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Abstract: An efficient classification framework for mapping agricultural tillage practice using 

hyperspectral remote sensing imagery is proposed, which has the potential to be implemented 

practically to provide rapid, accurate, and objective surveying data for precision agricultural 

management and appraisal from large-scale remote sensing images. It includes a local region filter (i.e., 

Gaussian low-pass filter (GLF)) to extract spatial/spectral features, a dimensionality reduction process 

(i.e., local fisher’s discriminate analysis (LFDA)), and the traditional k-nearest neighbor (KNN) 

classifier, which is denoted as GLF-LFDA-KNN. Compared to our previously used local average filter 

(LAF) and adaptive weighted filter (AWF), the GLF considers spatial features in a small neighborhood, 

but it emphasizes the central pixel itself and it is data-independent; therefore it can achieve the balance 

between classification accuracy and computational complexity. The KNN classifier has lower 

computational complexity, compared to the traditional support vector machine (SVM). After 

classification separability is enhanced by the GLF and LFDA, the less powerful KNN can outperform 

SVM and the overall computational cost stays lower. The proposed framework can also outperform the 

support vector machine with composite kernel (SVM-CK) that uses spatial-spectral features. 

 

Keywords: Conservation tillage, hyperspectral data, feature extraction, spatial-spectral classification, 

agricultural remote sensing. 

 

I. INTRODUCTION 

Conservation tillage management has been advocated for the purpose of soil preservation and 

sustainable crop production [1, 2]. Conservational tillage practice induces less surface disturbance and 
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leaves more crop residues, which can decrease runoff rate, improve soil and water quality, and increase 

organic matter.  The demand for mapping of crop tillage practices has been brought up for precision 

agricultural management and appraisal [3]. However,  current methods to mapping massive crop tillage 

practices are mainly with field investigations, which are labor-costing, time-consuming, subjective, 

and difficult to generate widely distributed survey data. Remote sensing technology provides a more 

rapid, accurate, and objective solution [3]. Moreover, the vast data from remote sensing in agriculture 

requires more efficient approaches in data analytics, including tillage mapping, in support of 

management decisions.  

Some methods have been explored for classification of tillage with multispectral remote sensing 

images with indices or classifiers [4, 5, 6]. However, these methods need data acquired at a specific 

time [4], or are based on multi-temporal data with revisits over the observed field [5, 6], making the 

task difficult and costly. Hyperspectral data provides more subtle spectral information about the 

imaged scene with hundreds of narrow contiguous bands, and is able to reveal spectral discrepancy 

among different tillage conditions, thereby providing a feasible solution for agricultural tillage practice 

mapping [7]. However, challenge still remains because of spectral similarities. For fields with different 

tillage conditions, a spectrum can be taken as mixture of soil and crop residues, and soil moisture. The 

spectral difference of the field with different tillage conditions mainly come from the proportion of soil 

and crop residue, and soil moisture. Thus, for better discrimination of different tillage practices, the 

shortwave infrared spectrum needs to be adopted to reveal more details about vegetation and moisture 

conditions. In this study, we choose Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data 

with shortwave infrared information in the experiments. 

Numerous classification algorithms have been developed using hyperspectral data with the rich 

spectral information [8-11]. Many pixel-wise classifiers are based solely on spectral signatures. For 

these methods, pixels are classified independently without considering the relations between spatially 

adjacent pixels. However, recent investigations have demonstrated the importance of spatial 

information, and more classifiers have utilized spectral-spatial features. This is particularly true for 

tillage practice classification because different tillage systems have different spatial features. 

Classifiers with spatial information can be mainly divided into two categories, the one integrating 

texture-related features and the one integrating contextual relation. The texture information is often 

combined to generate a joint feature vector for pixel-wise classification [11-18]. For example, 

morphological profile (MP) has been introduced for classification [12]. Later, MP features were 

integrated with spectral features in hyperspectral image analysis [13]. Mean feature is combined with 

spectral features for support vector machine (SVM) based classification [14]. Texture features, such as 

digital wavelet transform (DWT) [15], 2-D Gabor features [16], 3-D Gabor features [17] and gray level 
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co-occurrence matrices (GLCM) [18], have also been investigated. The methods integrating contextual 

information include the relaxation labeling, and those with the random field models, such as 

conditional random field, Markov random field (MRF), hidden Markov model (HMD), etc. [19-22]. 

Applying a local-region filter (LRF) has been demonstrated as an efficient approach for combining 

spatial-spectral information [23-24], which has much lower complexity than the aforementioned 

methods such as MF and GLCM. It is particularly useful for images with large homogeneous areas, 

such as agricultural remote sensing images. An LRF filter an image by replacing the central pixel 

(vector) with the generated feature according to the weights assigned to its neighbors. The processed 

image may have improved discriminative ability by reducing within-class spectral variations and 

intrinsic noise. An LRF, such as local average filter (LAF), has been tested for classification of 

conservation tillage practices [25]. The LAF assigns identical weights to the surrounding neighboring 

pixels and may be suboptimal for its rough averaging procedure. In [24], the adaptive weighted filter 

(AWF) was proposed to improve the performance of LAF by considering pixel discrepancy with a 

small neighborhood. 

In this paper, we will investigate the performance of LAF and AWF in conservation tillage mapping. 

Considering the fact that practical remote sensing data often have large scales, the computational cost 

of an LRF is a concern. Although the LAF basically does not introduce additional cost in computing, 

its performance may be poor in heterogeneous areas; on the other hand, the AWF outperforms in [24] 

but with much higher computational cost because pairwise pixel similarity has to be measured. In this 

paper, we propose to use the cost-effective Gaussian low-pass filter (GLF), which assigns larger 

weights to spatial (not feature) nearest neighbors. It is expected that the data-independent GLF can 

outperform the LAF, and is computationally much more efficient than the data-dependent AWF, 

making it more suitable to large-scale image data analysis. 

Support vector machine (SVM) is a powerful classifier [12]. However, its complexity may be high 

since a large optimization problem has to be solved during its training process. The traditional k-

nearest neighbor (KNN) classifier is much simpler, but less powerful.  Here, we propose to use a 

dimensionality reduction process, called locality-preserving-based discriminate analysis (LFDA) [9, 

11], to improve class separability. When the KNN is applied to the LFDA-transformed data, the final 

classification accuracy can be as high as that of SVM.  Note that the major computational cost in 

LFDA is in an eigen-decomposition process (here only the first eigenvector is used), which is lower 

than that of SVM.  

The proposed methods, including the step of spatial-spectral feature extraction with a LRF, are 

denoted as LAF-LFDA-KNN, AWF-LFDA-KNN, and GLF-LFDA-KNN, respectively. They are 

validated with two real hyperspectral datasets, and compared with SVM [12], SVM with composite 
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kernel (SVM-CK) [14], the traditional KNN, LAF followed by KNN (LAF-KNN), AWF followed by 

KNN (AWF-KNN), and GLF followed by KNN (GLF-KNN). The experimental results demonstrate 

that the proposed framework (i.e., an LRF followed by LFDA+KNN) can apparently improve the 

classification performance, and can be applied to agricultural tillage condition mapping. In particular, 

GLF-LFDA-KNN requires lowest computational cost but offers better classification performance than 

SVM-CK. 

The remainder of this paper is organized as follows. Section II introduces the proposed methods. 

Section III provides experimental results. Section IV draws the conclusion. 

 

II. PROPOSED METHOD 

2.1. Local Region Filter 

Since mapping of the conservation tillage practices involves several classes with very similar 

spectral features, extracting discriminant features to maximize class separability is critical. An LRF is 

adopted because its capability of efficiently extracting spectral-spatial features has been demonstrated 

in our previous work; in addition, such a low-pass filter can smooth out noise and trivial spectral 

variations. It is simply realized by spatial convolution with a sliding window, and then the central pixel 

is replaced with the filtering output, which can be expressed as 
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where G  represents the original image of size ' 'm n d× ×  ( ' 'm n×  is the spatial size and d  is the 

number of spectral bands), 'G  represents the generated image after spatial filtering, and W  is the filter 

with a m m×  window ( m is usually an odd number) with all the weights be positive and sum-to-one.   

An LAF uses the same weights for all the neighboring pixels in the window. Obviously, pixels 

within a local neighborhood have heterogeneity or may belong to different classes. Thus, in AWF, the 

element ,i jw  is large only when an adjacent pixel is similar to the central pixel. The popular Gaussian 

kernel function is utilized to describe the divergence between two vectors, and the relationship ,i jL

between ix  and jx  is computed as 
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where jx represents the neighbor pixels around ix , and σ  is a parameter of the Gaussian kernel 

function, which is set according to the following equation  

2
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The weights in AWF are obtained according to the similarity distances measured between the central 

pixel and its surrounding pixels, thus the surrounding samples that are dissimilar to the central sample 

to be classified provide less contribution to the convolution process, which are provided with smaller 

weights. Thus, it is robust to less homogeneous image scenes. However, the AWF is computationally 

expensive due to its data-dependent nature. 

In the GLF, the equation similar to Eq. (2) is used for weight assignment, but the distance between 

two pixels is based on their spatial coordinates. Obviously, the central pixel itself is assigned the 

largest weight, and the four nearest neighbors the next, with enlargement of the distance the weight 

value follows the trends of a Gaussian curve. Such weight assignment results to a fixed filter, and is 

data-independent as in the LAF, resulting in low computational cost. Compared to the LAF, the GLF 

still provides smoothing effect but image details are less blurred.  

2.2. Local Fisher’s Discriminate Analysis 

After spatial-spectral features being generated, LFDA [9, 11] is adopted to reduce feature 

dimensions and enhance class separability. LFDA is a supervised dimensionality-reduction technique 

which is designed to handle multimodal, non-Gaussian distributions. In essence, LFDA combines the 

properties of linear discriminate analysis (LDA) [27] and local preserving projection (LPP) [28]. 

LFDA preserves neighborhood relationships in the embedding by employing an “affinity” matrix Ai,j, 

and define the “local” between-class Sb and within-class Sw  scatter matrices as   
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where is  and js  are two training samples, and ( )bV  and ( )wV  are matrices defined as 
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where iy  and jy  are the class labels for the two training samples class labels, and ln  is the number of 

training samples available for the l-th class. 

Similar to LDA, LFDA seeks to find a linear transformation such that the within-class scatter is 

minimized and the between-class scatter is maximized. The LFDA solution is obtained by maximizing 

the Rayleigh quotient, and the solution can be simply obtained by solving a generalized eigen-

decomposition problem [29]. It is expected that a less powerful classifier, such as KNN, can offer 

satisfactory performance on the LFDA-transformed data. 

2.3. K-Nearest Neighbor Classifier 

The typical KNN classifier follows the LFDA process to determine the final class label due to its 

simplicity. It attempts to find out which training sample is nearest to the testing sample according to a 

given distance measure, and then assign the class label of the training sample to the testing sample. 

Euclidean distance is commonly used to measure the similarity between a training sample and a testing 

sample. 

 

III. EXPERIMENTAL ANALYSIS 

The proposed methods are tested with two real datasets containing the tillage information to compare 

the classification performance. 

3.1. Hyperspectral Data 

The first HSI dataset was acquired using National Aeronautics and Space Administration (NASA)’s  

AVIRIS sensor and was collected over northwest Indiana's Indian Pines test site in June 1992. This 

scene represents a vegetation-classification scenario with 145×145 pixels in the 0.4- to 2.45 mμ  region 

of the visible and infrared spectrum with a spatial resolution of 20m. The scene contains two-thirds 
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agriculture, and one-third forest. In this research, a total number of 200 bands are used after removal of 

water-absorption bands.  

The second dataset was also collected by the AVIRIS sensor, capturing an area over Salinas Valley, 

California, with a spatial resolution of 3.7m. The clipped image comprises of 236 × 217 pixels. 

     
(a)                                        (b) 

Fig. 1  Indian pines dataset: (a) false-color image generated by using bands 36, 15 and 10; (b) ground truth for the 

tillage-related classes. 

 

TABLE I 

PER-CLASS SAMPLES FOR THE INDIAN PINES DATASET. 

Class 
Number of samples

No. Name 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

Alfalfa 
Corn-notill 

Corn-mintill 
Corn 

Grass-pasture 
Grass-trees 

Grass-pasture-mowed 
Hay-windrowed 

Oats 
Soybean-notill 

Soybean-mintill 
Soybean-clean 

Wheat 
Woods 

Building-grass-trees-drives 
Stone-steel-towers 

46 
1428 
830 
237 
483 
730 
28 

478 
20 

972 
2455 
593 
205 
1265 
386 
93 

Total 10249 
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(a)                                        (b) 

 Fig. 2  Salinas dataset: (a) false-color image generated by using bands 36, 15 and 10; (b) ground truth for the 

tillage-related classes. 

 

TABLE II 

PER-CLASS SAMPLES FOR THE SALINAS DATASET. 

Class 
Number of samples

No. Name 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

Brocoli-green-weeds-1 
Brocoli-green-weeds-2 

Fallow 
Fallow-rough-plow 

Fallow-smooth 
Stubble 
Celery 

Grapes-untrained 
Soil-vineyard-develop 

Corn-senesced-green-weeds 
Lettuce-romaine-4wk 
Lettuce-romaine-5wk 
Lettuce-romaine-6wk 
Lettuce-romaine-7wk 
Vineyard-untrained 

Vinyard-vertical-trellis 

2009 
3726 
1976 
1394 
2678 
3959 
3579 
11271 
6203 
3278 
1068 
1927 
916 
1070 
7268 
1807 

Total 54129 
 

The two images and the chosen samples are shown in Figs. 1 and 2, respectively. The class 

description and the sample numbers for these two datasets are shown in Tables I and II, respectively. 
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Note that these two images contain many classes, but only the tillage-related classes are concerned in 

this research, which are highlighted in Tables I and II. In the  experimental setting, 10 training samples 

for each class are randomly selected from the training sets, and all the remaining samples are used to 

test the classification accuracy. To avoid the bias, the experiments are repeated 20 times and all the 

classification accuracies are averaged. 

 

3.2. Parameter Tuning  

First of all, the classification performance of the LRF filters with various window sizes m  is 

discussed. The window size m  is investigated with a step interval of 2, starting from 1, which is 

actually with no prior filtering process. Fig. 3 illustrates the changing trends of the overall 

classification accuracy with different parameter settings with 10 trials on the Indian Pines dataset over 

the class of corn-notill and corn-mintill. 

 
(a) LAF-LFDA-KNN                                             (b) GLF-LFDA-KNN 

 
(c) AWF-LFDA-KNN 

Fig. 3. Overall classification accuracy in the Indian Pines experiment with various window sizes (different curves 

indicate different trials). 
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The change of the overall accuracy with enlargement of window sizes reveals the characteristics of 

the LRF, which is sensitive to kernel size. Rapid falls can be seen for LAF-LFDA-KNN with window 

sizes exceeding the optimum value and the curve trends for repeated trials vary. The overall 

classification accuracy may even be lower than the original value, indicating possible distortion to the 

central pixel information. While for GLF-LFDA-KNN, the stability is better, and the accuracy at the 

optimum window size is higher. For AWF-LFDA-KNN, the curves are more stable, and the trends for 

repeated trials are consistent, implying more steady performance. This makes sense because AWF 

adaptively assigns weights according to the spectral similarity to the central pixel. From Fig. 3, the 

optimum window size for classifying corn-notill and corn-mintill is 15. 

3.3. Classification Performance 

The overall classification accuracies for the two datasets with different methods are listed in Table 

III. As can be seen from this table, the results of LAF-KNN, GLF-KNN and AWF-KNN are much 

better than KNN and SVM, and the result of AWF-KNN is comparable to that of SVM-CK, revealing 

the distinguishing performance of the LRF filtering process. In addition, the overall accuracies for 

LAF-LFDA-KNN, GLF-LFDA-KNN and AWF-LFDA-KNN are much better than other methods such 

as KNN, LAF-KNN, GLF-KNN, AWF-KNN, SVM and SVM-CK, implying the important role LFDA 

plays. Moreover, the results with AWF-LFDA-KNN are consistently higher than LAF-LFDA-KNN by 

1-3%, and GLF-LFDA-KNN follows with an improvement of 1-2%, showing the improved 

performance for adaptive combination of the local region information.  

TABLE III 

OVERALL CLASSIFICATION ACCURACY FOR DIFFERENT DATASETS. 

 Indian pines-Corn Indian pines-Soybean Salinas 

KNN 60.15% 66.65% 92.31% 

SVM 65.69% 69.23% 93.62% 

   SVM-CK 78.00% 76.68% 95.10% 

LAF-KNN 70.76% 70.85% 93.81% 

GLF-KNN 72.51% 73.42% 94.52% 

AWF-KNN 77.26% 78.06% 96.26% 

LAF-LFDA-KNN 89.46% 90.09% 99.10% 

GLF-LFDA-KNN 91.20% 92.12% 99.41% 

    AWF-LFDA-KNN 92.02% 93.87% 99.60% 
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The classification maps are shown in Figs. 4-6, which can be compared with the ground truth maps 

in Figs. 1-2. From the results, LAF-LFDA-KNN, GLF-LFDA-KNN and AWF-LFDA-KNN, with the 

local region filtering and dimension reduction process, yield evident improvements in producing 

smoother classification maps. With more adaptive combination of the information from the local 

region, AWF-LFDA-KNN provides the best performance, followed by GLF-LFDA-KNN.  

   
(a) KNN (b) SVM (c) SVM-CK 

   
(d) LAF-KNN (e) GLF-KNN (f) AWF-KNN 

   
(g) LAF-LFDA-KNN (h) GLF-LFDA-KNN (i) AWF-LFDA-KNN 

Fig. 4. Classification map with Indian pines dataset for corn tillage conditions. 

   
(a) KNN (b) SVM (c) SVM-CK 
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(d) LAF-KNN (e) GLF-KNN (f) AWF-KNN 

   
(g) LAF-LFDA-KNN (h) GLF-LFDA-KNN (i) AWF-LFDA-KNN 

Fig. 5. Classification map with Indian pines dataset for soybean tillage conditions. 

 

   
(a) KNN (b) SVM (c) SVM-CK 

   
(d) LAF-KNN (e) GLF-KNN (f) AWF-KNN 
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(g) LAF-LFDA-KNN (h) GLF-LFDA-KNN (i) AWF-LFDA-KNN 

Fig. 6. Classification map with Salinas dataset for different tillage conditions. 

 

TABLE IV 

COMPUTATIONAL COST FOR DIFFERENT METHODS AND DATASETS. 

 Indian pines-Corn Indian pines-Soybean Salinas 

KNN 0.26s 0.38s 0.68s 

SVM 0.43s 0.54s 0.73s 

SVM-CK 1.1s 1.7s 3.37s 

LAF-KNN 0.67s 0.71s 1.33s 

GLF-KNN 0.75s 0.93s 1.54s 

AWF-KNN 1.04s 1.27s 2.99s  

LAF-LFDA-KNN 0.68s 0.76s 1.39s 

GLF-LFDA-KNN 0.79s 1.14s 1.86s 

AWF-LFDA-KNN 1.12s 1.54s 3.11s 

 

The computational cost is listed in Table IV. All the experiments are carried out on a computer with 

an Intel i7-4770 3.4GHZ CPU, 4GB of RAM and 64bit operating system. The two images to be 

processed are with 145×145 pixels and 236 × 217 pixels, and the number of samples for the datasets 

of Indian pines-Corn, Indian pines-Soybean and Salinas are 2238, 3407, 6018, respectively. Note that 

all classifiers related with KNN are implemented purely in MATLAB, and SVM is implemented in the 

popular libsvm package which uses MEX function to call C program in MATLAB. As is shown in 

Table III and IV, KNN can have competitive classification performance as SVM while with lower 

computation costs. When combining with some spatial filters, such as LAF, GLF and AWF, the 

precision is even greatly improved. It is worth mentioning that GLF-LFDA-KNN requires much less 

computational cost as compared to AWF-LFDA-KNN and SVM-CK, while providing comparable 

classification accuracy to AWF-LFDA-KNN and much better performance than SVM-CK as shown in 
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Table III. Thus, to be concluded, the proposed GLF-LFDA-KNN is promising for application in data 

mining of the big data, besides the fact that it has better classification performance with acceptable 

computational cost.  
 

IV. CONCLUSION 

In this paper, we proposed an efficient spatial-spectral classification framework for mapping 

agricultural tillage practices using hyperspectral remote sensing imagery. Considering the large scale 

of a remote sensing image data, we advocate the cost-effective GLF for spatial-spectral feature 

extraction and the simple KNN for classification. To improve the classification power for KNN, the 

LFDA is applied to improve class separability. The final GLF-LFDA-KNN can offer comparable 

classification accuracy as AWF-LFDA-KNN with much lower computational cost. Compared to 

SVM-CK using spatial-spectral features as well, GLF-LFDA-KNN outperforms in terms of both 

classification accuracy and computational efficiency. Since the LRF filtering process for each pixel is 

independent, it is potential to further reduce the computation burden with parallel computing when 

dealing with a large remote sensing scene. 
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