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Abstract

Crop models often require extensive input data sets to realistically simulate crop growth.
Development of such input data sets can be difficult for some model users. The objective of

this study was to evaluate the importance of variables in input data sets for crop modeling.
Based on published hybrid performance trials in eight Texas counties, we developed standard
data sets of 10-year simulations of maize and sorghum for these eight counties with the

Agricultural LandManagement Alternatives with Numerical Assessment Criteria (ALMANAC)
model. The simulation results were close to the measured county yields with bias values and
root mean square errors less than 1.0 Mg ha�1 in each county. We then analyzed the sensitivity
of grain yield to solar radiation, rainfall, soil depth, soil plant available water, and runoff

curve number, comparing simulated yields with those with the original, standard data sets.
Runoff curve number [US Department of Agriculture, Soil Conservation Service (1972)
National Engineering Handbook, Hydrology Section 4, chapters 4–10] changes had the

greatest impact on simulated maize and sorghum yields for all the counties. The next most
critical input was rainfall, and then solar radiation for both maize and sorghum, especially for
dryland conditions. For irrigated sorghum, solar radiation was the second most critical input

instead of rainfall. The degree of sensitivity of yield to all variables was larger for maize than
for sorghum except for solar radiation. Many models use a USDA curve number approach to
represent soil water redistribution, so it will be important to have accurate curve numbers,
rainfall, and soil depth to realistically simulate yields.
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1. Introduction

While process-oriented crop models have great potential for assessing plant traits
in different environments and aiding management decisions affecting grain yield, soil
erosion, and water quality, potential users can be intimidated by extensive input
data set requirements. Crop modeling, born about 30 years ago, has progressed
considerably, with awareness not only of the limits to system behavior but also of
the nature of the essential limiting factors (Sinclair and Seligman, 1996). Improved
understanding of these factors can lead to simplification of models and model
inputs. Crop models have progressed beyond just academic exercises quantitatively
describing interactions between plants and the environment. Their future applica-
tion depends on providing users with techniques to effectively, efficiently develop
realistic input data sets.
Historically two groups have been interested in models: (1) researchers who

develop and validate them for increased understanding of crop growth and devel-
opment (Aggarwal et al., 1994; Carberry et al., 1989; Hoogenboom et al., 1993;
Jamiesion et al., 1998; Porter et al., 1993) and (2) users interested in applications
(Asare et al., 1992; Ives and Hearn, 1987; Weiss, 1990, 1994; Wullschleger et al.,
1994). There have been more studies on calibration, validation and understanding
crop models than on applications. Users interested in applications can be intimi-
dated by the complexity of input data required to run models. Such input data
include parameters for crops, soils, cultural management, and weather.
One such model requiring extensive inputs is Agricultural Land Management

Alternatives with Numerical Assessment Criteria (ALMANAC) (Kiniry et al.,
1992). ALMANAC includes subroutines and functions from the EPIC model
(Environmental Policy Integrated Climate model; Williams et al., 1984), sharing
components for simulating hydrology, soils, and crop growth. Likewise, the model
Soil and Water Assessment Tool (SWAT; Arnold et al., 1998), Agricultural Policy/
Environmental eXtender (APEX; Williams et al., 2002), and Agricultural Produc-
tion Systems sIMulator (APSIM; Hammer, 1998) all share some components with
ALMANAC. Thus response sensitivities of ALMANAC have some relevance for all
these models.
The ALMANAC model simulates crop growth and the soil water balance. Pro-

cesses simulated include light interception by leaves, biomass accumulation, parti-
tioning of biomass into grain, water use, nutrient uptake, and growth constraints
such as water, temperature, and nutrient stress. Grain yield is simulated based on
harvest index (HI), which is the grain yield as a fraction of the total aboveground
dry matter at maturity. The model simulates crop growth and competition for more
than 20 crop species with different crop parameters. Drainage, irrigation, fertilization,
furrow diking, and liming are simulated. There is a weather generator subroutine,
based on concepts of the WGEN model (Richardson and Wright, 1984), capable of
producing multiple years of daily weather. Competing crop species, such as weeds
and crops, can be simulated. Soil, weather, tillage, and crop parameter data are
needed. The Universal Text Integrating Language (UTIL; Taylor and Bryant, 1994)
program designed for ALMANAC is a user-friendly interface for inputting data
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files, making data set development easier for new model users. The current version of
ALMANAC (Kiniry et al., 1997) includes improvements on the extinction coefficient
(k) based on row spacing (Flénet et al., 1996), and on radiation-use efficiency based
on vapor pressure deficit (Stockle and Kiniry, 1990). To encourage more widespread
application of this model, we investigated how to simplify ALMANAC’s input data
sets without losing simulation details.
Both weather and soil data are important for crop yields, as they describe the

basic energy, resources, and environment for crop growth. Within weather or soil
data, there are many variables that differ in their relative importance for yield pre-
diction. When developing input data sets, it is valuable to know which variables are
most important for simulation accuracy. Users can then decide which variables need
accurate values for their particular soil, location, or year and which can be input as
more generic values, perhaps as monthly means for a region or as a general value for
a soil texture.
Before users invest the time required to develop model input data sets, they need

some assurance of the accuracy of the crop model. The ALMANAC model has been
validated for maize (Zea mays L.) and sorghum [Sorghum bicolor (L.) Moench]
yields in diverse environments (Kiniry et al., 1997; Kiniry and Bockholt, 1998; Yun
et al., 2001). Realistic prediction of mean county yields is one criterion for evaluating
crop models. Our objectives in this study were: (1) as a basis for sensitivity analysis,
simulate the mean yield and variability around the mean for eight Texas counties
over 10 years for maize and sorghum with the ALMANAC model; (2) test the sen-
sitivity of simulated yield to selected weather and soil variables. With the results of
the sensitivity analyses, we hoped to provide guidance as to the accuracy needed for
selected inputs to obtain realistic simulations. These results should be helpful for
future model applications involving management decisions and risk assessment and
for applications on climate change and soil erosion.
2. Materials and methods

2.1. County yields

County yields were each simulated with a single management scenario, one soil,
and one location’s weather, as described later. Thus, we assumed heterogeneity
within each county for these variables was not as great as variability among counties.
This approach, while it should adequately simulate mean yield for a county, could
fail to capture the dampening effect of multiple management scenarios, variable
weather data, and variable soils within a county. Because of this, variation among
years in simulated yields of a county could be larger than variability among years in
reported yields.
While there are 10 climatic districts in Texas (NCDC, 1999), 80% of the sorghum

area and 92% of the maize area are in only five. Area in each of these five districts
ranged from 3% to 48% of the state total for maize and 6% to 36% of the state
total for sorghum (Pietsch et al., 1998a,b). A readily available source of yearly grain
Y. Xie et al. / Agricultural Systems 78 (2003) 1–16 3



yields within these districts are the county mean yields reported by NASS (1999).
Within the five districts, eight representative counties were selected for each crop,
each having a yield trial with maize, sorghum, or both (Pietsch et al., 1992a–1998b).
We used yield trial sites as typical locations (Table 1) to simulate county yields for
1989–1998. Four yield trials were irrigated, and the rest were dryland. Within each
of the seven counties, maize and sorghum had the same yield trial location. Daily
maximum and minimum air temperatures and precipitation (NCDC, 1999) were
from the weather station nearest the yield trial for each county. Daily solar radiation
values were the monthly averages for 20 years from the nearest weather station
having such data.
Accurate soil data is important for simulating crop growth but can be difficult to

obtain for specific sites. Soil types and soil depths can change appreciably over short
distances. Such soils can differ in water holding capacity, in available nutrients and
in potential rooting depth. Basic soil parameter data are available for many soil types
within the US for ALMANAC. Using USDA–NRCS (United State Department of
Agriculture–Nature Resource Conservation Service) soil surveys, we determined the
soil type with the largest extent of crop-land in each county. Soil parameters for
each of these were derived from the soil database (Table 2). Management inputs,
including planting and harvest date, planting density, row spacing, and irrigation
amounts were determined according to the yield trials from 1991 to 1998 in each
county (Table 3). In Moore county, the irrigation amount was set automatically by
Table 1

District percentage production of total Texas production of maize and sorghum in 1998
Districts
 County
 Area

percentage
Plot test

location
Weather station
Maize
 Sorghum
1. High Plains
 Moore
 48
 36
 Dumas
 Dumas
 Irrigated
Lubbock
 43
 27
 Lubbock
 Lubbock
 Irrigated
2. North Central
 Dallas
 5
 9
 Prosper
 Dallas
 Dryland
Bell
 14
 23
 Temple
 Temple
 Dryland
3. South Central
 Medina
 12
 16
 Castroville
 Lytle
 Irrigated
Nueces
 9
 5
 Corpus Christi

(maize)
Corpus Christi
 Dryland
San Patricio
 3
 11
 Gregory

(sorghum)
Corpus Christi
 Dryland
4. Upper Coast
 Wharton
 6
 7
 Wharton

(maize)
Wharton
 Dryland
Danevang

(sorghum)
Danevang
 Dryland
5. Lower Valley
 Hidalgo
 3
 13
 Weslaco
 Weslaco
 Irrigated
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ALMANAC, for testing the impact of rainfall or soil depth changes on the
irrigation amount. The degree days from planting to maturity (PHU), which determined
the crop development stage in ALMANAC, were 1600 for maize and 1500 for
sorghum.
Table 2

Soils selected and their parameters for background data sets in Texas
County
 Soil type
 %a
 Soil depth

(m)
PAWb

(cm)
Runoff

curve no.c
Moore
 Sherm Silty Clay Loam
 47
 2.03
 30
 89
Lubbock
 Olton Clay Loam
 22
 2.03
 30
 85
Dallas
 Houston Black Clay
 18
 2.03
 23
 89
Bell
 Houston Black Clay
 12
 2.03
 23
 89
Medina
 Knippa Clay
 7
 1.52
 22
 85
Nueces
 Victoria Clay
 63
 2.49
 32
 84
San Patricio
 Victoria Clay
 21
 2.49
 32
 84
Wharton
 Lake Charles Clay
 23
 2.03
 27
 89
Hidalgo
 Hidalgo Clay Loam
 15
 2.03
 24
 78
a The percentage of soil extent to the total county land area.
b PAW, plant-available water (the difference between the field capacity and wilting point for the soil

profile).
c Runoff curve numbers are based on soil hydrologic groups.
Table 3

Crop and management parameters for background data sets used in yield simulations in Texas for 1989 to

1998
County
 Plant date H
arvest date P
lant density (plant/m2)
 Row space (m) I
rrigation amount (mm)
Maize
Moore
 22 April 1
 October
 7.2
 0.76 S
et automatically
Lubbock
 20 April 2
4 September
 7.5
 1.02 8
9 mm/time, 4 times
Dallas
 18 March 1
6 August
 5.0
 0.76 D
ryland
Bell
 2 March 3
0 July
 5.2
 0.97 D
ryland
Medina
 10 Mar 5
 August
 5.9
 0.91 3
8 mm/time, 4 times
Nueces
 17 February 1
0 July
 5.0
 0.97 D
ryland
Wharton
 17 March 1
 August
 5.5
 1.02 D
ryland
Hidalgo
 17 February 7
 July
 6.3
 0.76 5
1 mm/time, 2 times
Sorghum
Moore
 23 May 1
4 October 2
6
 0.76 S
et automatically
Lubbock
 23 June 3
0 October 1
4
 1.02 8
9 mm/time, 3 times
Dallas
 26 March 1
5 August 1
4
 0.76 D
ryland
Bell
 8 March 2
5 July 2
0
 0.97 D
ryland
Medina
 12 March 2
5 July 2
5
 0.91 3
8 mm/time, 4 times
San Patricio
 5 March 8
 July 2
1
 0.97 D
ryland
Wharton
 18 March 2
0 July 1
9
 1.02 D
ryland
Hidalgo
 18 February 1
 July 2
2
 0.76 5
1 mm/time, 4 times
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2.2. Sensitivity analysis

The aforementioned data sets based on the actual conditions were the standard
background crop parameters, soil data, and weather data. To analyze sensitivity of
simulated yields to different variables, we simulated 10-year county mean crop yields
by changing the input variables of solar radiation, rainfall, soil depth, plant avail-
able water in the soil, and runoff curve number US Department of Agriculture, Soil
Conservation Service (1972). The data sets for sensitivity analysis were called
scenario data sets. In each of them, only one variable was changed, and the others
were kept the same as the original data sets. Each of these variables we chose to vary
showed promise as having noticeable effects on crop growth. Of the four climatic
factors needed in ALMANAC, rainfall had the greatest percentage difference
among years and locations. However, it was also readily available at a large number
of weather stations. Daily solar radiation was difficult to obtain for every location
but contributed to the potential yields at each site. Maximum and minimum tem-
peratures were available from the numerous weather stations in the state and
changed relatively little among years. We tested the sensitivity of yield to rainfall
and solar radiation in order to assess the relative importance for each input data.
Soil depth, curve number, and plant available water (PAW) relate to terrain, soil
texture, and the ability of soils to sustain crops during drought.
The amount of change in each variable was determined by the range found in the

measured values of each (Table 4). The average daily solar radiation values for
1961–1990 were from National Solar Radiation Data Base Internet site for Amarillo,
Lubbock, Fort Worth, Waco, Victoria, Corpus Christi, San Antonio, and Brownsville
(http://rredc.nrel.gov/solar/)). Each year we calculated the mean daily solar radiations
during the growing season for these locations. These values ranged from �11% to
+10% of the mean for the 30 years. Thus, the range for each county was used to
alter solar radiation of that county for all the simulation years to test the simulated
yield’s response to solar radiation. Rainfall was changed �20% and +20%, based
on the average rainfall variance ratio [(rainfall�mean rainfall)/mean rainfall] from
Table 4

Variables changed in scenario data sets for sensitivity analysis. In each case, values are percentage changes.

Rainfall for each county was changed�20%
County
 Solar

radiation
PAW with different soil depth
 PAW
 Runoff

curve no.

1.5 m
 1.2 m
 1.0 m
 0.8 m
Moore
 �6
 6
 �25
 �38
 �47
 �58
 �14
 13
 �9
 2
Lubbock
 �4
 5
 �25
 �40
 �50
 �60
 �22
 23
 �8
 4
Dallas
 �8
 7
 �23
 �36
 �44
 �55
 �24
 24
 �9
 2
Bell
 �8
 9
 �23
 �36
 �44
 �55
 �24
 24
 �9
 2
Medina
 �11
 8
 0
 �18
 �31
 �45
 �25
 24
 �8
 4
Nueces
 �11
 8
 �37
 �48
 �56
 �65
 �25
 26
 �4
 8
San Patricio
 �11
 8
 �37
 �48
 �56
 �65
 �25
 26
 �4
 8
Wharton
 �7
 7
 �23
 �37
 �45
 �54
 �25
 24
 �9
 2
Hidalgo
 �10
 10
 �26
 �39
 �49
 �58
 �23
 23
 �9
 4
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1989 to 1998 for 10 weather stations (Table 1). The daily rainfall amounts were each
changed by this ratio. The soil layer depths were set to 1.5, 1.2, 1.0, and 0.8 m for
each soil. Ratliff et al. (1983) reported ranges of plant extractable water for different
soil types. With their published values, we used plus or minus one standard
deviation around the mean for plant extractable water to give the ranges of PAW for
different soil types. For a given soil type, the highest and lowest curve numbers
(Jones and Kiniry, 1986) were selected to test the simulated result’s response to the
curve number. Five scenario data sets were set up, in which only one variable was
changed and others were kept the same as the background data sets: decreased solar
radiation (Scenario 1a) and increased solar radiation (Scenario 1b), �20% rainfall
(Scenario 2a) and+20% rainfall (Scenario 2b), soil depths of 1.5 m (Scenario 3a), 1.2
m (Scenario 3b), 1.0 m (Scenario 3c), and 0.8 m (Scenario 3d), 14–25% PAW decrease
(Scenario 4a) and 13–26% PAW increase (Scenario 4b), and lowest (Scenario 5a) and
highest (Scenario 5b) reported runoff curve numbers for each soil type (Table 4).
The relative sensitivity (Wilkerson et al., 1983) was used for determining the sig-

nificance or sensitivity of variables to the simulated results:

Relative sensitivity ¼ Y Xþ�Xð Þ � Y Xð Þð Þ=Y Xð Þð Þ= �X=�Xð Þ
�
�

�
�

where Y represented the simulated result (grain yield),X represented each variable, and
�X represented the absolute change in variable X. The greater the relative sensitivity,
the more sensitive the grain yield was to the variable. This gave some indication of how
accurately the variable should be described to realistically simulate grain yields.
Mean county yields were simulated from 1989 to 1998 with background and sce-

nario data sets respectively by addressing the following questions:

1. CouldALMANACdescribe location differences in countymean grain yields of

maize and sorghum with the background data sets? If measured county mean
yields were regressed on simulated county mean yields, how close was the
regression line to the 1:1 line and what was the r2? For each county, how did the
model’s coefficient of variation (CV) compare with the CV for measured yields.

2. Comparing the simulated yields with different scenario data sets to that with

background data sets, what were the differences among counties? Which
variables were most critical for yield prediction?

3. What couldbe learnedabout the cropmodeling process fromour study formodel

users to apply the model, especially related to input data set development?
3. Results and discussion

3.1. County average yields

The ALMANAC model realistically simulated county mean yields for maize and
sorghum for 10 years (Table 5). The mean error [(simulated yield�measured yield)/
measured yield] of mean simulated grain yields was 2.6% for maize, and �0.6% for
Y. Xie et al. / Agricultural Systems 78 (2003) 1–16 7



sorghum. Sorghum yields were slightly underpredicted and maize yields were slightly
overpredicted. The overall mean simulated grain yields of all counties for both maize
and sorghum were similar to the mean measured county yield. The mean CV values
of simulated grain yields of each county for maize; 54% for all counties, 40% for
irrigated counties, and 67% for dryland counties, were larger than the mean CV
values of measured; 27, 18, and 35%, respectively. For sorghum, the mean CV
values of simulated grain yields of each county; 21% for all counties, 11% for irri-
gated counties, and 30% for dryland counties, were similar to the mean CV for the
measured grain yields; 17, 12, and 22%, respectively.
The model realistically simulated trends in mean yields among locations (Fig. 1–3).

The regression of mean simulated yields to mean county yields for maize was:

MYIELD ¼ 0:92 SYIELD þ 0:24; r2 ¼ 0:99 ð1Þ

where MYIELD is the mean measured county yield (Mg ha�1) for each county, and
SYIELD is the mean simulated yield for each county. For sorghum yields simulated,
the regression equation was:

MYIELD ¼ 1:23 SYIELD þ 0:75; r2 ¼ 0:91 ð2Þ

For maize and sorghum pooled, the regression equation was:

MYIELD ¼ 0:94 SYIELD þ 0:25; r2 ¼ 0:97 ð3Þ

All the regressions were significant (�=0.01). The y-intercepts were not
significantly different from zero and the slopes were not significantly different from
1.0.
Table 5

Measured and simulated maize and sorghum grain yields and coefficients of variation (CV) for nine

counties (10 years at each county)
County
 Maize
 Sorghum
Measured
 Simulated
 Measured
 Simulated
Mean

(Mg ha�1)
CV

(%)
Mean

(Mg ha�1)
CV

(%)
Mean

(Mg ha�1)
CV

(%)
Mean

(Mg ha�1)
CV

(%)
Moore
 9.2
 14
 9.8
 9
 5.1
 10
 4.4
 9
Lubbock
 6.4
 19
 6.3
 39
 3.3
 15
 3.3
 14
Dallas
 3.7
 35
 3.7
 55
 2.4
 24
 2.7
 31
Bell
 3.4
 39
 3.4
 81
 3.0
 24
 2.9
 43
Medina
 4.5
 12
 5.1
 49
 4.5
 15
 4.2
 14
Nueces
 3.1
 43
 3.4
 63
San Patricio
 3.1
 24
 3.1
 36
Wharton
 4.6
 22
 4.5
 69
 4.1
 17
 4.2
 11
Hidalgo
 4.1
 30
 3.8
 65
 4.1
 9
 4.2
 7
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Fig. 1. Maize simulations with ALMANAC in eight counties of Texas. The solid line is the regression and

the dashed line is the line with a slope of 1.0, through the origin. Each point represented one county. The

measured and simulated yields were mean county yields for 10 years from 1989 to 1998 in each county.
Fig. 2. Sorghum simulations with ALMANAC in eight counties of Texas. The solid line is the regression

and the dashed line is the line with a slope of 1.0, through the origin. Each point represented one county.

The measured and simulated yields were mean county yields for 10 years from 1989 to 1998 in each county.
Y. Xie et al. / Agricultural Systems 78 (2003) 1–16 9



The model’s bias values (simulated minus measured) and the root mean square
error (RMSE) values were similar across locations (Table 6). For each county, bias
values and values for root mean square error were <1.0 Mg ha�1 for both maize
and sorghum. The simulated results were similar to the measured yields for both
maize and sorghum, but sorghum simulations were more stable than maize.
Table 6

Bias (simulated minus measured grain yields) and root mean square error (RMSE) (Mg ha�1) for 10 years

at nine counties in Texas
County
 Maize
 Sorghum
Bias (Mg ha�1)
 RMSE (Mg ha�1)
 Bias (Mg ha�1)
 RMSE (Mg ha�1)
Moore
 0.67
 0.21
 �0.70
 0.12
Lubbock
 0.06
 0.53
 �0.02
 0.07
Dallas
 �0.04
 0.61
 0.31
 0.26
Bell
 �0.02
 0.64
 �0.17
 0.31
Medina
 0.11
 0.52
 �0.31
 0.17
Nueces
 0.31
 0.46
San Patricio
 0.08
 0.26
Wharton
 �0.10
 0.86
 0.14
 0.15
Hidalgo
 0.22
 0.59
 0.11
 0.16
Mean
 0.14
 0.55
 �0.07
 0.19
Fig. 3. Maize and sorghum simulations with ALMANAC in nine counties of Texas. The solid line is the

regression and the dashed line is the line with a slope of 1.0, through the origin. Each point represented

one county. The measured and simulated yields were mean county yields for 10 years from 1989 to 1998 in

each county.
10 Y. Xie et al. / Agricultural Systems 78 (2003) 1–16



3.2. Sensitivity analyses

Changes in solar radiation had different effects on yield for the two crops.
Increasing solar radiation decreased yields for dryland maize and sorghum (Table 7).
For irrigated maize, both increases and decreases in solar radiation showed a
decrease in mean yields. For irrigated sorghum, yields increased with increasing
solar radiation. The effect of changing solar radiation on the yields was small. The
decreases and increases in solar radiation resulted in a changes less than 7% in the
overall mean dryland maize yields and less 3% in overall mean dryland sorghum
yields. With irrigation, decreases and increases in solar radiation resulted in less than
2% changes in overall mean maize yields and less than 8% changes in overall mean
sorghum yields. Increased solar radiation resulted in increased water stress for dryland
Table 7

Relative per cent changea in simulated maize and sorghum grain yields with changes in solar radiation

(Scenario 1), rainfall (Scenario 2), soil depth (Scenario 3), soil plant available water (Scenario 4), and

runoff curve number (Scenario 5)
County
 Scenario 1
 Scenario 2
 Scenario 3
 Scenario 4
 Scenario 5
a
 b
 a
 b
 a
 b
 c
 d
 a
 b
 a
 b
Maize
Moore
 �12
 3
 �13
 �20
 �6
 �6
 �8
 �31
 �3
 4
 �6
 �3
Lubbock
 �1
 2
 �11
 7
 �1
 �4
 �12
 �20
 1
 �2
 9
 �7
Dallas
 5
 �3
 �27
 26
 �8
 �14
 �26
 �30
 �7
 2
 54
 �14
Bell
 1
 �1
 �32
 20
 �9
 �15
 �21
 �23
 �7
 2
 58
 �15
Medina
 11
 �7
 �22
 31
 0
 1
 �10
 �23
 8
 6
 43
 �19
Nueces
 17
 �8
 �32
 54
 �13
 �22
 �11
 �17
 7
 32
 39
 �55
Wharton
 1
 �6
 �26
 29
 �7
 �21
 �14
 �20
 6
 �15
 127
 �21
Hidalgo
 �3
 3
 �9
 41
 �7
 �15
 �19
 �21
 �5
 10
 11
 �6
Dryland mean
 6
 �4
 �29
 33
 �9
 �18
 �18
 �22
 0
 13
 70
 �26
Irrigated mean
 �1
 �1
 �14
 15
 �4
 �6
 �12
 �24
 0
 4
 14
 �9
Combined mean
 2
 �3
 �22
 24
 �7
 �12
 �15
 �23
 0
 9
 42
 �18
Sorghum
Moore
 �11
 11
 �4
 �12
 1
 2
 2
 �11
 3
 6
 �7
 3
Lubbock
 �2
 2
 �6
 6
 �2
 �8
 �22
 �51
 �3
 0
 10
 �4
Dallas
 3
 �10
 �32
 16
 �8
 �15
 �19
 �25
 �11
 �5
 31
 16
Bell
 1
 �1
 �25
 21
 �7
 �10
 �14
 �16
 �5
 5
 42
 �16
Medina
 �5
 4
 �11
 6
 0.0
 �3
 �6
 �14
 0
 2
 6
 �9
San Patricio
 0
 �1
 �25
 23
 �11
 �17
 �3
 �9
 10
 15
 18
 �52
Wharton
 �4
 3
 �13
 6
 �8
 �13
 �16
 �23
 �3
 4
 6
 �29
Hidalgo
 �10
 11
 0
 0
 �2
 �3
 �5
 �9
 �1
 1
 0
 0
Dryland mean
 0
 �2
 �24
 16
 �9
 �14
 �13
 �18
 �2
 5
 24
 �20
Irrigated mean
 �7
 7
 �5
 0
 �1
 �3
 �8
 �21
 0
 2
 2
 �3
Combined mean
 �4
 3
 �15
 8
 �5
 �9
 �11
 �20
 �1
 4
 13
 �12
For Scenarios 1, 2, 4 and 5, ‘‘a’’ was a decrease and ‘‘b’’ was an increase in the variable (see text). For

Scenario 3, soil depth was progressively decreased from a to d.
a Relative per cent=(simulation with scenario data set�simulation with background data set)/simu-

lation with background data set.
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maize and sorghum simulations. Water stress decreased biomass product per unit
light intercepted, in agreement with Chapman et al. (1993). Maize production was
more sensitive to drought stress than sorghum, so the water stress effect was more
obvious for maize.
Maize was more sensitive to the rainfall changes than sorghum. Likewise, rainfall

changes had greater effects on dryland yields than irrigated, as expected. For dryland
conditions, the 20% decrease and increase in rainfall resulted in proportionately
greater changes of simulated mean yields for maize. Simulated changes for dryland
sorghum were proportionately similar to the rainfall change. In Moore county,
where irrigation was automatically applied in the model to keep the similar yields
with different rainfall, there was 3% greater irrigation with decreased rainfall and
8% less with increased rainfall than in the original data for maize, and 5% greater
and 6% less than the original data for sorghum. There was little response to irri-
gation water demand compared with the 20% rainfall changes.
Similar to response to rainfall changes, the simulated yields of maize were more

sensitive to soil depth changes than yields of sorghum. Simulated maize and sorghum
yields decreased with decreasing soil depth because plant available water in the soil
profile was reduced. Compared with the original soil depth of about 2.0 m, mean
plant available water of the soils with 1.5, 1.2, 1.0, and 0.8 m depth was reduced by
23, 37, 46, and 56% (Table 4). The mean simulated yields decreased progressively as
depth decreased, for both maize and sorghum.
Changing plant available water by altering upper and lower limits resulted in little

change in simulated yields. A 23% decrease and increase in plant available water
resulted in less than 10% changes in mean maize yields and less than 5% changes in
mean sorghum yields. As expected, maize yields were more sensitive to plant avail-
able water than sorghum, especially under dryland conditions.
Jones and Kiniry (1986) gave the different runoff curve numbers for different

hydrologic soil groups and tillage practice for row crops. Such changes in curve
number greatly impacted simulated yields. An 8% decrease (lowest curve number)
and a 4% increase (highest curve number) in curve number resulted in large changes
for mean maize yields. Mean changes for sorghum yields were less than for maize,
but still proportionately greater than the curve number changes. Under dryland
conditions, decreased curve number increased the mean maize yields nearly three
fold as much as it increased the mean sorghum yields. Increased curve number for
dryland locations decreased mean maize and sorghum yields by similar percentages.
Many models of soil–crop systems use a USDA curve number approach to calculate
runoff (Connolly, 1998). Therefore, accurate values of curve number in input data
sets are essential to realistically simulate yields, especially in dryland conditions.
The two crops showed different rankings for the relative sensitivity of input factors.

For all the sites, runoff curve number had the highest relative sensitivity for both
maize and sorghum (Table 8). For both irrigated and dryland maize, the relative
significance ranking was: curve number, rainfall, solar radiation, soil depth, and
plant available water. Sorghum ranking of significant variables differed between
irrigated and dryland conditions. The order of the significant variables was the same
as the maize for dryland sorghum, but for irrigated sorghum, the ranking was: curve
12 Y. Xie et al. / Agricultural Systems 78 (2003) 1–16



number, solar radiation, rainfall, soil depth, and plant available water. Maize was
more sensitive to water stress than sorghum, and thus the factors related to water
supply such as curve number, rainfall, soil depth, and plant available water affected
simulated yields more for maize than for sorghum. Comparing values of relative
sensitivity between maize and sorghum, maize had greater sensitivity for all the
variables except solar radiation with irrigated sorghum. For irrigated sorghum, solar
radiation was the second most sensitive variable.
4. Conclusion

The ALMANAC model realistically simulated mean county yields for maize and
sorghum and had small values for bias and for root mean square errors. As dis-
cussed earlier, the use of a single scenario data set for each county for maize resulted
in the expected result of greater variability among simulated yields for each county,
than among measured yields. This was not as evident for the sorghum simulations.
Table 8

Relative sensitivity of simulated maize and sorghum yield to solar radiation (SR), rainfall (R), soil depth

(SD), soil plant available water (PAW), and curve number (CN) (10 year at each county)
County
 SR
 R
 SD
 PAW
 CN
Maize
Moore
 1.21
 0.82
 0.27
 0.24
 0.90
Lubbock
 0.31
 0.44
 0.18
 0.07
 1.54
Dallas
 0.53
 1.33
 0.47
 0.18
 6.03
Bell
 0.08
 1.30
 0.42
 0.17
 6.56
Medina
 0.91
 1.32
 0.22
 0.28
 5.24
Nueces
 1.28
 2.16
 0.32
 0.76
 8.78
Wharton
 0.52
 1.37
 0.39
 0.42
 11.80
Hidalgo
 0.31
 1.25
 0.35
 0.33
 1.35
Dryland mean
 0.60
 1.54
 0.40
 0.38
 8.29
Irrigated mean
 0.69
 0.96
 0.26
 0.23
 2.26
Combined mean
 0.65
 1.25
 0.33
 0.31
 5.28
Sorghum
Moore
 1.76
 0.38
 0.08
 0.30
 1.08
Lubbock
 0.41
 0.29
 0.39
 0.07
 1.22
Dallas
 0.87
 1.18
 0.41
 0.33
 5.37
Bell
 0.17
 1.14
 0.30
 0.20
 5.99
Medina
 0.46
 0.43
 0.16
 0.04
 1.70
San Patricio
 0.08
 1.19
 0.22
 0.48
 5.65
Wharton
 0.48
 0.47
 0.37
 0.13
 6.77
Hidalgo
 1.04
 0.02
 0.10
 0.04
 0.01
Dryland mean
 0.40
 1.00
 0.32
 0.29
 5.95
Irrigated mean
 0.92
 0.28
 0.18
 0.11
 1.00
Combined mean
 0.66
 0.64
 0.25
 0.20
 3.48
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Thus using such a simplification appears to be adequate for simulating mean maize
yield of a county but may have difficulties when simulating individual year maize
yields for a county. Using the scenario data sets with changing solar radiation,
rainfall, soil depth, PAW, and curve number, the simulated yields changed for both
maize and sorghum, but maize was more sensitive to changes than sorghum. Accurate
estimates of curve number and rainfall are important for both maize and sorghum
yield simulations, especially for dryland conditions. If water supply is adequate for
sorghum growth, accurate values of solar radiation are critical. The fact that the
simulated yields differed in their sensitivity to variables gave some basic ideas on
input data sets for future model users.
Based on our sensitivity analyses, an efficient way to develop input data files for

crop modeling is as follows. First, curve numbers should be estimated accurately
according to the hydrologic group, row configuration or terraces, and terrain. Next,
the closest weather station should be selected for weather data, especially rainfall.
Once the closest available rainfall station is chosen, long-term average monthly solar
radiation values could be used without measurement. To simulate a county’s yields,
the cropland soil type having the largest extent in the county should be selected from
the soil survey. This soil can be used with soil depth changed according to the actual
soil profiles in the field. Crop and management parameters can be set up based on
the users’ experience or common cultural system features.
This type of sensitivity analysis of variables provides guidance for the process of

creating input data sets for crop modeling. Such analysis is also valuable for risk
assessment with extreme climatic conditions and different soil features. When
developing data sets, it is necessary not only to estimate accurate values of curve
number, but also to determine the accurate rainfall data and soil depth for a location.
The fact that simulated mean county grain yields of maize and sorghum reasonably
changed with the different scenario data sets gave us increased confidence to simulate
effects of these factors on crop growth and to predict yields in extreme environ-
ments. In addition, it is realistic that rainfall can vary 20%, and soil depth can vary
from 1.5 to 0.8 m in actual situations. Thus yield responses we have reported for
data sets with such changes in rainfall or soil depth should be helpful to future users
developing data sets for their locations.
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