Links Between Transpiration and Plant Nitrogen: Variation with Atmospheric CO$_2$ Concentration and Nitrogen Availability

H. Wayne Polley, Hyrum B. Johnson, Charles R. Tischler, and H. Allen Torbert

Grassland, Soil and Water Research Laboratory, USDA-ARS, Temple, Texas 76502, U.S.A.

Transpiration is closely linked to plant nitrogen (N) content, indicating that global or other changes that alter plant N accumulation or the relative requirements of plants for water and N will affect transpiration. We studied effects of N availability and atmospheric CO$_2$ concentration, two components of global biogeochemistry that are changing, on relationships between whole-plant transpiration and N in two perennial C$_3$ species, Pseudoroegneria spicata (a tussock grass) and Gutierrezia microcephala (a half-shrub). Two indices of plant N requirement were used: N accretion (N in live and dead tissues) and N loss in litter (N in dead tissues). Transpiration was analyzed as the product of N accretion or loss by plants and the ratio of transpiration to N accretion or loss. The two indices of plant N requirement led to different conclusions as to the effects of N availability on plant use of water relative to N. Transpiration scaled proportionally with N accretion, but transpiration per unit of N loss declined at high N. Carbon dioxide enrichment had little effect on the ratio of transpiration to N accretion and no effect on transpiration per unit of N loss. The two species accumulated similar amounts of N, but the half-shrub used more than twice as much water as the grass. Nitrogen availability and CO$_2$ concentration influenced whole-plant transpiration more by changing plant N accumulation than by altering the stoichiometry between transpiration and plant N. Species differences in total water use, by contrast, reflected differences in the scaling of transpiration to plant N. A better understanding of species differences in water and N dynamics may thus be required to predict transpiration reliably.

Keywords: global change, nitrogen accretion, nitrogen turnover, resource use efficiency.

Introduction

Transpiration is highly and often linearly correlated with various measures of plant nitrogen (N) (Schulze et al. 1994; Polley et al. 1995). The link between transpiration and N is particularly strong at the leaf level and has been used to estimate water and carbon fluxes of different vegetation types (Schulze et al. 1994). Leaf-level relationships alone, however, may fail to predict responses of transpiration to changes in resources such as N (Vitousek 1994) and atmospheric CO$_2$ (Trabalka et al. 1986) that alter resource requirements of plants.

At the whole-plant level, the correlation between water use and N can be expressed simply by equating transpiration to the product of plant N content and the ratio of transpiration to plant N (ratio of whole-plant nitrogen use efficiency to plant water use efficiency, or NUE/WUE): Transpiration = Plant N \times (NUE/WUE) = Plant N \times [(Biomass/Plant N)/(Biomass/Transpiration)] = Plant N \times (Transpiration/Plant N). According to this equation, global or other changes that (1) alter plant N acquisition or loss or (2) change the relative amounts of water and N used in production will indirectly alter total transpiration.

Plant resource use efficiency is sensitive to changes in both CO$_2$ concentration (Polley et al. 1995; Drake et al. 1997) and N availability (Toft et al. 1989; Aerts and de Caluwe 1994). Carbon dioxide enrichment, for example, may increase WUE and NUE (Drake et al. 1997), but the increase may be more consistent for the former than latter (Polley et al. 1995). The requirement that N be retained at a minimal concentration in all plant tissues imposes an upper bound on NUE that may reduce its response to CO$_2$ when N is limiting. If WUE increases at high CO$_2$ but NUE does not, transpiration per unit of plant N will decline (Polley et al. 1995). Indeed, theory predicts that NUE, WUE, and their ratio, transpiration per unit of N, will change to parallel changes in the availabilities and relative costs of acquiring these resources (Bloom et al. 1985). Plant and photosynthetic N use efficiency (rate of net CO$_2$ uptake per unit of leaf N), for example, often decline as N availability (Shaver and Melillo 1984; Birk and Vitousek 1986; Aerts and de Caluwe 1994) or the availability of N relative to soil phosphorus (Lajtha and Klein 1988; Reich and Schoettle 1988) or water increases (Reich et al. 1989; Lajtha and Whitford 1989). Water use efficiency may vary similarly in response to relative availabilities of water and other plant resources. Photosynthetic water use efficiency (transpiration efficiency) often is lower in well-watered than in droughted plants (Reich et al. 1989) and declines as the availability of water relative to soil N availability increases (Toft et al. 1989).

Our interpretation of the link between transpiration and plant N and its sensitivity to global changes may depend on the measure of plant N employed. Nitrogen accretion, the sum of N in live and dead tissues, is an adequate measure of N requirement for annual plants but is not ideal for perennial...
species. Perennial plants lose only a fraction of their N capital each year. Nitrogen that is retained can be used to support further growth, requiring additional transpiration. For perennial plants then, the amount of acquired N that is lost to the plant in litter is a better measure of a plant’s N requirement, and thus a preferable index of N for calculating NUE, than either N content or N accretion (Berendse and Aerts 1987).

We investigated effects of atmospheric CO2 concentration and N availability on the relationship of transpiration to plant N in two perennial species. Two indices of plant N requirement were used: total N accretion, a commonly used measure, and N loss in litter, a measure that may be more appropriate for perennial species. Treatment effects on the scaling of transpiration to plant N were assessed by dividing NUE, calculated with each index of plant N requirement, by WUE. Two questions were of particular interest. (1) Would rising CO2 concentration and increasing N availability affect the stoichiometry of perennial plants’ requirement for water and N by differentially affecting WUE and NUE? (2) Would treatment effects on NUE and transpiration/plant N be sensitive to the index of plant N employed (N accretion, N loss)? Evidence for a positive answer to either question would indicate caution in extrapolating global change effects on transpiration from changes in plant N content alone.

The C3 species studied, Pseudoroegneria spicata (Pursh) A. Love spp. spicata (bluebunch wheatgrass) and Gutierrezia microcephala (DC) Gray (threadleaf snakeweed) are abundant on rangelands and differ in growth form. The half-shrub G. microcephala is found on grazing lands in northern Mexico and western Texas, New Mexico, Arizona, and Utah of the United States (Pieper and McDaniel 1990). Pseudoroegneria spicata is a native tussock grass of the Great Basin region of western North America.

Fig. 1 Biomass production and its division between above- and belowground tissues (upper panel) and transpiration (lower panel) of plants grown from seed for 1 yr at four N treatments: 1 = highest N (HN); 4 = lowest N (LN). Values are averaged across species (Pseudoroegneria spicata, Gutierrezia microcephala) and CO2 concentrations (387 and 690 µmol mol−1). Column or tissue values that differed significantly (P < 0.05) are labeled with different letters (n = 20). Arithmetic means are shown, but statistical analyses were performed following logarithmic transformation.

Fig. 2 Total N accretion (upper panel; n = 20) and the ratio of shoot N to total N accretion (lower panel; n = 10) of plants grown for 1 yr at four N treatments: 1 = highest N (HN); 4 = lowest N (LN). Values for each variable are averaged across remaining treatments (species, Pseudoroegneria spicata, Gutierrezia microcephala; CO2 concentrations, 387 and 690 µmol mol−1). Values that differed significantly are labeled with different letters. Arithmetic means are shown, but statistical analyses were performed following logarithmic transformation.
Material and Methods

Experimental Design and Plant Culture

Pseudoroegneria spicata and *Gutierrezia microcephala* were grown in air-conditioned glasshouse bays at mean CO$_2$ concentrations of 387 and 690 μmol mol$^{-1}$. The CO$_2$ concentration and dewpoint temperature of air in each bay were measured each fourth minute with an infrared gas analyzer (Li-Cor, LI-6262, Lincoln, Nebr.). The CO$_2$ readings were corrected for atmospheric pressure measured with a pressure indicator (Druck, DPI 260, Fairfield, Conn.). Air temperature was measured in the center of each bay with 25-μm diameter thermocouples and was changed seasonally to approximate temperature outdoors by manually adjusting thermostatic controls. Photosynthetic photon flux density (PPFD) was measured on the glasshouse roof with a silicon photodiode (Li-Cor, LI-190SB, Lincoln, Nebr.) and above plants in each bay with silicon detectors along a 1-m-long sensing surface (Li-Cor, LI-191SA).

Each species was grown in 0.25-m-diameter and 0.60-m-deep pots in soil mixtures differing in total N content. Plants were grown in 1 : 1, 3 : 1, 7 : 1, and 15 : 1 (v/v) mixtures of washed sand : fine sandy loam soil with total N levels of 0.6, 0.2, 0.1, and <0.1 μg g$^{-1}$, respectively. These are moderately low to extremely low N levels. Soil pH ranged from 8.3 to 9.0, values typical of soils where *P. spicata* and *G. microcephala* are most abundant. To assure that N would be the most limiting element, 600 mL of Hoagland's solution lacking N were added to each pot before planting (Hoagland and Arnon 1950; modified by replacing CaSO$_4$ with NaSO$_4$ and by supplying phosphorus as a 13 : 1 w/w mixture of KH$_2$PO$_4$: K$_2$HPO$_4$). An additional 200 mL of the nutrient solution were added to each pot during the fourth and fifth month of plant growth.

Each pot was weighed on a top-loading balance when empty and with a load beam (BLH Electronics, KIS-3, Canton, Mass.) after it was filled with air-dried soil. One soil core (20-mm diameter) was taken from each pot at filling, oven dried at 100°C for 72 h, and weighed. The mass of soil in each pot was calculated using the ratio of the oven-dried mass to air-dried mass of these samples. Before planting, soil was moistened to drip and each pot was reweighed.

Ten pots per soil mixture were seeded with each species during September 1992. Five pots per soil mixture and species were then randomly assigned to each of the two CO$_2$ treatments. The half-shrub, *G. microcephala*, was replanted during October 1992. The grass, *P. spicata*, was thinned to two plants per pot in November and to one plant per pot in December 1992. One soil core (45-mm diameter) was taken from each pot with grass at the final thinning in December 1992. Holes that resulted from coring were filled with the appropriate soil mixture. Seedlings of *G. microcephala* grew slowly. Because they were small, four seedlings of the half-shrub were retained in each pot at final thinning in January 1993. Soil in all pots was then covered with 1–2 cm of vermiculite to reduce evaporation.

Measurements and Harvest

Pots were weighed weekly from January 1993 through harvest in November/December 1993 to determine water loss to evapotranspiration. Following each weight measurement, water was added to restore soil to ca. 95% of its moisture content at the drip point (ca. 20% volumetric moisture content). Transpiration from planted pots was calculated by subtracting average water loss from two unplanted pots of the appropriate soil mixture at each CO$_2$ level. To minimize any effect of bay position on plant performance, plants and the appropriate CO$_2$ treatment were moved monthly among bays until June 1993. Plants from an associated experiment were too large thereafter to move through adjoining doorways.

Aboveground litter was collected once during the growing season (February–March 1993). Plants were destructively harvested at the end of the growing season, on November 2–3 (grass) and December 1–2, 1993 (shrub). Some leaves were green at harvest, but most aboveground material apparently had undergone normal senescence. Aboveground structures and the large roots retained on a 12.7-mm mesh sieve were separated into live and dead components. Included with live roots were tap and lateral roots of the half-shrub. Crowns were separated from live roots of the grass. A mixed sample
of sieved soil from each pot (ca. 3 kg) was collected. Small roots in these samples were hand separated and sorted into live and dead categories based on color. All tissues were dried to constant mass at 60°C and weighed. Soil samples from which roots were removed were oven dried (100°C) and weighed. The mass of small roots that passed through the 12.7-mm sieve was calculated by multiplying root biomass per dry mass of the soil sample by the total dry mass of soil in each pot. The derived mass of small roots was added to that of the large roots retained on the sieve to obtain total root biomass per pot.

Nitrogen Accretion and Use Efficiency

Nitrogen concentration was measured on plant material collected before and at harvest. Dry mass and N mass weights of live and dead tissues were summed to calculate biomass production and N accretion per pot.

Nitrogen use efficiency was calculated using each of two indices of plant N requirement: N accretion and N loss in litter. Plant nitrogen use efficiency (NUE_i) was calculated as biomass production divided by the amount of acquired N lost in aboveground and belowground litter. Nitrogen production was biomass production divided by N accretion.

Water Use Efficiency

Plant WUE was calculated for the period between the final thinning and harvest of each species: the ratio of total biomass production to transpiration during the period. Biomass of *P. spicata* that remained after thinning was estimated from soil cores by tiller number of the remaining plant. Belowground biomass was calculated by multiplying root biomass per tiller at thinning (estimated from soil cores) by tiller number of the remaining plant. Seedlings of *G. microcephala* were small at the final thinning (X = 30 mg plant⁻¹), so biomass produced during the period that transpiration was measured was assumed equal to that present at harvest plus litter collected during the growing season. The ratio of plant transpiration to plant N was calculated in two ways: (1) transpiration/N accumulation (N production/WUE) and (2) transpiration/N loss (NUE_i/WUE).

Statistical Analyses

Data were analyzed with a three-way ANOVA that included CO₂ concentration, species, N treatment, and appropriate interactions (Sokal and Rohlf 1981). Student-Newman-Keuls multiple-range test was used to determine significant differences among three or more means. Data were transformed logarithmically before analysis when required to satisfy assumptions of ANOVA. Standard errors for transformed data were omitted in presentation of results using the original scale of measurement. Variable means are presented for individual treatments (N, species, or CO₂) only when statistical interactions with other treatments were not significant (P > 0.05).

Environmental Conditions

Mean daytime temperature in glasshouse bays declined from 30°C in September 1992 to 15°C in December 1992, then increased to a maximum of 27°C in late July 1993, before declining to 20°C at harvest in November–December 1993. Mean vapor pressure deficit of air during daylight followed a similar temporal trend, declining from 1.5 kPa in September 1993 to 0.3 kPa in September 1993 to 0.3 kPa in December 1992, before increasing linearly to 1.4 kPa in August–September 1993. The daily integral of PPFD inside bays averaged 55% of that measured above the glasshouse, although instantaneous PPFD inside the glasshouse approached 90% of that measured outdoors at midday. Standard deviation of CO₂ concentration was calculated daily. The average of these values was 9.4 µmol mol⁻¹ at the high CO₂ concentration and 22.2 µmol mol⁻¹ in the low CO₂ bay, where concentration was not directly controlled.

Results

Nitrogen Treatments

Biomass production, N accretion, and transpiration each increased by a factor of 4–5 from the lowest to highest N
Table 2
Parameters Related to Biomass Production and Turnover, Total Transpiration, and N Dynamics of Plants Grown from Seed for 1 yr at Two CO2 Concentrations

<table>
<thead>
<tr>
<th>Parameter</th>
<th>CO2 concentration (µmol mol⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WUE (g L⁻¹)</td>
<td>2.09</td>
</tr>
<tr>
<td>Transpiration (L pot⁻¹)</td>
<td>12.75</td>
</tr>
<tr>
<td>N accretion (g)</td>
<td>0.21</td>
</tr>
<tr>
<td>N accretion/root biomass (mg g⁻¹)</td>
<td>17.2</td>
</tr>
<tr>
<td>N production [g (biomass) g (N accretion)⁻¹]</td>
<td>110.0</td>
</tr>
<tr>
<td>Transpiration/N accretion (L g⁻¹)</td>
<td>63.2</td>
</tr>
<tr>
<td>Tissue turnover (litter fraction)</td>
<td>0.38</td>
</tr>
<tr>
<td>Fractional turnover of N (litter N/N accretion)</td>
<td>0.39</td>
</tr>
<tr>
<td>NUEp (g (biomass) g (N loss)⁻¹ yr⁻¹)</td>
<td>320.3</td>
</tr>
<tr>
<td>Transpiration/N loss (L g⁻¹)</td>
<td>184.2</td>
</tr>
</tbody>
</table>

Note. NUEp is biomass production divided by N loss in litter during the year. Values are averaged across species (Pseudoroegneria spicata, Gutierrezia microcephala) and four N treatments. Arithmetic means are shown, but statistical analyses of most parameters were performed following logarithmic transformation; n = 40.

* P < 0.05.
** P < 0.001.

CO2 Concentration

Elevating CO2 concentration increased plant WUE by 34% by reducing total transpiration by 26% (table 2). Effects of CO2 were statistically independent of species or N treatment. Total biomass production was not significantly affected by CO2 in either Pseudoroegneria spicata or G. microcephala (fig. 4).

Nitrogen accretion declined at high CO2 (table 2). Belowground biomass did not differ significantly between CO2 treatments (not shown), so this decline reflected lower N accretion per unit of belowground biomass at the elevated than ambient CO2 concentration (table 2). Nitrogen production, the ratio of biomass production to total N accretion, increased slightly at high CO2. The increase in N production was proportionally smaller than that in WUE, so transpiration per unit of plant N accretion declined slightly (12%) with CO2 enrichment.

Plants grown at elevated CO2 lost a smaller fraction of biomass and of accumulated N to litter, largely because turnover aboveground was lower (table 2). As a result, NUEp rose 48% at elevated CO2. The proportional increase in NUEp was similar to that in WUE, so atmospheric CO2 concentration did not significantly affect transpiration per unit of N lost in litter.

Species

Biomass production was 56% higher in pots with G. microcephala than P. spicata at the current CO2 concentration (fig. 4). Biomass was higher in the half-shrub at elevated CO2, but species differences were not significant. Across N treatments and CO2 concentrations, transpiration from pots with G. microcephala was almost three times that from pots with...
Table 3
Parameters Related to Biomass Turnover, Total Transpiration, and N Dynamics of 1-yr-old Plants of *Pseudoroegneria spicata* and *Gutierrezia microcephala*

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Pseudoroegneria spicata</th>
<th>Gutierrezia microcephala</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transpiration (L pot⁻¹)</td>
<td>5.76</td>
<td>16.45**</td>
</tr>
<tr>
<td>WUE (g L⁻¹)</td>
<td>3.29</td>
<td>1.61**</td>
</tr>
<tr>
<td>N accretion (g)</td>
<td>0.18</td>
<td>0.21</td>
</tr>
<tr>
<td>Turnover belowground (litter fraction)</td>
<td>0.21</td>
<td>0.10**</td>
</tr>
<tr>
<td>Turnover aboveground (litter fraction)</td>
<td>0.59</td>
<td>0.61</td>
</tr>
<tr>
<td>Fractional turnover of N (litter N/N accretion)</td>
<td>0.33</td>
<td>0.37*</td>
</tr>
<tr>
<td>NUEp [g (biomass) g (N loss)⁻¹ yr⁻¹]</td>
<td>403.3</td>
<td>391.4</td>
</tr>
<tr>
<td>Transpiration/N loss (L g⁻¹)</td>
<td>134.3</td>
<td>249.6**</td>
</tr>
</tbody>
</table>

Note. NUEp is biomass production divided by N loss in litter during the year. Values are averaged across four N treatments and two CO₂ concentrations. Arithmetic means are shown, but statistical analyses of most parameters were performed following logarithmic transformation; n = 40.

* P < 0.05.
** P < 0.001.

the grass (table 3). Consequently, WUE of the half-shrub was only one-half that of the grass. Nitrogen accretion was higher (14%) in *G. microcephala* than *P. spicata*. At all but the lowest N treatment, N production was also higher in the half-shrub than grass (fig. 3). The half-shrub *G. microcephala* transpired more than twice as much water per unit of N accretion as *P. spicata*, a reflection of both higher N production and lower WUE.

Species did not differ in the fraction of total biomass that was lost to litter, but fractional turnover of N was 11% higher in *G. microcephala* than *P. spicata* (table 3). The half-shrub invested a much higher proportion of production aboveground (fig. 4) where turnover was a factor of 3 or more times that in belowground tissues (table 3). The NUEp did not differ significantly between species. The shrub used almost twice as much water per unit of N loss to litter as *P. spicata*, however, because of its low WUE.

Discussion

Relationships between whole-plant transpiration and two indices of plant N requirement (N accretion, N loss in litter) were studied to address two primary questions. Is the scaling of transpiration to plant N sensitive to resource (N, CO₂) availability? Is transpiration per unit of N in perennial species sensitive to the index of plant N employed? Schulze et al. (1994) found the close link between stomatal conductance and leaf N a powerful basis for scaling transpiration from the leaf to canopy level. Leaf-level relationships alone, however, are not adequate for predicting responses of transpiration to changes in N or other resources that alter plant allocation, tissue turnover rates, or the relative requirements of plants for different resources. Analyses that combine information on resource availabilities with the ratios of plant resource use efficiencies provide a simple alternative to more physiologically based models for predicting transpiration and plants effects on processes such as N cycling (Aber et al. 1991).

Scaling of Transpiration to Plant N

A major conclusion of this study is that CO₂ concentration and N availability had little effect on the scaling of water use to N accretion. Elevating CO₂ concentration by ca. 80% reduced transpiration by a mean 26% but reduced use of water relative to N by only 12%. Nitrogen treatments that produced fourfold differences in biomass during the initial year of growth did not significantly affect N production, WUE, or their ratio, transpiration per unit of N accretion. Consequently, N availability and CO₂ concentration influenced whole-plant transpiration more by changing plant N accretion than by altering the stoichiometry between transpiration and plant N.

Others have found that N production and WUE may be sensitive to changes in N availability, as predicted by theory (Patterson et al. 1997). Production per unit of plant N typically declines as N availability increases (Aerts 1989; Aerts and de Caluwe 1994), whereas WUE may increase at high N. Tanner and Sinclair (1983) concluded from a review of early experiments on plant water requirements that WUE became sensitive to variation in plant nutrition when nutrient deficiencies were severe enough to reduce yield to about half that obtained with adequate fertilizer.

Lower transpiration at high CO₂ largely reflected an accompanying decline in N acquisition and N loss. Belowground production did not differ significantly between CO₂ concentrations, so the decrease in N accretion resulted from lower
accumulation per unit of belowground biomass at the elevated than ambient concentration. Whether this decline in root-
specific accretion resulted from physiological or morphological
changes in plants or a shift in soil N dynamics is not clear.
Total N uptake by the C4 grass Bouteloua gracilis (blue grama)
and soil solution NO3 levels both were lower at elevated than
ambient CO2 (Morgan et al. 1994), indicating that CO2 en-
richment can reduce N mineralization and availability to
plants. By contrast, Hunt et al. (1996) reported that the N
content of perennial organs of two grasses increased 11% at
elevated CO2, despite a decline in the N concentration of se-
nescent shoots. The direction of CO2 effects on N cycling may
depend on plant species. Whether plant N pools and N uptake
increased, decreased, or did not change at elevated CO2 was
species specific (Hungate et al. 1996).

Species differences in total transpiration, unlike those be-
tween CO2 or N treatments, reflected differences in the ratio
of water use to plant N. Nitrogen accretion and N turnover
differed by <15% in G. microcephala and P. spicata, so dif-
fences in WUE largely accounted for the twofold differences
in transpiration/N between species. The extent to which these
differences might be expressed on dry rangelands obviously
depends on whether species variation in WUE persists as water
becomes limiting. These results indicate, however, that trans-
spiration in N-limited systems could be much more sensitive
to species composition than to direct effects of atmospheric
CO2 concentration.

**Relationship of Transpiration to Two Indices
of N Requirement**

The two indices of plant N requirement (N accretion, N
loss) used here led to different conclusions as to effects of N
availability on the stoichiometry of plant requirements for wa-
ter and N. Nitrogen production, WUE, and the ratio of trans-
spiration to N accretion did not vary with N treatments that
produced fourfold differences in biomass. By contrast, NUEp
and transpiration per unit of N in litter declined at high N as
nothing but a larger fraction of accumulated N at high compared
with low N. Increased turnover of aboveground tissues and a
higher N concentration in aboveground litter at high compared
with low N contributed to the increase in N turnover, similar
to trends measured in some (Aerts 1989), but not all, species
(Aerts and de Caluwe 1994). It is important to note that al-
though the pattern of N turnover measured here is relevant to
the N dynamics of establishing plants, it may not be repre-
sentative of turnover in vegetation that has reached equilibrium
with respect to its N content. Unanswered by this experiment,
therefore, is the question of whether the increase in N turnover
that led to lower transpiration per unit of N loss will persist
when N acquisition comes into balance with N losses. Tran-
spiration at high N could be lower than predicted from the
relationship between N accretion and water use if measured
patterns in N turnover persist.

Results from this study thus indicate that a better under-
standing of factors controlling N turnover is critical to long-
term predictions of atmospheric and other changes on water
and N use by perennial plants. The stoichiometry between
transpiration and plant N varied much more between species
than with resource availability, indicating that information on
species or growth form differences in water and N require-
ments will be required to predict transpiration in a changing
world.

Acknowledgments

Katherine Jones, Melina Ball, and Evelyn Steglich processed
plant samples. Ron Whitis and Chris Kolodziejczyk main-
tained CO2 and environmental control systems and data re-
cords. James Bunce, Justin Derner, Robert Jackson, Patricia
Miilnick, and Rodney Pennington provided helpful reviews of the
manuscript.

Literature Cited

Aber, JD, JM Melillo, KJ Nadelhoffer, J Pastor, RD Boone
1991 Factors controlling nitrogen cycling and nitrogen saturation
in northern temperate forest ecosystems. Ecol Appl 1:303–315.
Aerts R 1989 Nitrogen use efficiency in relation to nitrogen availa-
bility and plant community composition. Pages 285–297 in H Lam-
bers, H Konings, ML Cambridge, TL Pons, eds. Causes and con-
sequences of variation in growth rate and productivity of higher
plants. SPB Academic, The Hague.
Aerts R, H de Caluwe 1994 Nitrogen use efficiency of Carex species
Berendse F, R Aerts 1987 Nitrogen-use efficiency: a biologically
Birke EM, PM Vitousek 1986 Nitrogen availability and nitrogen use
Bloom AJ, FS Chapin III, HA Mooney 1985 Resource limitation in
Drake BG, MA Gonzalez-Meler, SP Long 1997 More efficient plants:
a consequence of rising atmospheric CO2? Annu Rev Plant Physiol
Hoagland DR, DI Arnon 1950 The water-culture method for growing
Hungate BA, J Canadell, FS Chapin III 1996 Plant species mediate
changes in soil microbial N in response to elevated CO2. Ecology
77:2505–2515.
Hunt HW, ET Elliott, JK Detling, JA Morgan, D-X Chen
1996 Responses of a C3 and a C4 perennial grass to elevated CO2
and temperature under different water regimes. Global Change Biol
2:35–47.
Lajtha K, M Klein 1988 The effect of varying nitrogen and phos-
phorus availability on nutrient use by Larrea tridentata, a desert
Lajtha K, WG Whitford 1989 The effect of varying nitrogen and phos-
phorus amendments on photosynthesis, leaf demography, and resource-use
efficiency in Larrea tridentata, a desert evergreen shrub. Oecologia
80:341–348.
Morgan JA, WG Knight, LM Dudley, HW Hunt 1994 Enhanced root
system C-sink activity, water relations and aspects of nutrient ac-
quisition in mycotrophic Bouteloua gracilis subjected to CO2 en-
Patterson TB, GD Guy, QL Dang 1997 Whole-plant nitrogen- and
water-relations traits, and their associated trade-offs, in adjacent
Peiper RD, KC McDaniel 1990 Ecology and management of broom
sawdust. Pages 1–12 in EW Huddleston, RD Pi-
ceedings, snakeweed: problems and perspectives. New Mexico State University, Las Cruces.