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Abstract—Hyperspectral imagery, which contains hundreds of
spectral bands, has the potential to better describe the biological
and chemical attributes on the plants than multispectral imagery
and has been evaluated in this paper for the purpose of crop yield
estimation. The spectrum of each pixel in a hyperspectral image is
considered as a linear combinations of the spectra of the vegetation
and the bare soil. Recently developed linear unmixing approaches
are evaluated in this paper, which automatically extracts the spec-
tra of the vegetation and bare soil from the images. The vegetation
abundances are then computed based on the extracted spectra.
In order to reduce the influences of this uncertainty and obtain
a robust estimation results, the vegetation abundances extracted
on two different dates on the same fields are then combined. The
experiments are carried on the multidate hyperspectral images
taken from two grain sorghum fields. The results show that the
correlation coefficients between the vegetation abundances ob-
tained by unsupervised linear unmixing approaches are as good
as the results obtained by supervised methods, where the spectra
of the vegetation and bare soil are measured in the laboratory. In
addition, the combination of vegetation abundances extracted on
different dates can improve the correlations (from 0.6 to 0.7).

Index Terms—Airborne hyperspectral imagery, crop yield,
grain sorghum field, multidate, unmixing.

I. INTRODUCTION

R EMOTELY sensed imagery is widely used for the estima-
tion of the yields of crop fields. Traditionally, multispec-

tral imagery, which contains several spectral bands covering
visible and near-infra-red wavelengths, are used for the purpose
of vegetation monitoring [1]–[4]. Vegetation indices have been
proven to be a useful tool for crop yield estimation (e.g.,
[5]–[10]). Different approaches have also been applied (such
as neural network [11] and autoregressive models [12]), with
moderate success.

Hyperspectral imagery, which contains hundreds of spectral
bands, has been evaluated for crop parameter estimations (crop
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chlorophyll for example [13]–[16]) and crop yield estimation
[17]–[21]. These almost continuous spectra, which provide
much more spectral information on the observation scenes,
have the potential to better describe the biological and chemical
attributes on the plants than multispectral imagery [22]. The
spectrum of a pixel in a hyperspectral image is a mixture
of the spectra of some basic components (thereafter called
endmembers). By unmixing the spectrum of each pixel, one can
compute the spatial abundances of the endmembers. Moreover,
the spatial abundance of the vegetation on a scene derived from
a hyperspectral image can be more precise than the vegeta-
tion index deduced from a multispectral image. Recently, the
authors of [23] propose to compute the vegetation abundance
to map the yield of sorghum fields using linear unmixing of
hyperspectral images. The correlation coefficients between the
vegetation abundances and the yield data are quite satisfactory.
The authors suppose that the spectrum of a pixel in the hyper-
spectral image on a crop field is a linear mixture of the spectra
of vegetation and bare soil. The abundance of vegetation is
then calculated by using linear unmixing. In [23], the spectra
of vegetation and bare soil are supposed to be known, which
are either measured in laboratory or selected manually from the
image. However, the reference spectra are not always available;
or they are difficult to obtain.

The first contribution of this paper is to evaluate unsupervised
linear unmixing approaches for hyperspectral images for crop
yield estimation, which do not need any reference spectra.
For unsupervised linear unmixing of hyperspectral images,
one can find two types of approaches [24]: statistical methods
(such as the independent component analysis (ICA) [25] and
Bayesian positive source separation (BPSS) [26]) and geomet-
rical methods. Reviews and assessments of these unmixing
methods can be found in [27] and [28]. The statistical methods
extract the endmembers by optimizing some statistical criteria.
For example, the independence between the endmembers is
assumed for ICA. However, either these statistical criteria are
not always valid for hyperspectral images, or the statistical
methods, such as BPSS, which perform Monte Carlo simula-
tions for obtaining the endmembers, are extremely slow. The
geometrical approaches are based on the geometrical properties
of linear mixture model of hyperspectral data. These methods
are more adaptive to the data and are generally more effcient.
They can be devided into two classes: direct methods (such
as N-Finder [29], vertex component analysis (VCA) [30], and
sequential maximum angle convex cone (SMACC) [31]) and
advanced methods (for example minimum volume constrained
nonnegative matrix factorization (MVCNMFT) [32], minimum
volume enclosing simplex (MVES) [33], simplex identification
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via split augmented lagrangian (SISAL) [34], and minimum
volume simplex analysis (MVSA) [35]). The direct methods
extract the extremal points within the data set as endmembers.
They are very efficient. However, they assume that for each end-
member, there is at least one pure pixel in the image (pure pixel
assumption). Otherwise, the extracted endmembers by these
methods are still mixed pixels. The advanced methods either
try to find the simplex with minimum volume which contains
all data points and extract the extremal points of the simplex
as endmembers (such as MVES, SISAL, and MVSA); or min-
imize the projection error of the data to a subset and use the
simplex volume as a regularization term (such as MVCNMFT).
In this paper, the endmembers are mainly extracted by direct
methods (VCA and N-Finder). This choice is based on the fact
that, at first these two methods are quite efficient. Second, the
spatial resolutions of the images are quite high, the pure pixel
assumption can be satisfied. For the reason of comparison, one
advanced method MVSA has also been evaluated. In addition,
the spatial preprocessing proposed in [36] which allows to en-
hance the endmembers is also evaluated in this paper. With the
help of the unsupervised unmixing scheme, we can obtain the
abundance map of vegetation without any manual processing
and any information a piori on the crop.

The second contribution of this paper is to use the hyper-
spectral images of the same fields taken on two different dates
for yield estimation. Even though the images are often taken
in good observation conditions (sunny and calm weather), the
light and weather can still have influence on the observation.
In addition, calibration errors can randomly occur in an im-
age. Thus, the relations between the yield data and different
observations will vary [9]. The fusion of different independent
observations on the same scene can reduce the influences of this
uncertainty and obtain a robust result. In this paper, we propose
several fusion approaches in order to combine, for each field,
the unmixing results obtained on two different dates in order to
improve the accuracy of the estimation.

The outline of this paper is as follows. In Section II,
we present briefly the linear mixture models of hyperspec-
tral images and the used linear unmixing approaches in this
study. In Section III, we briefly present the used data sets. In
Section IV, several fusion schemes are proposed for combin-
ing the unmixing results obtained on multidate hyperspectral
images. In Section V, the protocols of the experiments are
presented. In Section VI, we present the mapping results ob-
tained on real hyperspectral data sets. In Section VII, we have
compared the results obtained by two advanced unmixing tech-
niques: the MVSA method which does not require pure pixels
and the spatial preprocessing for enhancing the endmembers.
Finally, we conclude in Section VIII.

II. LINEAR UNMIXING OF HYPERSPECTRAL IMAGES

We note X the matrix representing the hyperspectral im-
age cube, where X = {x(1),x(2), . . . ,x(Na)} and x(k) =
{x(1, k), x(2, k), . . . , x(Ns, k)}T , x(l, k) is the value of the
kth pixel at the lth band, Ns is the number of spectral bands
and Na is the number of pixels. We assume that the spectrum of

each pixel is a linear mixture of the spectra of Nc endmembers,
leading to the following model:

X = MS+ n (1)

where M = {m(1),m(2), . . . ,m(Nc)} is the mixing matrix
where m(n) denotes the spectral signature of the nth end-
member. S = {s(1), s(2), . . . , s(Nc)}T is the abundance ma-
trix where s(n) = {s(n, 1), s(n, 2), . . . , s(n,Na)} (s(n, k) ∈
[0, 1] is the abundance of the nth endmember at the kth pixel).
n stands for the additive noise of the image. Two main assump-
tions could be made on the endmembers:

• non-negativity: the spectra M and the abundances S are
non-negative;

• sum-to-one:
∑Nc

n=1 s(n, k) = 1; the sum of the abun-
dances of all the endmembers at the same pixel should
be one.

Since the abundances of the endmembers conform to the pos-
itivity and sum-to-one conditions, the hyperspectal data should
be limited inside the simplex formed by the endmembers, if
the data is noise free. Therefore, the extrema of the simplex
formed by the hyperspectral data are endmembers. Based on
this property, lots of geometrical linear unmixing approaches
are proposed, such as PPI [37], n-Finder [29], VCA [30], and
SMACC [31].

Among these approaches, we use N-Finder and VCA meth-
ods for unmixing the hyperspectral images, which are the most
efficient and the most widely used.

N-Finder searches the simplex embedded inside the data
sets, of which the volume is maximal. The extremities of
this simplex are extracted as endmembers. As initialization
of the simplex, N-Finder selects a given number of random
points. It iteratively replaces the original points by new points.
If the new points increase the volume of the simplex, it
keeps the new points. The iterations stop when the simplex
does not enlarge. In this paper, the dimensionality reduc-
tion step required by N-Finder is realized by singular value
decomposition.

VCA iteratively projects the data onto the direction or-
thogonal to the subspace spanned by the already determined
endmembers. The extremity of this projection is the new end-
member signature. VCA stops the iterations when the desired
number of endmembers are attained.

N-Finder and VCA are very similar, because they all try to
find the extremities of the simplex formed by the data points.
However, it has to be noticed that the computational complexity
of N-Finder is much larger than VCA.

For each hyperspectral image taken on the field, we extract
two endmembers (soil and vegetation) by either N-Finder or
VCA. Once the spectra of these endmembers are extracted,
the abundances of the endmembers are estimated by using two
strategies. The first strategy minimizes the error between the
hyperspectral data and the linear reconstruction, which subjects
to the non-negative condition. More concretely, the abundances
of the endmembers are obtained by

ŜNnls = argminS ‖X−MS‖2,
s.t. S ≥ 0. (2)
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The second one minimizes the error, which subjects to the
non-negativie and sun-to-one condition. More concretely, the
abundances of the endmembers are obtained by

ŜFcls = argminS ‖X−MS‖2,

s.t. S ≥ 0 and
Nc∑
n=1

s(n, k) = 1. (3)

III. DATA SETS

A. Hyperspectral Images

Two irrigated sorghum fields in south Texas are considered
in this paper. They are noted as Field 1 and Field 2, of which
the areas are, respectively, 13.4 and 14.0 ha. The soil is mainly
Delfina loamy fine sand. Grain sorghum is normally cultivated
in rotation. For these two fields, sorghum (AgriPro 9850) was
planted in late February 2001 and harvested in late June of the
same year.

The imagery was acquired from the fields with a hyperspec-
tral imaging system mounted on a Cessna 206 aircraft. Raw
data were recorded with 12-bit and 128 spectral bands from
457.2 to 921.7 nm at spectral resolution of 3.63 nm. No
stabilizer or inertial measurement device was mounted on the
aircraft for measuring the variation. The geometrical distortions
were corrected by using a reference line approach presented in
[38]. Since the quantum efficiency near the NIR end of the spec-
trum is low, reflectances for wavelengths larger than 846 nm
were unreliable. And the first few bands of the blue region are
very noisy. Therefore, bands 1–5 and 108–128 were removed,
and the remaining 102 bands were used for experiments.

The flight height was 1680 m above ground level, and the
speed was 150 km/h. The swath of the imagery was approxi-
mately 840 m with a 1.3 m spatial resolution. GPS data were
collected for image registration. For each field, hyperspectral
images were recorded on two different dates (18 May 2001
and 29 May 2001) under sunny and calm conditions. The crop
had reached the soft to hard dough stages and had achieved its
maximum canopy cover. The hyperspectral images taken on the
two fields of different dates are shown in Fig. 1.

B. Crop Yield Data

Yield data were recorded by an Ag Leader PF3000 yield
monitor (Ag Leader Technology, Ames, Iowa). Yield, moisture,
and location were recorded at the same time. The combine used
had a cutting width of 8.7 m. The yield and GPS data were
preprocessed before experiments. An optimum time lag of 15 s
was used to align the yield with location, and the yield data
were adjusted to 14% moisture content.

The crop yield data have the same coordinate system as the
images. Notice that the spatial resolution of the hyperspectral
images are 1 m; therefore, the yield data were interpolated to the
same resolution as the images by using bilinear interpolation.

It has to be noticed that even though the geometrical dis-
tortions in the images were corrected, there were still residues
(geometrical calibration errors) and there were small variations

Fig. 1. (Top) Hyperspectral images of Field 1 (R-band 55, G-band 85, B-band
30) taken, respectively, on 18 May 2001 (left) and on 29 May 2001 (right).
(Bottom) Hyperspectral images of Field 2 (R-band 55, G-band 85, B-band 30)
taken, respectively, on 18 May 2001 (left) and on 29 May 2001 (right).

Fig. 2. Crop yield maps of the two fields. In order to compare with the results
of the linear unmixing, the crop yield maps are interpolated to 1 m resolution
by bilinear interpolation. (a) Field 1. (b) Field 2.

in the observation conditions on the two dates. The variations
are mainly due to the slight difference of the crop growth stage
between the two dates. Plants were at the soft dough stage
on the first imaging date and at the hard dough stage on the
second date. Therefore, a fusion of the observation results of
the same fields taken on different dates might be able to improve
estimation results (Fig. 2).

IV. FUSION OF UNMIXING RESULTS OF MULTIDATE

HYPERSPECTRAL IMAGES

Though the images are often taken in good observation
conditions (sunny and calm weather), the light and weather can
still have influence on the observation. In addition, calibration
errors, noise can randomly occur in an image [9]. In order to re-
duce the influences of this uncertainty and obtain a robust result,
the fusion of different independent observations on the same
scene is proposed. The fusion can be done by two families of
operations. One is based on simple arithmetics of the vegetation



LUO et al.: CROP YIELD ESTIMATION 165

abundances computed on different dates, while another is based
on their weigthed combinations. In order to find the best way
of fusion, we propose 13 approaches, among which seven are
based on simple arithmetics and six are based on weigthed
combinations with weights determined by the reconstruction
signal-to-noise ratios (SNR) of the linear unmixing.

From the hyperspectral image of a given field taken on a
given date, the spectra and the abundances of two endmembers
are extracted by either VCA or N-Finder. We then identify the
endmember corresponding to the vegetation. For each field,
we note M18(k) and M29(k) as the abundances of vegetations
extracted on the date 18 May 2001 and 29 May 2001 at the kth
pixel, respectively.

We first propose seven combinations of vegetation abun-
dances based on simple arithmatics of M18 and M29. For
comparison purpose, the first two combinations are effectively
the original vegetation abundances computed on one single
date. The seven combinations are defined by

M1(k) =M18(k) (4)

M2(k) =M29(k) (5)

M3(k) =M18(k) +M29(k) (6)

M4(k) =M18(k)
2 +M29(k)

2 (7)

M5(k) = (M18(k) +M29(k))
2 (8)

M6(k) =M18(k)M29(k) (9)

M7(k) =
√
M18(k)M29(k). (10)

We then propose six weighted combinations of vegetation
abundances computed on different dates, of which the weights
are based on the reconstruction SNR. We note SNR18(k) and
SNR29(k) the SNR of the reconstruction by using unmixing
results at the kth pixel. More concretely, let x18(l, k) represent
the value at the kth pixel and on the lth spectral band of the
original hyperspectral image taken on the date 18 May 2001;
and x̂18(l, k) represent the pixel value at the same band and the
same location on the reconstructed image by using the spectra
and the abundances of the extracted endmembers, then

SNR18(k) = 10 log10

∑Ns

l=1 ‖x18(l, k)‖2∑Ns

l=1 ‖x18(l, k)− x̂18(l, k)‖2
. (11)

The SNR of the reconstructions are used as weights in order
to combine the vegetation abundances. The main idea is to add
more abundances extracted on the date where the reconstruction
SNR is relatively high.

The six combinations are defined by

M8(k) =D(k)M18(k) + (1−D(k))M29(k) (12)

M9(k) =M18(k)
D(k)M29(k)

1−D(k) (13)

M10(k) =D(k)M18(k)
2 + (1−D(k))M29(k)

2 (14)

M11(k) =M18(k)
2D(k)M29

(
i, j2−2D(k)

)
(15)

M12(k) =T (k)M18(k) + (1− T (k))M29(k) (16)

M13(k) =T (k)M18(k)
2 + (1− T (k))M29(k)

2 (17)

where

D(k) =
d(k)− inf (d(k))

sup (d(k))− inf (d(k))
∈ [0, 1]

d(k) =SNR18(k)− SNR29(k)

T (k) =

{
1, SNR18(k) > SNR29(k)
0, otherwise.

Notice that the combined abundances M3 (resp.
M4,M6,M7) are effectively a special case of M8 (resp.
M10,M9,M11) when we set D(k) = 0.5, ∀k.

V. PROTOCOLS OF THE EXPERIMENTS

The two approaches (VCA and N-Finder) presented in
Section II have been used to unmix the hyperspectral images
taken on the sorghum fields on two dates. For each image, the
spectra of two endmembers (vegetation and soil) are automati-
cally extracted by the two methods. Their abundance maps will
then be computed by using two strategies: the one with only
non-negative condition [see (2)] and the one with both non-
negative and sum-to-one conditions [see (3)]. We then identify
the endmember corresponding to the vegetation. The vegeta-
tion abundance and combined vegetation abundances obtained
on the two dates [see (4)–(17)] are then compared with the
interpolated crop yield maps. According to the linear mixture
model (see Section II) of hyperspectral images, the values
of the abundance maps reflect the relative variabilities of the
endmembers; it is impossible to compare their absolute values
with the crop yield data. Therefore, we compute the correlation
coefficients between the (combined) vegetation abundances and
the yield data by the following equation:

C(Mi, Y ) =
Cov(Mi, Y )

σMi
σY

, i = 1, 2, . . . , 13 (18)

where Cov(Mi, Y ) is the covariance value between the (com-
bined) vegetation abundance Mi [computed by one of the
(4)–(17)] and the yield data Y ; σMi

and σY are the standard
deviation of Mi and Y , respectively. For each field, there will be
52 correlation coefficients computed between the (combined)
vegetation abundances and the yield data (two endmember
extraction approaches × two unmixing stradegies × 13 (com-
bined) vegetation abundances).

VI. RESULTS

A. Results on Field 1

1) Endmembers: In Fig. 3(a) and (b), we show the spectra
of the two endmembers extracted by using VCA and N-Finder
on the image of Field 1 taken on the date 18 May 2001. It can
be seen that the endmembers extracted by the two methods are
quite similar and that the first endmember extracted by VCA,
the second endmember extracted by N-Finder corresponds to
vegetation.

In Fig. 3(c) and (d), we show the spectra of the two end-
members extracted by using VCA and N-Finder on the image
of Field 1 taken on the date 29 May 2001. It can be seen that the
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Fig. 3. Spectra of the two endmembers extracted by using VCA and N-Finder
on the image of Field 1 taken on 18 May 2001 (top row) and 29 May 2001
(bottom row).

Fig. 4. Abundances of the vegetation endmembers extracted by using VCA
and N-Finder on the image of Field 1 taken on 18 May 2001 (top row) and
29 May 2001 (bottom row). The abundances are estimated with non-negative
condition [see (2)].

second endmember extracted by VCA and the first endmember
extracted by N-Finder correspond to vegetation.

2) Abundance Maps Obtained With Non-Negative Condi-
tion: With the help of the spectra of the endmembers extracted
by VCA and N-Finder, in this paragraph, we compute the abun-
dances of these endmembers by using (2). In Fig. 4, we show
the vegetation abundance maps of the endmembers extracted by
VCA and N-Finder on the image of Field 1 taken on the dates
of 18 May 2001 and 29 May 2001.

It can be seen from Fig. 4 that the abundances of vegetation
endmembers extracted by both VCA and N-Finder are very
similar to the crop yield map, which confirms the vegetation

Fig. 5. Abundances of the vegetation endmembers extracted by using VCA
and N-Finder on the image of Field 1 taken on 18 May 2001 (top row) and
21 May 2001 (bottom row). The abundances are estimated with non-negative
and sum-to-one conditions [see (3)].

identification by the spectra of the extracted endmembers ac-
cording to Fig. 3.

3) Abundance Maps Obtained With Non-Negative and Sum-
to-One Conditions: In this paragraph, we compute the abun-
dances of the endmembers by using (3). In Fig. 5, we show
the abundance maps of the endmembers extracted by VCA and
N-Finder on the image of Field 1 taken on the dates of 18 May
2001 and 29 May 2001.

From Fig. 5, the identifications of the endmembers cor-
responding to vegetation are confirmed. However, it can be
observed that when the abundances are computed with both
non-negative and sum-to-one conditions, the similarities be-
tween the vegetation abundances and the interpolated yield map
are much worse than the vegetation abundances computed with
only non-negative condition. This may be due to the over-fitting
when the two constrains are both used.

4) Correlation Coefficients Between the (Combined) Vegeta-
tion Abundances and the Interpolated Yield Map of Field 1: We
then compute the correlation coefficients between the crop yield
map of Field 1 with the (combined) vegetation abundances
computed by (4)–(17). The results are shown in Table I.

Four remarks could be drawn from these results:

• The abundance maps (M1 and M2) computed with only
non-negative condition are strongly correlated to the yield
map (more than 0.7, which are already higher than the best
correlation coefficients obtained by the state-of-art method
presented in [23]). The unsupervised unmixing methods
have better performances than the supervised approach
presented in [23]. The correlation coefficients obtained on
the abundance maps computed with both non-negative and
sum-to-one conditions are relatively low (around 0.5–0.6).

• The performances of both VCA and N-Finder are very
similar. When the abundances are computed by using (2),
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TABLE I
CORRELATION COEFFICIENTS BETWEEN THE INTERPOLATED CROP YIELD MAP AND THE (COMBINED) VEGETATION ABUNDANCES COMPUTED BY

(4)–(17) ON THE IMAGE OF Field 1. FOR FIRST THREE COLUMNS, THE ABUNDANCES ARE COMPUTED WITH NON-NEGATIVE CONDITION. WHILE

FOR LAST THREE COLUMNS, THE ABUNDANCES ARE COMPUTED WITH BOTH NON-NEGATIVE AND SUM-TO-ONE CONDITIONS

Fig. 6. (a) M4 and (b) M10 computed on Field 1. The endmembers are
extracted by VCA, and the abundances are computed with (2). They are the
most correlated with the yield map of Field 1. (c) and (d) Absolute error
between the yield map and the fitted model Ŷ4, Ŷ10 [see (19)].

the results of VCA are slightly better. While when the
abundances are computed by using (3), it is inverse.

• By combining the vegetation abundances of the two dates,
the correlation coefficients improve. We can see that the
highest correlation coefficients (around 0.78, which are
higher than the results in [23]) are obtained among M4,
M5, M6, M10, and M11 [see (7)–(9), (14), and (15)],
where M4, M5, and M6 are simple combinations of the
abundances on the two dates and M10,M11 are weighted
combinations when the SNR of reconstructions are taken
into consideration. Even when the abundances are com-
puted by using (3), these combined vegetation abundances
(M4, M5, M6, M10, and M11) can provide relatively high
correlation coefficients.

• The highest correlation coefficients are obtained by M4

and M10 when the endmembers are extracted by VCA
and the abundances are computed with only non-negative
condition [see (2)]. Remark that M4 is in fact a special
case of M10 when D(k) = 0.5, ∀k. The sum of the square
of the two vegetation abundances are the most correlated
to the yield map, and when the SNR of reconstruction
is taken into consideration, the correlation coefficient is
slightly better.

Fig. 7. Spectra of the two endmembers extracted by using VCA and N-Finder
on the image of Field 2 taken on 18 May 2001 (top row) and 29 May 2001
(bottom row).

In Fig. 6(a) and (b), we show the combined vegetation
abundances computed on Field 1 of which the correlation
coefficients are the highest (M4 and M10 when the endmembers
are extracted by VCA and the abundances are computed with
only non-negative condition).

We then fit the two combined vegetation abundances (M4

and M10) with the yield map by linear regression. More con-
cretely, we compute the fitted model Ŷi(k) by

Ŷi(k) = α̂i + β̂iMi(k), i = 4, 10 (19)

where

{α̂i, β̂i} = arg min
αi,βi

{∑
k

∥∥∥Ŷi(k)− Y (k)
∥∥∥2

}
.

The absolute error between Ŷ4(k) (resp. Ŷ10) and the yield map
Y (k) by E4(k) = |Ŷ4(k)− Y (k)| (resp. E10(k) = |Ŷ10(k)−
Y (k)|), which is shown in Fig. 6(c) [resp. 6(d)].

It can be seen that the errors are concentrated on the bottom
part of the image. We can also observe relatively high errors on
the regions where vegetation abundances are small.
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Fig. 8. Abundances of the vegetation endmembers extracted by using VCA
and N-Finder on the image of Field 2 taken on 18 May 2001 (top row) and
29 May 2001 (bottom row). The abundances are estimated with non-negative
condition [see (2)].

B. Results on Field 2

In Fig. 7(a) and (b), we show the spectra of the two end-
members extracted by using VCA and N-Finder on the image
of Field 2 taken on the date 18 May 2001. It can be seen
that the second endmember extracted by VCA and the first
endmember extracted by N-Finder correspond to vegetation. In
Fig. 7(c) and (d), we show the spectra of the two endmembers
extracted by using VCA and N-Finder on the image of Field
2 taken on the date 29 May 2001. It can be seen that the
first endmembers extracted by both methods correspond to
vegetation.

With the help of the spectra of the extracted endmembers,
we then compute the abundances of these endmembers by
using (2). In Fig. 8, we show the abundance maps of the
endmembers extracted by VCA and N-Finder on the image of
Field 2 taken on the dates of 18 May 2001 and 29 May 2001.

In Fig. 9, we show the abundance maps of the vegetation
endmembers computed by (3) on the image of Field 2 taken
on the dates of 18 May 2001 and 29 May 2001.

We then compute the correlation coefficients between the
crop yield map of Field 2 with the (combined) vegetation
abundances computed by (4)–(17). The results are shown in
Table II.

For Field 2, we can draw nearly the same remarks as for the
Field 1:

• The abundance maps of vegetation computed with only
non-negative condition are more strongly correlated to the
yield map than the abundances computed with both non-
negative and sum-to-one conditions.

• The performances of VCA and N-Finder are very sim-
ilar. The results given by VCA are slightly better than
N-Finder.

• By combining the vegetation abundances of the two dates,
the correlation coefficients improve. Even though for this
field, the correlation coefficients between the yield map

Fig. 9. Abundances of the vegetation endmembers extracted by using VCA
and N-Finder on the image of Field 2 taken on 18 May 2001 (top row) and 29
May 2001 (bottom row). The abundances are estimated with non-negative and
sum-to-one conditions [see (3)].

and the abundance maps obtained on one single date
are relatively low, however, by combining the vegeta-
tion abundances of the two dates, the highest correlation
coefficients are around 0.74, which is very close to the
best results obtained by the supervised unmixing approach
presented in [23].

• The highest correlation coefficients are again obtained by
M4 and M10 when the endmembers are extracted by VCA
and the abundances are estimated with only non-negative
condition (see (2)), which is the same as for Field 1.

In Fig. 10(a) and (b), we show the combined vegetation
abundances computed on Field 1 of which the correlation
coefficients are the highest (M4 and M10 when the endmembers
are extracted by VCA and the abundances are computed with
only non-negative condition).

We then fit the two combined vegetation abundances (M4

and M10) with the yield map by linear regression. More
concretely, we compute the fitted model Ŷi(k) by (19). The
absolute error between Ŷ4(k) (resp. Ŷ10) and the yield map
Y (k) by E4(k) = |Ŷ4(k)− Y (k)| (resp. E10(k) = |Ŷ10(k)−
Y (k)|), which is shown in Fig. 10(c) [resp. 10(d)].

It can be seen that nearly all the errors are concentrated on
the regions where vegetation abundances are small, which is
coherent with the reults obtained for Field 1. This may be due
to the fact that, on the regions where the vegetation abundances
are small, there are more nonlinear effects (multiple scatterring
for example) between the vegetation and the bare soil. Linear
unmixing approaches cannot precisely estimate the vegetation
abundances on these regions.

VII. COMPARISON WITH ADVANCED TECHNIQUES

FOR LINEAR ENDMEMBER EXTRACTION

In this section, two advanced techniques for linear end-
member extraction are evaluated. At first, we evaluate the
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TABLE II
CORRELATION COEFFICIENTS BETWEEN THE INTERPOLATED CROP YIELD MAP AND THE (COMBINED) VEGETATION ABUNDANCES COMPUTED BY

(4)–(17) ON THE IMAGE OF Field 2. FOR FIRST THREE COLUMNS, THE ABUNDANCES ARE COMPUTED WITH NON-NEGATIVE CONDITION. WHILE

FOR LAST THREE COLUMNS, THE ABUNDANCES ARE COMPUTED WITH BOTH NON-NEGATIVE AND SUM-TO-ONE CONDITIONS

Fig. 10. (a) M4 and (b) M10 computed on Field 2. The endmembers are
extracted by VCA, and the abundances are computed with (2). They are the
most correlated with the yield map of Field 2. (c) and (d) Absolute error
between the yield map and the fitted model Ŷ4, Ŷ10 [see (19)].

advanced extraction method MVSA [35] which does not re-
quire pure pixel for each endmember. Afterwards, the spatial
preprecessing presented in [36] which can enhance the end-
member for improving the extraction results is evaluated.

A. Minimum Volume Simplex Analysis (MVSA)

In contrary to the direct methods (such as VCA, n-Finder,
SMACC, etc.), the advanced endmember extraction methods
(e.g., MVSA, SISAL, etc.) extract the extrema of the optimal
simplex containing the hyperspectral data as the endmembers,
which do not require pure pixels. In order to investigate whether
the pure pixel assumption plays an important role in our study,
the MVSA [35] is evaluated in this section. MVSA tries
to find the simplex with minimal volume which enclose all
the hyperspectral data points and extracts the extrema of the
minimal simplex as endmembers. During the experiments, it
has been found that, for the MVSA method, it is necessary
to extract three endmembers rather than two endmembers to
obtain satisfactory estimation results.

In Fig. 11, the spectra of the endmembers extracted by
MVSA on Field 1 and Field 2 are shown. For Field 1, the
third (resp. the second) endmember extracted on the date 18
May 2001 (resp. 29 May 2001) corresponds to the well to

Fig. 11. Spectra of the two endmembers extracted by using MVSA on (a) and
(b) Field 1 and (c) and (d) Field 2 taken on the dates 18 May 2001 and 29 May
2001.

the vegetation. While for the Field 2, the third endmembers
extracted on the both date correspond well to the vegetation.

As usual, the abundances of the extracted endmembers are
again estimated by using both NNLS [(2)] and FCLS [(3)]. The
vegetation abundances estimated on the two different dates are
combined by using the (4)–(17). The correlation coefficients
between the (combined) vegetation abundances and the crop
yield maps of the two fields are then computed of which the
results are shown in Table III.

The correlation coefficients between the yield map and the
(combined) vegetation abundances of Field 1 are very low
because among the three endmembers extracted by the MVSA
method on Field 1, there are two which are similar to vegeta-
tion (the second and the third endmembers extracted from the
images of the both dates). This may be caused by the fact that
there is very few bare soil on Field 1. As we have mentionned at
the beginning of this section, if we extract too few endmembers,
the optimal simplex obtained by MVSA may not contain the
pixels of bare soil. And the endmember corresponding to bare
soil may be considered as noise by MVSA. Therefore, in order
to obtain bare soil, it is necessary to extract more endmembers
(in this case we extract three). Inevitably, one endmember
corresponds to bare soil, one corresponds to vegetation, and the
third one is intermediate.
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TABLE III
CORRELATION COEFFICIENTS BETWEEN THE INTERPOLATED CROP YIELD MAP AND THE (COMBINED) VEGETATION ABUNDANCES COMPUTED BY

(4)–(17) ON Field 1 AND Field 2. THE ENDMEMBERS ARE EXTRACTED BY MVSA. THE ABUNDANCE MAPS ARE, RESPECTIVELY, COMPUTED BY

USING NON-NEGATIVE CONDITION (NNLS) AND BY USING BOTH NON-NEGATIVE CONDITION AND SUM-TO-ONE CONDITION (FCLS)

Fig. 12. (a) M4 and (b) M10 computed on Field 2. They are the most
correlated with the yield map of Field 2. The endmembers are extracted by
MVSA. The abundances maps are computed by FCLS. (c) and (d) Absolute
error between the yield map and the fitted model Ŷ4, Ŷ10 [see (19)].

In contrary to Field 1, the MVSA method has extracted
only one vegetation endmember on each of the image be-
cause there is more bare soil than Field 2. The (combined)
vegetation abundances are highly correlated to the yield map
when compared to the results of Field 1. It can also be seen
that M4 and M10 still the most correlate to the yield map. In
Fig. 12, we show the M4 and M10 as well as the absolute error
between the yield map and the fitted model Ŷ4, Ŷ10 [see (19)]
for Field 2. The abundances are computed by both non-negative
and sum-to-one condition (FCLS). It can be seen that again
the absolute errors are concentrated on the regions where the
vegetation abundances are low. This is coherent to the results
obtained in the previous section by using direct endmember
extraction approaches, such as VCA (see Fig. 10), because the
errors appear at the regions where the nonlinear mixtures are
important and the methods based on linear mixture assumption
are not adaptive.

B. Spatial Preprocessing

It has to be remarked that, the direct methods and the ad-
vanced methods for endmember extraction are both pixel-wise.
They do not take spatial information into consideration, which
could be important, since structures are present in images. The
authors of [36] have proposed a preprocessing of hyperspectral

Fig. 13. Spectra of the two endmembers extracted by using VCA after spatial
preprocessing on (a) and (b) Field 1 and (c) and (d) Field 2 taken on the dates
18 May 2001 and 29 May 2001.

images in order to cooperate spatial information into the end-
member extraction, and this preprocessing can effectively im-
prove the extraction results. The authors compute for each pixel
a weight scalar value according to the similarity of the pixel
with its neighborhood inside an analyze window with ws× ws
size. We apply this spatial preprocessing on the hyperspectral
images of Field 1 and Field 2. On these preprocessed images,
the endmembers are then extracted by using VCA. The size of
the analyze window is 3 × 3.

In Fig. 13, the spectra of the endmembers extracted by VCA
after spatial preprocessing are shown. As usual, the abundances
of the extracted endmembers are again estimated by using
both NNLS [(2)] and FCLS [(3)]. The vegetation abundances
estimated on the two different dates are combined by using the
(4)–(17). The correlation coefficients between the (combined)
vegetation abundances and the crop yield maps of the two fields
are then computed of which the results are shown in Table IV.

Because spatial preprocessing can very well enhance the
spectra of real endmembers in homogeneous regions (which
is quite useful for our data sets, since the spatial resolution
is quite high and the fields are homogeneous), there is an
overall improvement for nearly all the correlation coefficients
between the (combined) vegetation abundances and the yield
maps. In particular, for Field 2, the correlation coefficients
obtained by the abundances computed with FCLS are even
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TABLE IV
CORRELATION COEFFICIENTS BETWEEN THE INTERPOLATED CROP YIELD MAP AND THE (COMBINED) VEGETATION ABUNDANCES COMPUTED BY

(4)–(17) ON Field 1 AND Field 2. THE ENDMEMBERS ARE EXTRACTED BY VCA After Spatial Preprocessing. THE ABUNDANCE MAPS ARE,
RESPECTIVELY, COMPUTED BY USING NON-NEGATIVE CONDITION (NNLS) AND BY USING BOTH

NON-NEGATIVE CONDITION AND SUM-TO-ONE CONDITION (FCLS)

Fig. 14. (a) M4 and (b) M10 computed on Field 2. They are the most
correlated with the yield map of Field 2. The endmembers are extracted by
VCA after spatial preprocessing. The abundances maps are computed by FCLS.
(c) and (d) Absolute error between the yield map and the fitted model Ŷ4, Ŷ10

[see (19)].

greater than 0.8. Another observation is that again the best
correlation coefficients are obtained by the M4 and M10, which
is coherent to all the previous results. In Fig. 14, we show the
M4 and M10 as well as the absolute error between the yield
map and the fitted model Ŷ4, Ŷ10 [see (19)] for Field 2. The
abundances are computed by both non-negative and sum-to-one
condition (FCLS). It can be seen that still the absolute errors are
concentrated on the regions where the vegetation abundances
are low. Because as explained in the previous section, though
the spatial preprocessing has been applied, the endmembers are
still extracted with linear mixture models. And nonlinearities
present on these regions.

VIII. CONCLUSION

In this paper, we have evaluated two direct unsupervised
linear unmixing approaches (VCA and N-Finder) for the ap-
plication of crop yield estimation. The results show that abun-
dance maps of the vegetation extracted by both approaches are
strongly correlated to the yield data (the correlation coefficients
are between 0.7 to 0.8). When compared to the traditional
supervised approach presented in [23], which needs reference

spectra obtained either by measurements in laboratory or man-
ual selection from the image, in this paper, the spectra of the
endmembers are automatically extracted. The results validate
the higher efficiency of the unsupervised unmixing approaches.
The spectra measured in laboratory cannot perfectly represent
the spectra of the endmembers on the field, because the observa-
tion conditions cannot be exactly simulated. The hyperspectral
images have a huge amount of pixels, it is very difficult to
manually select the best spectra of vegetation and bare soil.
Therefore, unsupervised endmember extraction methods can
obtain better results than the supervised approach.

In addition, the unmixing was performed on the hyperspec-
tral images of the same fields, but taken on different dates.
The results show that the correlations between the vegetation
abundances, and the yield map might change in terms of
the observation dates. However, by combining the vegetation
abundances extracted on different dates, the correlations are
improved so that we can always obtain the highest correlations.
And the weigthed sums of the squares of the vegetation abun-
dances estimated on the two dates are the most correlated to the
yield data.

Finally, two advanced endmember extraction techniques,
methods without pure pixel assumption (MVSA) and spatial
preprocessing, have also been evaluated. The results show that
the MVSA method cannot significantly improve the correlation
between the vegetation abundances and the crop yield map.
While the spatial preprocessing, which can enhance the spectra
of the endmembers inside homogeneous regions, has achieved
an overall improvement. However, since all the used unmixing
methods are based on linear mixture models, estimation errors
are always concentrated on the regions where strong nonlinear
effects present. These effects would be interesting for the
further investigation.
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