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ABSTRACT | With increased use of precision agriculture

techniques, information concerning within-field crop yield

variability is becoming increasingly important for effective

crop management. Despite the commercial availability of yield

monitors, many crop harvesters are not equipped with them.

Moreover, yield monitor data can only be collected at harvest

and used for after-season management. On the other hand,

remote sensing imagery obtained during the growing season

can be used to generate yield maps for both within-season and

after-season management. This paper gives an overview on the

use of airborne multispectral and hyperspectral imagery and

high-resolution satellite imagery for assessing crop growth

and yield variability. The methodologies for image acquisi-

tion and processing and for the integration and analysis of

image and yield data are discussed. Five application examples

are provided to illustrate how airborne multispectral and hy-

perspectral imagery and high-resolution satellite imagery have

been used for mapping crop yield variability. Image processing

techniques including vegetation indices, unsupervised classifi-

cation, correlation and regression analysis, principal compo-

nent analysis, and supervised and unsupervised linear spectral

unmixing are used in these examples. Some of the advantages

and limitations on the use of different types of remote sensing

imagery and analysis techniques for yield mapping are also

discussed.

KEYWORDS | Hyperspectral imagery; image analysis; multi-

spectral imagery; precision agriculture; satellite imagery; yield

variability

I . INTRODUCTION

Crop yield is perhaps the most important piece of informa-

tion for crop management in precision agriculture. It in-

tegrates the effects of various spatial variables such as soil
properties, topography, plant population, fertilization, ir-

rigation, and pest infestations. A yield map can therefore be

an indispensable input for site-specific operations either by
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itself or in combination with other spatial information [1].
With technological advances in electronic sensors and

Global Position Systems (GPSs), harvester-mounted yield

monitors have become commercially available for many

crops. Farmers and researchers are able to collect intensive

and accurate yield data simply and inexpensively during

harvest. Yield maps can be generated immediately follow-

ing data collection to show yield patterns within fields.

These maps not only help identify within-field spatial va-
riability for variable rate applications, but also enable

farmers and researchers to evaluate the economic returns

of different farming management strategies [2], [3]. In

addition, yield maps are important for field-level improve-

ments, such as drainage, land leveling, irrigation, fencing,

and for off-field information use [4].

Despite the commercial availability and increased use

of yield monitors, many harvesters are not equipped with
them. Moreover, yield monitor data can only be used for

after-season management, whereas some problems such as

nutrient deficiencies, water stress, or pest infestations

should be managed during the growing season. Therefore,

within-season estimates of relative yield variation will be

more useful for addressing these problems. Traditional

satelite imagery such as Landsat and SPOT has long been

used to monitor crop growing conditions and to estimate
crop yields over large geographic areas. However, this type

of imagery has limited use for assessing within-field yield

variability because of its coarse spatial resolution. There-

fore, airborne multispectral and hyperspectral imagery and

high-resolution satellite imagery such as QuickBird have

been used for this purpose. Remote sensing imagery ob-

tained during the growing season has the potential not only

for after-season management, but also for within-season
management. Additionally, yield maps derived from re-

mote sensing imagery can be used as an alternative when

yield monitor data are not available.

The objectives of this paper are to review and illustrate
with application examples on the use of airborne multi-

spectral and hyperspectral imagery and high-resolution

satellite imagery for mapping crop growth and yield va-

riability for precision agriculture applications.

II . METHODOLOGIES AND EXAMPLES

A. Airborne Multispectral Imagery and Ground
Sampling to Generate Yield Maps

Airborne multispectral imaging systems provide image

data at fine spatial resolutions and at narrow spectral bands

and have the real-time monitoring capability. Airborne

multispectral imagery has been related to crop yields based

on samples collected on field plots or in various sampling

patterns [5]–[10].

Yang and Anderson [7], [11] evaluated airborne multi-

spectral digital video imagery for delineating within-field
management zones and for mapping yield variability in

grain sorghum. An airborne multispectral imaging system

described by Everitt et al. [12] was used for image acqui-

sition. The system consists of three charge-coupled

device (CCD) analog video cameras, which are equipped

with a visible green (555–565 nm) filter, a visible red

(625–635 nm) filter, and a near-infrared (NIR, 845–857

nm) filter, respectively. The NIR, red, and green signals
from the cameras were digitized and combined to produce

color-infrared (CIR) composite images with 640 � 480

pixels and 256 gray levels.

Fig. 1(a) shows a CIR image for a 6-ha grain sorghum

field in south Texas in 1995. The image was acquired at an

attitude of 1300 m when plants were fully expanded,

corresponding to the bloom to soft dough stages of plant

growth. The pixel size of the image was 1.4 m. On the CIR
image, healthy plants have a reddish–magenta color, while

Fig. 1. (a) A color-infrared digital image, (b) a four-zone classification map, and (c) a yield map generated from the CIR image based on a

regression equation relating yield to NDVI for a 6-ha grain sorghum field in south Texas in 1995.
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chlorotic plants and areas with large soil exposure have a
whitish and grayish tone. The CIR image was classified

into four spectral zones using an unsupervised classifica-

tion procedure [Fig. 1(b)]. Unsupervised classification is

an iterative process of grouping pixels into a finite number

of classes or zones of similar spectral characteristics. The

advantage of classifying image data into discrete zones is

the reduced variance within each zone and therefore the

reduced number of ground samples required to identify
the cause of the variation within fields. These zones can be

used as management zones for plant and soil sampling and

for other farming operations. A stratified random sampling

approach was used to generate the sampling sites for the

field. This approach assured that every zone of the map

was sampled, while simultaneously preserving an element

of randomness. The sampling sites are also shown in the

classification map.
Correlation analysis showed that yield is significantly

related to the normalized difference vegetation index

(NDVI) with a correlation coefficient of 0.95. The impor-

tant implication of this strong correlation is that grain yield

can be estimated from NDVI for every pixel of the image.

Fig. 1(c) shows a grain yield map generated from the digital

image based on the regression equation between yield and

NDVI for the field. This map clearly shows the spatial
variability in yield within the field. Compared with the CIR

image and classification map, the yield map has a similar

spatial pattern, but reveals more variations within the

zones.

This study demonstrates how airborne multispectral

imagery can be used in conjunction with ground sampling,

GPS, Geographic Information Systems (GISs), and image

processing techniques for mapping within-field yield varia-
bility. The unsupervised classification technique is effec-

tive to separate the imagery into spectral zones with

different production levels. Multispectral images are also

proven instrumental in modeling the spatial variability of

yield. Significant correlations existed between grain yield

and image data. These results indicate that images ac-

quired during growing season can be used not only to

identify management zones, but also to map the variation
in yield within fields.

B. Relationships Between Yield Monitor Data and
Multidate Multispectral Imagery

With the increased use of harvester-mounted yield

monitors, intensive yield data can be collected from a field.

The availability of both yield monitor data and remote

sensing imagery allows the relations between yield and
spectral image data to be evaluated more robustly and

thoroughly than the use of limited numbers of yield sam-

ples. Many researchers have evaluated the relationships

between yield monitor data and airborne multispectral

imagery [13]–[17].

Yang and Everitt [16] evaluated the relationships be-

tween yield monitor data and airborne multispectral digi-

tal imagery for grain sorghum. An airborne three-camera
imaging system described by Escobar et al. [18] was used.

This system consists of three true digital CCD cameras that

are filtered to the same green, red, and NIR wavebands as

those in the previous imaging system to provide 8-b images

with 1024 � 1024 pixel resolution. Images with pixel sizes

of 0.85–0.92 m were acquired from multiple grain

sorghum fields on five different dates: April 16 and 22,

May 18 and 29, and June 16, 1998. Yield monitor data with
a spatial resolution of 8.7 m were collected using a Yield

Monitor 2000 system (Ag Leader Technology, Ames, IA)

from the field on June 29, 1998.

Fig. 2(a) and (b) shows two of the five CIR digital

images obtained from a 21-ha field. These images clearly

reveal distinct details of the spatial plant growth variation

within the field over the growing season. Table 1 summa-

rizes correlation coefficients of yield with the three bands
and the four vegetation indices based on the yield monitor

data and the images obtained from the grain sorghum field

on the five dates. Grain yield was significantly related to

each of the three bands and each of the four vegetation

indices for all the five dates. The general progression of the

correlations over the growing season can be clearly seen

from Table 1. The correlations consistently increased from

April 15 to May 18 until the crop reached peak vegetative
development. For the last two dates, the correlations

tended to level off, even though they fluctuated somewhat

for all the spectral variables.

Regression analysis showed R2-values for the best fit-

ting stepwise regression models relating grain yield to the

NIR, red, and green bands were 0.61, 0.65, 0.76, 0.79, and

0.74, respectively, for the five dates. The May 29 image

gave the highest correlation and accounted for 79% of the
variability in yield, though the May 18 and June 16 images

were almost equally good. Therefore, images taken around

or shortly after peak vegetative development could be a

better yield indicator than those taken on early or late

stages for grain sorghum. Fig. 2(c) and (d) shows the yield

maps generated from yield monitor data and from the

May 29 image, respectively. Overall pattern in the yield

map from the image is very similar to that in the map from
the yield monitor data. In contrast, the image-derived yield

map gives more details because the image data had a finer

spatial resolution than the yield monitor data (8.7 m).

Moreover, the spatial patterns displayed on both yield

maps are similar to those on the CIR images, indicating

yield patterns can be observed from airborne multispectral

imagery taken during the growing season.

It should be noted that the regression equations relat-
ing yield to the spectral bands or vegetation indices are

field specific or location specific and may not hold valid for

other fields in the same season or for the same fields or

location in the following season because many other fac-

tors can affect plant growth and yield. Currently, yield

monitors are available for many crops, but only a small

percentage of the farmers are using them. Airborne
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imagery in conjunction with ground sampling and regres-

sion analysis provides an alternative for yield mapping for

fields where yield monitor data are not available. Imagery
acquired on different dates in this study provided some

clue as to the optimal time period for image acquisition for

yield estimation. While accurate estimates of yield are not

always possible in the middle of the season, yield patterns

and within-field management zones identified from

airborne multispectral imagery can be very useful for

both within-season and after-season management.

C. Airborne Hyperspectral Imagery and Yield
Monitor Data for Mapping Yield Variability

Hyperspectral imagery contains tens to hundreds of

narrowbands and provides additional information that
multispectral data may have missed. These almost

Table 1 Correlation Coefficients ðrÞ of Yield With Three Bands and Four Vegetation Indices Based on Yield Monitor Data and Color-Infrared Images

Obtained From a Grain Sorghum Field on Five Dates in South Texas in 1998

Fig. 2. (a) A color-infrared image acquired in the early growing season, (b) a color-infrared image acquired after peak vegetative growth,

(c) a yield map generated from yield monitor data, and (d) a yield map derived from the May 29 image based on a regression equation relating

yield to the three bands in the image for a 21-ha grain sorghum field in south Texas in 1998.
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continuous spectral data have the potential for better

differentiation and estimation of biophysical attributes for

some applications. Airborne hyperspectral imagery has
been evaluated for estimating crop yields [19]–[23].

Yang et al. [20] examined the correlations between

yield monitor data and airborne hyperspectral imagery for

grain sorghum. An airborne hyperspectral imaging system

described by Yang et al. [24] was used for image acqui-

sition. The system consists of a digital CCD camera, a

prism–grating–prism imaging spectrograph, and a person-

al computer (PC) equipped with a frame grabbing board
and camera utility software. The system is configured to

capture 12-b images with a swath of 640 pixels and

128 bands from 457.2 to 921.7 nm at 3.63-nm intervals.

The first five bands and the last 21 bands were removed

from each image and the remaining 102 bands with

wavelengths from 475 to 845 nm were used for analysis.

Yield monitor data were collected using the same Ag

Leader yield monitor 2000 system.
Fig. 3(a) shows a CIR composite extracted from the

102-band hyperspectral image for a 14-ha grain sorghum

field in south Texas. The hyperspectral image was taken

around the peak plant development for the crop on

April 27, 2000. Poor plant canopies in the problem areas

were mainly due to the very sandy soil. Plants in those

areas had poor stand and low canopy cover because of the

low water and nutrient holding capability of the sandy soil.
Grain yield was significantly negatively related to the

visible bands and positively related to the NIR bands.

Correlation coefficients among the 102 bands varied from

�0.80 to 0.84. To eliminate the redundancy in the image

data, the original 102-band image was transformed into a

set of unrelated, independent principal components [25].

Stepwise regression results for relating grain yield to the

first ten principal components show that five of the ten
principal components were found to be significant and

explained 80% of the variability in yield. To identify the

bands or combinations of bands that were particularly

responsive to yield variability, stepwise regression was

performed directly on the yield data and the 102-band

hyperspectral image data. Seven of the 102 bands were
identified to be significant in the final regression equation

and explained about 82% of the variability in yield.

Fig. 3(b) and (c) show the yield maps generated from yield

monitor data and from the seven significant bands in the

image, respectively. Although multiple regression can be

used to identify the optimum bands for estimating yield,

these bands are only the best for the image and yield data

from which they are derived and might not be the best for
different data sets. For example, Yang et al. [21] identified

four significant bands, which were completely different

from the seven significant bands, to estimate yield for

another grain sorghum field.

The r-values for the six possible NDVI-type indices

(NIR versus blue, NIR versus green, NIR versus red, red

versus blue, red versus green, and green versus blue) de-

rived from the four simulated Landsat ETM+ broad bands
ranged from 0.60 for the red and blue pair to 0.83 for the

NIR and red pair. Based on stepwise regression analysis,

the four broad bands accounted for 76% of the variability

in yield, compared with 82% of the variability explained by

the seven significant narrowbands. Therefore, the hyper-

spectral image provided better yield estimation than the

simulated broad band multispectral image. Fig. 3(b) and

(c) presents the yield maps generated from yield monitor
data and from the hyperspectral image with the regression

equation relating yield to the seven significant bands. The

spatial patterns displayed on both yield maps are similar,

indicating yield patterns can be estimated from airborne

hyperspectral imagery taken during the growing season.

Fig. 4 shows a contour map of absolute r-values be-

tween yield and each of the 5151 (102!/100!/2!) possible

NDVI-type indices for the sorghum field. The absolute
r-values vary from 0 to 0.88 for sorghum. The r-values are

generally larger when one band has wavelengths smaller

than 730 nm and the other band has wavelengths larger

Fig. 3. (a) A color-infrared composite extracted from a 102-band hyperspectral image, (b) a yield map generated from yield monitor data, and

(c) a yield map derived from the hyperspectral image based on a regression equation relating yield to seven significant bands in the image

for a 14-ha grain sorghum field in south Texas in 2000.

Yang et al. : Using High-Resolution Airborne and Satellite Imagery to Assess Crop Growth and Yield Variability

586 Proceedings of the IEEE | Vol. 101, No. 3, March 2013



than 730 nm. However, the best r-values (> 0.85) occur

when one band is around 730 nm and the other was over

760 nm for the field. Also large r-values (> 0.825) occur

when one band in a pair has wavelengths between 550 and

575 nm and the other has wavelengths between 575 and

690 nm. Based on the contour map of r-values, better NDVI

images are more likely to be obtained by selecting one band
in the visible region and the other in the NIR region.

D. Applying Linear Spectral Unmixing to Airborne
Hyperspectral Imagery for Mapping Yield Variability

Although all possible narrowband NDVIs can be

calculated to identify the best NDVI, it is not always

practical to do so because of the large number of bands.

Moreover, the optimum narrowband NDVI identified for

one data set might not be the best for another. Therefore, it

is necessary to use a technique that can take advantage of
the spectral information in all the bands without the need

to choose which bands to use.

Spectral unmixing techniques can be used to quantify

crop canopy cover within each pixel of an image and have

the potential for mapping the variation in crop yield. Each

image pixel contains a spectrum of reflectance values for

all the wavebands. These spectra can be regarded as the

signatures of ground components such as crop plants or
soil, provided that a component, referred to as an end-

member, occupies the whole pixel. Spectra from mixed

pixels can be analyzed with linear spectral unmixing,

which models each spectrum in a pixel as a linear combi-

nation of a finite number of spectrally pure spectra of the

endmembers in the image, weighted by their fractional

abundances [26], [27].

When linear spectral unmixing is applied to an image,
it produces a suite of abundance fraction images, one for

each endmember in the model. Each fraction image shows

the spatial distribution of the spectrally defined compo-

nent as an NDVI image does. The fractional abundance of

crop plants determined from linear spectral unmixing is a

more direct measure of plant cover than an NDVI value.

Yang et al. [23] applied this technique to hyperspectral

imagery for mapping the variation in yield in two grain
sorghum fields and their results indicate that plant abun-

dance fraction images can be used as relative yield maps.

They also examined how variations in endmember spectra

affect the results and found that correlation coefficients

between yield and unconstrained plant abundance frac-

tions are not sensitive to the selection of plant and soil

endmembers, though the correlation coefficients between

yield and constrained plant abundance fractions are
affected by the choice of endmember spectra.

Linear spectral unmixing analysis requires the spectra

of the endmembers. They can be obtained directly from

the image, measured on the ground or derived from a

spectral library. In this study, crop plants and bare soil

were selected as the relevant endmembers. Thus, a simple

linear spectral unmixing model has the following form:

yi ¼ ai1x1 þ ai2x2 þ "i; i ¼ 1; 2; . . . ; n

where yi is the measured reflectance in band i for a pixel;

ai1 and ai2 are the known or measured reflectance in band i
for plants and soil, respectively; x1 and x2 are the unknown

cover fractions or abundances for plants and soil, respec-
tively; "i is the residual between measured and modeled

reflectance for band i; and n is the number of spectral

bands. This model is referred to as the unconstrained lin-

ear spectral unmixing model. For the constrained model,

the fractional abundances are subject to the nonnegativity

constraint and the sum-to-one constraint.

A pair of plant and soil spectra was extracted from the

hyperspectral image for the 14-ha grain sorghum field to
represent pure and healthy plants and bare soil, respec-

tively, and was used as endmember spectra for spectral

unmixing analysis [28]. Each endmember spectrum was

the average of about 100 pixels identified for the endmem-

ber. Both unconstrained and constrained linear spectral

unmixing models were applied to the image, and four

fractional images (two unconstrained and two con-

strained) were generated for the 14-ha sorghum field.
Ideally, abundance values should be within the

0–1 range, but in unconstrained fraction images they can

be negative or exceed 1. For example, the unconstrained

plant abundance varied from �0.15 to 1.01 and the

unconstrained soil abundance varied from 0.02 to 1.16 for

the field. This is because spectral unmixing results can be

affected by the purity of the endmembers and the number

Fig. 4. A contour map showing absolute correlation coefficients

between crop yield and all possible narrowband NDVIs derived from

a 102-band airborne hyperspectral image for a 14-ha grain sorghum

field in south Texas in 2000. When band i ¼ band j, NDVIij ¼ 0

and correlations do not exist (shown by the diagonal line).
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of endmembers. The linearity assumption of linear spectral

unmixing is at best an approximation of the generally

nonlinear mixing of surface components. As expected, the

fully constrained fractions had values in the range of 0–1.

Fig. 5 shows the fully constrained plant abundance fraction

image derived from the hyperspectral image. Red areas
have small plant abundance values and represent pixels

with a large exposure of soil and sparse plant cover. Con-

versely, green areas indicate large plant abundance values

and represent pixels with dense plant cover.

Mean unconstrained plant and soil abundance frac-

tions were 0.63 and 0.32, indicating mean plant canopy

cover was approximately 63% at the time of the image

acquisition. The sum of the plant and soil abundance
fraction was 0.95. Although the unconstrained model does

not force the endmember abundance fractions to sum to 1,

the sum is still close to 1, indicating the unconstrained

two-endmember linear unmixing model is appropriate for

characterizing plant and soil cover in the images. Mean

constrained plant and soil abundance fractions were 0.64

and 0.36, respectively, with an expected unity sum.

Correlation analysis showed that yield was positively
related to unconstrained and constrained plant abundance

fractions, and negatively related to the unconstrained and

constrained soil abundance fractions. Unconstrained plant

abundance fractions had slightly stronger correlations with

yield than the unconstrained soil abundance fractions,

whereas constrained plant and soil abundance fractions

had identical absolute correlations because they sum to

unity. The correlation coefficients with yield were 0.85 for
the unconstrained plant abundance fraction and �0.82 for

the unconstrained soil abundance fraction. The absolute
r-values for both constrained plant and soil abundance

fractions were 0.85.

The best NDVIs had larger correlations with yield

(0.88) than the best abundance fraction image (0.85).

Nevertheless, the best abundance fraction-based r-value

(0.85) was better than 97.1% of the 5151 NDVI-based

r-values for the sorghum field. Although an NDVI image

could provide better r-values than a plant fraction image as
shown in this study, the best NDVI identified from one

image is unlikely to be the best NDVI for another. More-

over, the best NDVI can only be identified if the yield is

known and all possible narrowband NDVIs or at least the

NDVIs with red and NIR band pairs are calculated. On the

other hand, the plant fraction image can be generated

using all the bands and a pair of plant and soil endmember

spectra without the need to know the actual yield. It also
has the potential to be as good as or even better than the

best NDVI. Therefore, linear spectral unmixing techniques

can be used alone or in conjunction with other traditional

vegetation indices for mapping yield variability.

Traditional supervised unmixing methods, as described

above, require reference spectra to be obtained either by

measurements in the field or manual selection from the

image. Unsupervised spectral unmixing can automatically
extract the endmember spectra from the image and there-

fore is more efficient. There are two approaches to unsu-

pervised spectral unmixing: statistical and geometrical

methods [29]. The statistical methods, such as the inde-

pendent component analysis (ICA) [30] and Bayesian

positive source separation (BPSS) [31], extract the end-

members by optimizing some statistical criteria. The geo-

metrical methods are based on the geometrical properties
of linear mixture model of hyperspectral data and are

generally more adaptive to the data and more efficient.

They can be divided into two classes: direct methods (i.e.,

N-Finder [32], vertex component analysis (VCA) [33], and

sequential maximum angle convex cone (SMACC) [34])

and advanced methods (i.e., minimum volume constrained

nonnegative matrix factorization (MVCNMF) [35], sim-

plex identification via split augmented Lagrangian (SISAL)
[36], and minimum volume simplex analysis (MVSA)

[37]). The direct methods extract the extremal points

within the data set as endmembers, while the advanced

methods attempt either to find the simplex with minimum

volume which contains all data points and extract the

extremal points of the simplex as endmembers (i.e., SISAL

and MVSA) or to minimize the projection error of the data

to a subset and use the simplex volume as a regularization
term (i.e., MVCNMFT).

Luo et al. [38] evaluated two unsupervised linear spec-

tral unmixing approaches, VCA and N-Finder, for estimat-

ing crop yield from hyperspectral imagery. The selection

for the two direct methods was based on the fact that the

hyperspectral imagery had high spatial resolution so that

the pure pixel assumption could be satisfied. Moreover,

Fig. 5. A constrained plant abundance fraction image derived from

the 102-band airborne hyperspectral image for a sorghum field in

South Texas in 2000 based on a pair of plant and soil endmember

spectra extracted from the image.
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direct methods are generally more efficient than advanced

methods. Their results showed that both approaches are as

good as the supervised linear unmixing methods (uncon-

strained and constrained linear spectral unmixing). With

unsupervised unmixing, vegetation abundance images can
be obtained without the need to manually select endmem-

ber spectra. In addition, Luo et al. [38] applied the unsu-

pervised approaches on the hyperspectral images taken on

two different dates. The results showed that the combi-

nation of the vegetation abundances extracted from two

dates can improve the correlations with yield.

E. Comparison of QuickBird Satellite Imagery and
Airborne Imagery for Mapping Grain Sorghum
Yield Patterns

The commercial availability of high-resolution satellite

sensors, including IKONOS, QuickBird, SPOT 5, and the
more recent GeoEye-1 and WorldView 2 sensors, has

opened up new opportunities for mapping within-field

variability. These satellite sensors have significantly nar-

rowed the gap in spatial resolution between satellite and

airborne imagery. IKONOS and QuickBird imagery has

been evaluated for assessing crop yields [17], [39]–[41].

Yang et al. [40], [41] compared QuickBird satellite

imagery with airborne multispectral imagery for mapping
plant growth and yield patterns within grain sorghum and

cotton fields. A QuickBird 2.8-m image covering a crop-

ping area in south Texas was acquired in the 2003 growing

season. The imagery contained four spectral bands: blue

(450–520 nm), green (520–600 nm), red (630–690 nm),

and NIR (760–900 nm). The spatial resolution of the

image was 2.8 m and the radiometric resolution was 11 b.

Airborne CIR imagery was collected using the same imag-
ing system described by Escobar et al. [18], except that the

acquisition computer and image grabbing cards were up-

graded to enhance acquisition speed and to obtain images

with 1280 � 1024 pixels. Yield data were collected using a

PF3000 yield monitor (Ag Leader Technology).

Fig. 6 shows the CIR composite of the QuickBird image

and the airborne CIR image for a 23-ha field in south Texas.

The pixel size for the airborne image was 0.92 m, compared

to the 2.8 m for the satellite image. Both the QuickBird and

MegaPlus images reveal distinct plant growth patterns

within the two fields. The QuickBird image was taken at the

bloom stage of the plant development (May 15), shortly
after the peak growth for the crop. The airborne image was

taken 15 days later when the plants were primarily at the

soft-dough stage. Despite the difference in plant growth

stages, the plants had similar canopy cover during the imag-

ing period. Although the pixel sizes are different (2.8 versus

0.92 m), both types of images look fairly similar.

Correlation analysis results between yield and vegeta-

tion indices (band ratios and NDVI-type indices) at differ-
ent pixel sizes showed that the NIR/green ratio provided

best r-values for both types of imagery and r-values tended

to increase with pixel size. For the airborne imagery, the

best r-value was 0.78 at the original pixel size, 0.81 at

2.8 m (QuickBird pixel size), and 0.85 at 8.4 m (close to

harvest swath). For the QuickBird image, the best r-value

was 0.83 at 2.8 m and 0.88 at 8.4 m.

Based on stepwise regression analysis at the 8.4-m re-
solution, the airborne image explained 77% of the variabi-

lity in yield, while the QuickBird image explained 80% of

the variability with the green, red, and NIR bands and 81%

of the variability with all four bands. Although the

QuickBird imagery had slightly higher R2 values than the

airborne imagery, both types of imagery accounted for

essentially the same amount of yield variability, indicating

that the QuickBird imagery is as effective as the airborne
imagery for yield estimation.

III . CONCLUSION

The review and application examples presented in this

paper demonstrate that airborne multispectral and hyper-

spectral imagery and high-resolution satellite imagery can

be useful data sources for estimating and mapping within-

field crop yield variability for precision agriculture. High-

resolution airborne and satellite imagery taken during the

growing season can be used to monitor crop growing

Fig. 6. (a) A QuickBird color-infrared image and (b) an airborne color-infrared image for a 23-ha grain sorghum field in south Texas in 2003.
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conditions and identify potential problems that could be
addressed within the growing season. The imagery taken

around peak vegetative development can also be used to

generate yield maps to document the spatial variation in

yield. Although airborne multispectral imagery is sufficient

for these purposes, airborne hyperspectral imagery has the

potential to provide additional information that mul-

tispectral data may have missed. Linear spectral unmixing

techniques can be used alone or in conjunction with
traditional vegetation indices for estimating crop fractional

cover and mapping yield variability. High-resolution

QuickBird imagery can be as effective as airborne mul-

tispectral imagery for mapping yield variability. As more

airborne and high-resolution satellite imagery is becoming

available, more research is needed to compare different
types of imagery and data analysis techniques for yield

estimation and other precision agriculture applications

under various crop environments. h
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France, in 2007.

He worked as a Postdoctoral Researcher in the Grenoble Images

Speech Signals and Automatics Laboratory (GIPSA-Lab), Grenoble,

France, from 2008 to 2010. He is currently an Associate Professor in the

State Key Laboratory of Information Engineering in Surveying, Mapping

and Remote Sensing (LIESMARS), Wuhan University, Wuhan, Hubei, China.

His research interests include hyperspectral data analysis, high-

resolution image processing, and indexation of images at different

resolutions.

Yang et al.: Using High-Resolution Airborne and Satellite Imagery to Assess Crop Growth and Yield Variability

Vol. 101, No. 3, March 2013 | Proceedings of the IEEE 591



Jocelyn Chanussot (Fellow, IEEE) received the M.Sc. degree in electrical

engineering from the Grenoble Institute of Technology (Grenoble INP),

Grenoble, France, in 1995 and the Ph.D. degree from Savoie University,

Annecy, France, in 1998.

In 1999, he was with the Geography Imagery Perception Laboratory for

the Delegation Generale de l’Armement (DGAVFrench National Defense

Department). Since 1999, he has been with Grenoble INP, where he was an

Assistant Professor from 1999 to 2005, an Associate Professor from 2005

to 2007, and is currently a Professor of Signal and Image Processing. He is

currently conducting his research at the Grenoble Images Speech Signals

and Automatics Laboratory (GIPSA-Lab), Grenoble, France. His research

interests include image analysis, multicomponent image processing,

nonlinear filtering, and data fusion in remote sensing.

Dr. Chanussot is the founding President of the IEEE Geoscience and

Remote Sensing French chapter (2007–2010) which received the 2010

IEEE GRSS Chapter Excellence Award Bfor excellence as a Geoscience and

Remote Sensing Society chapter demonstrated by exemplary activities

during 2009.[ He was the recipient of the NORSIG 2006 Best Student

Paper Award, the IEEE GRSS 2011 Symposium Best Paper Award, and the

IEEE GRSS 2012 Transactions Prize Paper Award. He was a member of the

IEEE Geoscience and Remote Sensing Society AdCom (2009–2010), in

charge of membership development. He was the General Chair of the first

IEEE GRSS Workshop on Hyperspectral Image and Signal Processing,

Evolution in Remote sensing (WHISPERS). He was the Chair (2009–2011)

and Cochair of the GRS Data Fusion Technical Committee (2005–2008).

He was a member of the Machine Learning for Signal Processing Tech-

nical Committee of the IEEE Signal Processing Society (2006–2008) and

the Program Chair of the IEEE International Workshop on Machine

Learning for Signal Processing (2009). He was an Associate Editor for the

IEEE GEOSCIENCE AND REMOTE SENSING LETTERS (2005–2007) and for Pattern

Recognition (2006–2008). Since 2007, he has been an Associate Editor

for the IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING. Since 2011,

he has been the Editor-in-Chief of the IEEE JOURNAL OF SELECTED TOPICS IN

APPLIED EARTH OBSERVATIONS AND REMOTE SENSING.

Yang et al. : Using High-Resolution Airborne and Satellite Imagery to Assess Crop Growth and Yield Variability

592 Proceedings of the IEEE | Vol. 101, No. 3, March 2013



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues false
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


