
contribution to trend uncertainty due to estimating the 
trading-day coefficients is certainly negligible. 

The contribution to seasonal adjustment variance of 
adding three additive outlier variables and one level shift 
variable is illustrated in Figure 6c. These regression 
variables were identified as potential outlier effects using 
the Regarima program (produced by the Time Series Staff at 
the U.S. Census Bureau) with a critical t-statistic of 2.5. 
Regarima uses an outlier detection methodology similar to 
those discussed in Bell (1983) and Chang, Tiao, and Chen 
(1988). The contributions of the additive outliers appear as 
three spikes while that of the level shift is a single smaller 
hump in the middle of the series. In comparison to the 
trading-day regression variables, the effect of these outlier 

variables is mainly local but much stronger. In particular, 
there is additional uncertainty about seasonal adjustments 
for observations considered additive outliers. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6 U.S. 5+ Units housing starts: Including the “Contribution” 
from regression effects in the variance estimates. The top 
panel shows both the original variances from the first panel of 
Figure 2 (dotted curve) and the variances allowing for addi-
tional uncertainty due to estimating trading-day regression 
effects (top solid curve). The regression contribution is also 
shown (bottom solid curve). The second panel shows the 
corresponding results for the variances of the trend estimates. 
Note that the regression contribution to the seasonal 
adjustment variances is small, and to the trend estimate 
variances it is essentially zero. The third and fourth panels 
show analogous results when the trading-day regression 
effects are replaced by three additive outliers and a level shift. 
Notice that these have important local effects on the seasonal 
adjustment and trend estimate variances 
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Results for the trend filter (Figure 6d) differ in that 
uncertainty is much greater around the observation where a 
level shift was detected, which approaches the level of 
uncertainty at the ends of the series. A level shift is 
considered part of the trend, so an estimated level shift 
effect would first be subtracted from the series (in ˆ),βX  and 
then added back following application of the X-11 trend 
filter. (This is analogous to the treatment of regression 
effects assigned to the nonseasonal or seasonal components 
in seasonal adjustment as discussed above.) In contrast, 
since both additive outliers and level shifts are considered 
part of the nonseasonal component, all four effects were 
added back as part of the seasonal adjustment when 
producing results for Figures 6a and 6b. 

Actually, these sorts of results for outliers should only be 
regarded as crude approximations, since they treat the time 
of occurrence and types of outliers as known, leaving only 
the magnitude of the effects to be estimated. Ideally, one 
would like to recognize that the series was searched for 
significant outliers, but this is much more difficult.  

4. Examples  
We illustrate our approach using several additional 

economic time series whose sampling errors follow differ-
ent models. The models used for these example series are 
taken from previous work as noted.  
4.1 Retail sales of department stores  

Department store sales are estimated in the Census 
Bureau’s monthly retail trade survey. Essentially all sales 
come from department store chains, all of which are 
included in the survey, hence, there is virtually no sampling 
error in the estimates. Thus, the variance of the X-11 
seasonal adjustment comes only from fore/backcast error 
and from error in estimating regression effects. (Note that 
the Wolter-Monsour seasonal adjustment variance would be 
zero for this series.) The model used for this series (Bell and 
Wilcox 1993), for the period August 1972 through March 
1989 for the logs of the observations, is 12(1 )(1 )B B− −  

12[ ] (1 0.53 )(1 0.52 )t t tY x B B a′− β = − −  with 2 44.32 10 ,a
−σ = ×  

where x t  includes variables to account for trading-day and 
Easter holiday effects, and t tY y=  is the log of the original 
series divided by length-of-month factors. In adjusting the 
series at the Census Bureau, the default X-11 adjustment 
filter and 13-term Henderson trend filter are used. 

Figure 7a shows the standard errors for the seasonally 
adjusted data over time, with and without the contribution of 
regression effects. Unlike the 5+ units housing starts series, 
there are marked increases in the standard errors of 
seasonally adjusted data at the ends of series, due entirely to 
fore/backcast error. The contribution to the standard error 
due to estimating regression effects is also more pronounced 
for this series. An interesting feature in Figure 7 is the sets 
of small downward projecting spikes that occur one year 

apart in triplets. These occur at non-leap year Februaries, for 
which there is no trading-day effect (the trading-day 
regression variables are all zero). There is still a small 
regression contribution to seasonal adjustment error at these 
time points since the adjustment averages in these 
contributions from adjacent time points. (Dips at non-leap 
year Februaries are also visible on close inspection of Figure 
6a.) In addition, for some years, the error in estimating the 
Easter effect produces a noticeable upward projecting spike 
involving the two months March and April. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 

Figure 7 U.S. Department stores, with trading-day and easter effects. 
This series has no sampling error. The four panels give 
standard errors with and without the contribution from 
estimating regression effects. For the seasonally adjusted data 
and corresponding month-to-month and year-to-year changes 
(first three panels), the “contribution” from estimating regres-
sion effects is substantial and erratic in the middle of the 
series (where it is the sole contributor) but, at either end, 
diminishes for reasons explained in the text. The regression 
contribution to the trend estimate standard errors is small 
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The regression relative contribution to the seasonal 
adjustment standard errors diminishes towards the ends of 
the series. This results from two factors: (1) the magnitude 
of the regression contribution to var( )tv  decreases 
somewhat towards the ends of the series, and, more impor-
tantly, (2) ˆvar( )t tZ Z−  increases dramatically towards the 
ends of the series, diminishing the relative contribution to 
var( )tv  due to regression (and this is further accentuated 
when square roots are taken).  

The pattern of the standard errors of seasonally adjusted 
month-to-month changes (Figure 7b) is similar to that for 
the standard error of the seasonally adjusted data (Figure 
7a). The regression contribution is slightly larger than it is 
for the seasonally adjusted data. Standard errors of year-to- 
year changes (Figure 7c) follow similar patterns but the 
regression contribution is considerably larger than it is for 
the month-to-month changes, and it remains important at the 
ends of the series. 

A similar set of calculations was performed using the 
default X-11 trend filter, and results for the standard errors 
of the trend estimates, with and without the regression 
contribution, are depicted in Figure 7d. The patterns over 
time of these standard errors are similar to the correspon-
ding figures for the 5+ units housing starts series, but the 
standard errors are much smaller due to the absence of 
sampling error. The regression contribution is small.  

The standard errors for all plots in Figure 7 are small –
none exceed 0.8 percent. For this series, the regression 
contribution is small and probably ignorable near the very 
ends of the series, for all but the year-to-year changes. 
However, in the middle of the series, the sole contributor to 
standard errors is that due to the regression effects.  
4.2 Teenage unemployment  

The Bureau of Labor Statistics (BLS) publishes the 
monthly time series of number of U.S. unemployed teen-
agers estimated from the Current Population Survey (CPS). 
Data from January 1972 to December 1983 (n = 144) were 
used by Bell and Hillmer (submitted) to develop a model for 
this series. The sampling error variance 2

th  changes over 
time, so is nonstationary. The sampling error model they 
developed is  

t t te h e= �  where (1 0.6 ) (1 0.3 ) ,t tB e B b− = −�  (4.1) 

with 2
bσ = 0.87671 so that var( )te =� 1. CPS sampling error 

variances can be approximated by generalized variance 
functions (Wolter 1985, Chapter 5; Hanson 1968). The 
generalized variance function Bell and Hillmer used for the 
teenage unemployment series is 

2 5 21.971 (1.53 10 ) ,t t th y y−= − ×  (4.2) 

where ty  is the estimate of the number in thousands of 
unemployed teenagers at time .t  The estimated model for 
the signal component tY  is 

12 12(1 ) (1 ) (1 0.27 ) (1 0.68 ) ,t tB B Y B B a− − = − −  (4.3) 

with 2
aσ = 4,294. There are no regression effects in the 

model and the series is not transformed. BLS uses the 
default X-11 seasonal adjustment filter (so m = 84). 

In applying the methods of this paper to this example, 
problems arise from the fact that the (estimated) sampling 
error variance 2

th  depends on the estimate ty  through the 
generalized variance function (4.2). In the backcast and 
forecast periods ty  is unknown. To obtain 2

th  in these 
periods we forecast and backcast ty  using a simple 
ARIMA(0 1 1)(0 1 1)12 model for ty  (not for ,tY  as in 
(4.3)). The resulting 84 forecasts and backcasts were then 
used in (4.2) to produce 2

th  in the forecast and backcast 
periods. More refined treatments are possible, such as using 
the component model given by (4.1) and (4.3) to forecast .ty  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8 Teenage unemployment, with default X-11 options. The 

panel descriptions are as for Figure 2. The seasonal pattern of 
the sampling error variance contribution (second panel) 
results from its dependence on the level of the series through 
a generalized variance function (see text)  

The seasonal adjustment variance for this series (Figure 
8a) is dominated at most times t  by the sampling error 
contribution (Figure 8b). This is because, while the contri-
bution of var( , , )b 0 f  is substantial for this series (Figure 8c), 
it tends to be offset by the contribution of cov[( , , ), ] +b 0 f e  
cov[( , , ), ]′b 0 f e  (Figure 8d), except at the first and last   
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few time points. The patterns of variances of seasonally 
adjusted month-to-month changes and year-to-year changes 
(not shown) are similar to that of Figure 8a. The variances of 
the month-to-month changes are slightly larger than those of 
the adjusted series, those of the year-to-year changes are 
larger still.  
4.3 Retail sales of drinking places  

Retail sales of drinking places are estimated in the 
Census Bureau’s monthly retail trade survey. In this survey, 
(noncertainty) sample cases are independently redrawn 
approximately every 5 years, so the covariance matrix of the 
sampling errors is block diagonal. Bell and Hillmer (1990) 
developed the following model for the sampling error of the 
logged series within a given sample: 

3 4 12(1 0.75 0.66 0.50 ) (1 0.71 )

(1 0.13 ) ,

t

t

B B B B e

B b

− − + −

= +
 
(4.4)

 

with 2 59.301 10 .b
−σ = ×  For time points t  and j  in 

different samples, cov( , ) 0.t je e =  Bell and Hillmer 
developed a model for the signal component of the logged 
series using unbenchmarked estimates from September 
1977 to December 1986.  We shall instead use the following 
model fit by Bell and Wilcox (1993) using additional data 
through October 1989: 

12 12(1 ) (1 )[ ] (1 0.23 )(1 0.88 ) ,t t tB B Y X B B a′− − − β = − −  

where tX  contains trading-day regression variables, and 
2 44.16 10 .a

−σ = ×  
In seasonally adjusting this series, the default X-11 filters 

are used. The contribution of error due to estimating 
regression parameters is small for this series, and so is not 
included in the results to follow. Since the contribution of 
sampling error overwhelms the contributions from 
fore/backcast error and cov[( , , ), ] cov[( , , ), ] ,′+b 0 f e b 0 f e  
we also do not illustrate these separate variance contri-
butions. Figure 9a gives the standard error of the seasonally 
adjusted data (shown over 232 observations to better 
illustrate the pattern, with vertical lines indicating sample 
redraws) and Figure 9b the standard error of seasonally 
adjusted month-to-month changes.  

Note the strong pattern in Figure 9a, b due to the 
redrawing of the sample every five years. In particular, this 
produces a large spike in the standard error of seasonally 
adjusted month-to-month changes (Figure 9b) when the 
sample is redrawn. Similar jumps in standard deviations of 
year-to-year changes occur for the first year of a new 
sample. We also found similar patterns for other series from 
the retail trade survey using models from Bell and Wilcox 
(1993).  

The preceding discussion and results ignored certain 
aspects of how estimation for the retail trade survey is 
actually carried out. In fact, to avoid large increases in 

variances of change estimates around the sample redraw, 
such as those reflected in Figure 9b, simple modifications are 
made to estimates in a newly introduced sample to make 
their level consistent with that from the old sample. The 
simplest version of the modification is as follows. Let 

(old) t (old ) t( exp( ))z y=  denote estimates from the old sample, 
and (new) tz  unmodified estimates from the new sample. 
Assume that the old sample provides estimates for ,t ≤ τ  
and that the new sample is to provide estimates for .t > τ  
To provide overlap data for the modification, the new sample 
is begun one month early, so that both (old)z τ  and (new)z τ  are 
available. The modified new sample estimates are defined as 

(new) t (new) t (old) (new)( / )z z z zτ τ′ =  for .t ≥ τ  This modification 
is carried out each time a new sample is introduced. In terms 
of the corresponding logged estimates ,ty  the modification 
is (new) t (new) t (old) (new)( ).y y y yτ τ′ = + −  Since the modification to 

ty  is linear, it is easy to account for its effects on the 
seasonal adjustment variance calculations here. The month-
to-month change at time 1τ +  before the modification (and 
without seasonal adjustment) is (new) 1 (old) .y yτ+ τ−  Note that 
this change has a large variance since (new) 1y τ+  and (old)y τ  
come from different, independent samples. After modifica-
tion, this change is (new) 1y τ+ − (new) ,y τ  which has a much 
lower variance due to strong positive correlation between 

(new) 1y τ+  and (new)y τ  (arising from the the sampling error 
model (4.4)). Unadjusted month-to-month change estimates 
for time points other than 1τ +  are unaltered by the 
modification. 

Figure 9d shows that modifying new sample estimates 
eliminates the large increases in the standard deviation of 
seasonally adjusted month-to-month changes at the transi-
tions to new samples. Similar effects were seen for 
year-to-year changes over a one year period. The price paid 
for this improvement is a steadily increasing error in the 
level estimates (Figure 9c) following introduction of new 
samples. This occurs because the modification introduces a 
transient error into the level estimates that persists 
throughout the new sample. Thus, the modification trades 
off worse accuracy of level estimates for improvements in 
change estimates. (Figure 9c shows no increase for the first 
five years because we assume the estimates there are not 
modified to agree with those from a previous sample.) 
Moreover, the strong patterns in Figure 9a occur because the 
sampling errors from unmodified estimates in adjacent 
samples are uncorrelated. On the other hand, sampling 
errors in the modified estimates are fairly strongly correlated 
between adjacent samples. The effect of this, after applying 
the seasonal adjustment filter, is a much different pattern 
(almost no pattern) in the first five years of Figure 9c, and 
slight oscillations around the linear increase thereafter. 

The standard errors for the X-11 trend estimates and 
changes (not shown) look like smoothed versions of those 
shown in Figure 9.  

In practice, final estimates from the retail trade survey are 
even more complicated than what was just described        
and  illustrated.  First,  more  than one month of overlapping  
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Figure 9 Retail sales of drinking places: Samples redrawn every five 
years. The top panel shows the standard error of the 
seasonally adjusted data and the second panel the standard 
error of the corresponding month-to-month changes. The 
strong pattern results from independently drawing a new 
sample every five years (at the dotted vertical lines). For 
month-to-month changes, this produces large increases in 
standard errors at the time of the sample redraw. To eliminate 
this problem, a new sample is drawn to overlap with the 
previous sample for one or more months and the new 
sample’s estimates are modified using data from the overlap 
to make them consistent in level with estimates from the 
previous sample (see text). This eliminates the increases in 
standard errors of change estimates when the sample is 
redrawn (fourth panel), but introduces a transient error into 
the modified level estimates, whose effects accumulate over 
time (third panel)  

data are collected and may be used to modify level estimates 
when a new sample is introduced. More importantly, 
monthly estimates are benchmarked to agree with annual 
totals obtained from the more accurate annual retail trade 
survey or five year economic census. Benchmarking should 

thus alleviate the problem of level variances increasing over  
time seen in Figure 9c. However, since benchmarking 
imposes linear sum constraints on the original (unlogged) 
estimates, its effects on seasonal adjustment variances are 
difficult to investigate under the approach developed here, 
and we have not done so. (We have used a model for 
unbenchmarked data to avoid this problem.)  Durbin and 
Quenneville (1995) develop a model-based approach to 
benchmarking that accounts for the nonlinearities that such 
benchmark constraints impose on logged data.    

5. Conclusions 
 

This paper presented an approach to the long-standing 
problem of obtaining variances for X-11 seasonal adjust-
ments. Our goal was the development and application of an 
approach to obtain variances accounting for two sources of 
error. The first error source is sampling error ( ),te  which 
arises because we do not observe the true series, ,tY  but 
instead observe estimates t t ty Y e= +  from a repeated 
survey. The second error source results from the need to 
extend the observed series with forecasts and backcasts to 
apply the symmetric X-11 filters. This second error source 
leads to seasonal adjustment revisions. To account for these 
two sources of error, we defined the seasonal adjustment 
variance as the variance of the error in using the X-11 
adjustment to estimate a specific target. This target, 

( ) ,tB Yω  is what would result from applying the symmetric, 
linear X-11 filter, ( ),Bω  to the true series if its values were 
available far enough into the future and past for the 
symmetric filter to be used. (The application to additive 
X-11 with fore/backcast extension is immediate, and 
log-additive X-11 is taken as an approximation to multipli-
cative X-11.)  

Our approach was also applied to produce variances of 
X-11 trend estimates, and to produce variances of month-
to-month and year-to-year changes in both the seasonally 
adjusted data and trend estimates. A further extension was 
made to allow for error in estimating regression parameters 
(e.g., to model calendar effects), though this was more 
involved and had some limitations. 

The variances we obtain ignore uncertainty due to time 
series variation in the seasonal and nonseasonal com-
ponents. We argued in section 2 that this may be appropriate 
for typical users of X-11 seasonally adjusted data. If one 
desires to account for this time series variation, however, we 
suggest that consideration be given to model-based 
approaches to seasonal adjustment, since time series models 
provide a means to explicitly account for variation in all the 
components. Alternatively, Pfeffermann (1994) developed 
an approach to X-11 seasonal adjustments that attempts to 
account for irregular variation and sampling error. 

Our approach builds on the first approach suggested by 
Wolter and Monsour (1981), by accounting for the contri-
bution of forecast and backcast error that was ignored by 
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them. An alternative view of the difference between our 
approach and theirs is that we define a consistent seasonal 
adjustment target, whereas, in using X-11’s asymmetric 
filters, Wolter and Monsour implicitly used targets that 
change over time. Because of this, our approach avoids the 
unrealistic feature of seasonal adjustment variances that 
decrease towards the ends of the series, which can be seen 
in results of Wolter and Monsour, and also of Pfeffermann. 

In the empirical results presented, the contribution of 
sampling error often dominated the seasonal adjustment 
variances. This is partly because sampling error was often 
large relative to fore/backcast error, and partly because the 
contribution of fore/backcast error tended to be offset by the 
contribution of the covariance of fore/backcast error with 
the sampling error. On the other hand, empirical results for 
trend estimate variances showed large increases at the ends 
of series due to the effects of fore/backcast error. Since the 
largest contribution of fore/backcast error occurs at the ends 
of the series, and variances for the most recent seasonal 
adjustments and trend estimates are of the most interest, one 
should not ignore the contribution of fore/backcast error. 

The relative contribution to our variances of error in 
estimating trading-day or holiday regression coefficients 
tended to be small, unless the series had no sampling error. 
Error due to estimating additive outlier and level shift 
effects was substantial around the time point of the outlier. 
The effects of AOs were large on seasonal adjustment 
variances; the effects of LSs were large on trend estimate 
variances. 

Nonstationarities in the sampling errors produced inter-
esting patterns in the seasonal adjustment and trend estimate 
variances. Two types of sampling error nonstationarities 
were examined. Seasonal patterns in sampling error vari-
ances produced corresponding seasonal patterns in seasonal 
adjustment variances. Independent redrawings of the 
sample, which yield sampling errors correlated within but 
not across samples, produced erratic patterns in seasonal 
adjustment and trend estimate variances over time within a 
sample. These patterns approximately repeat across different 
samples if the samples remain in force for approximately 
equal time spans.  

Computations for the examples shown (given the fitted 
models, which were obtained from the references cited) 
were done by programming the expressions of Sections 2 
and 3 in the S+ programming statistical language. The 
resulting computer code is available on request.   
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Appendix A  
Several expressions to be calculated in this paper are of 

the general form  
-1A B∑  (A.1) 

where ∑  is a positive definite matrix, and A and B are 
conformable to .∑  Let ′= LL∑  be the Cholesky decom-
position of .∑  Then -1 1 1( )− −′=A B A L L B∑  and (A.1) 
can be computed as follows: 
 
(1) Solve 1 =LQ B  for 1Q  
(2) Solve 2 ′=LQ A  for 2Q  
(3) Compute 1

2 1.
− =A B Q Q∑  

 

(1) and (2) can be solved efficiently since L  is lower 
triangular.  

Appendix B  
Two steps are required to obtain GXo, used in section 

3.3. The first step produces “forecast” and “backcast” ex-
tension of the differenced regression variables. The second 
step uses these results and the difference equation to 
produce forecast and backcast extension of the original 
(undifferenced) regression variables. 

Let ,o o o=R Δ X  where oΔ  is that part of the matrix Δ  
which differences the observed series .oy  Analogous to the 
computation of ˆ fw  and ˆ bw  in section 2.2, forecast ex-
tensions of the differenced regression variables are calcu-
lated as 1

32 22f o
−=R R∑ ∑  and backcast extensions as b=R  

1
12 22 .o

− R∑ ∑ fR  and bR  are of the form (A.1) and can be 
computed by the technique given above. 

For the second step, let tx  denote any one of the 
regression variables in .X  Let the required forecast 
extensions be denoted ˆn lx +  for l = 1, 2, ..., .m  Let the 
differencing operator in the model be 1( ) 1B Bδ = −δ − −…  

,d
d Bδ  and let n̂ lr +  be the forecast extension of ( ) tB xδ =  

tr  at time ˆ( n ln l r ++  is an element of ).fR  The ˆn lx +  are 
calculated iteratively as  

1 1ˆ ˆ ˆ ˆ ,n l n l d n l d n lx x x r+ + − + − += δ + +δ +…  for 1, ..., ,l m=  

where ˆn j n jx x+ +=  if 0.j ≤  
The required backcast extensions of tx  are denoted 1ˆ lx +  

for 1, ..., .l m=  These are also obtained recursively from 
the difference equation ˆ ˆ( ) t tB x rδ =  by solving for 1ˆ lx +  in 
the expression  

1 1 1 1ˆ ˆ ˆ ˆd l d l d l d lx x x r+ − − − + += δ + + δ +…  

and substituting previously computed backcasts as needed. 
Thus, 

1
1 1 1 1 2 1ˆ ˆ ˆ ˆ ˆ( ),

for 1, ..., ,

l d d l d l d l d lx x x x r

l m

−
+ + − − − − + −= δ − δ − − δ −

=

…
 

where 1 1ˆ j jx x− −=  for 0.j ≤  
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