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SPATIAL MODELING AND VARIABILITY ANALYSIS FOR

MODELING AND PREDICTION OF SOIL AND CROP CANOPY

COVERAGE USING MULTISPECTRAL IMAGERY FROM

AN AIRBORNE REMOTE SENSING SYSTEM

Y. Huang,  Y. Lan,  Y. Ge,  W. C. Hoffmann,  S. J. Thomson

ABSTRACT. Spatial modeling and variability analysis of soil and crop canopy coverage has been accomplished using aerial
multispectral images. Multispectral imagery was acquired using an MS‐4100 multispectral camera at different flight altitudes
over a 40 ha cotton field. After the acquired images were geo‐registered and processed, spatial relationships between the
aerial images and ground‐based soil conductivity and NDVI (normalized difference vegetation index) measurements were
estimated and compared using two spatial analysis approaches (model‐driven spatial regression and data‐driven
geostatistics) and one non‐spatial approach (multiple linear regression). Comparison of the three approaches indicated that
OLS (ordinary least squares) solutions from multiple linear regression models performed worst in modeling ground‐based soil
conductivity  and NDVI with high AIC (Akaike information criterion) (‐668.3 to 2980) and BIC (Bayesian information
criterion) (‐642.4 to 3006) values. Spatial regression and geostatistics performed much better in modeling soil conductivity,
with low AIC (2698 to 2820) and BIC (2732 to 2850) values. For modeling ground‐based NDVI, the AIC and BIC values were
‐681.7 and ‐652.1, respectively, for spatial error regression and ‐679.8 and ‐646.5, respectively, for geostatistics, which were
only moderate improvements over OLS (‐668.3 and ‐642.4). Validation of the geostatistical models indicated that they could
predict soil conductivity much better than the corresponding multiple linear regression models, with lower RMSE (root mean
squared error) values (0.096 to 0.186, compared to 0.146 to 0.306). Results indicated that the aerial images could be used
for spatial modeling and prediction, and they were informative for spatial prediction of ground soil and canopy coverage
variability. The methods used for this study could help deliver baseline data for crop monitoring with remote sensing and
establish a procedure for general crop management.
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emote sensing technology has the potential to
maximize the economic benefit and minimize
environmental  pollution through improved crop
monitoring and management. Airborne remote

sensing offers flexibility for rapid image acquisition with
high spatial resolution at different flight altitudes. In
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agricultural  research and applications, multispectral imaging
systems mounted on aircraft are cost‐effective in providing
an important data source of crop, soil, or ground cover
information (Moran et al., 1997; Senay et al., 1998;
GopalaPillai  and Tian, 1999; Yang and Anderson, 1999;
Medlin et al., 2000; Yang and Everitt, 2002; Pinter et al.,
2003; Dobermann and Ping, 2004; Ye et al., 2007; Huang et
al., 2008; Inman et al., 2008; Yang et al., 2009).

Conventional statistical techniques often cannot be
effectively implemented for spatial data analysis because the
techniques do not consider spatial connections or trends
between data points (typically neighborhood points).
Development of spatial statistics began with mapping,
surveying, and geography (Getis et al., 2004). The techniques
of spatial statistics have been formalized and developed since
the 1950s (Cressie, 1993). With the development of
geographic information system (GIS) technology, spatial
statistical techniques have drawn considerable attention and
have been widely applied in spatial data modeling and
analysis for social sciences such as geography, sociology,
demography, and economics and for natural sciences such as
geophysics, biology, epidemiology, and agriculture. Spatial
statistical techniques have promoted the development and
applications of statistics, GIS, remote sensing, and scientific
computing as well.
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Spatial data have been analyzed by using both spatial
econometrics and geostatistics (Calderon, 2009). Although
both methods solve problems in spatial data modeling and
analysis using different statistical approaches to quantify
two‐dimensional  and two‐directional data dependence and
heterogeneity  in space, the comparison is not
straightforward.  Based on the works of Haining (1990) and
Anselin (1988), most of the work in spatial data modeling and
analysis can be referred to as either the model‐driven
approach or the data‐driven approach (Anselin, 1990). The
model‐driven approach is employed by spatial econometrics
with spatial regression analysis, starting with a model
structure specification that is then fitted with the data.
Methods in this category deal with model parameter
estimation and model structure specification diagnostics in
spatial models (Paelinck and Klaassen, 1979; Anselin, 1988;
Griffith, 1992). The data‐driven approach in geostatistics
uses variogram and kriging methods, and assumes
randomness in data distribution (i.e., the null hypothesis)
based on a normal or randomization approach (Schaben-
berger and Pierce, 2002). The spatial pattern, spatial
structure, and spatial interaction are derived from the data
only, without constraints of a pre‐conceived theoretical
specification.  For applications, the model‐driven approach
mainly deals with spatial modeling related to regional and
urban economics, and the data‐driven approach focuses on
studies of issues in geophysics, biology, and agriculture.

In agricultural crop management, few studies to date have
used the model‐driven approach, instead relying primarily on
the data‐driven approach. Anselin et al. (2004) presented a
case study using data from Argentina to model the spatial
structure of yield data for corn nitrogen response. The overall
objective of their study was to determine the feasibility of
using spatial econometric analysis on yield monitor data
from a combine to estimate site‐specific crop response.
Results indicated nitrogen response differences by landscape
position, and that site‐specific application could be profitable
if indicated by spatial modeling. Non‐spatial models did not
necessarily indicate profitability. Their study indicated that
some type of spatial analysis should be implemented if
spatial data are to be used for estimation of site‐specific
response. Lambert et al. (2004) compared four approaches
that incorporated spatial correlation into regression models:
spatial econometrics, polynomial trend regression, classical
nearest neighbor analysis, and geostatistics. With the data
studied, spatial econometrics, geostatistics, and spatial trend
analysis offered stronger statistical evidence of spatial
heterogeneity  of corn yield response to nitrogen than the
ordinary least squares (OLS) or nearest neighbor analysis.
Like the study by Anselin et al. (2004), all spatial models
indicated potential profitability of using variably applied
nitrogen.

Geostatistics (variogram modeling of regression
residuals) is a widely employed approach to model datasets
that exhibit spatial correlation in agriculture. This approach
is especially well established in the soil science literature,
where sample data are point‐based and sparse (Odeh et al.,
1994; Knotters et al., 1995; Odeh et al., 1995; Hengl et al.,
2004; Ge et al., 2007a, 2007b). Parameters for the variogram
of regression residuals can be estimated by either an
empirical general least squares (EGLS) fitting procedure
(Hengl et al., 2004; Ge et al., 2007a, 2007b) or residual
maximum likelihood (REML) (Lark, 2000; Kerry and Oliver,

2007). Compared with EGLS, REML has potential
advantages for spatial modeling. First, it can estimate both
regression coefficients and residual covariance structure
simultaneously. Second, it performs better than the method
of moment estimator (which is employed for EGLS) for small
sample sizes (Kerry and Oliver, 2007).

Geostatistics also provides an interpolation technique
(kriging) that can predict response variables at unsampled
locations. Yao et al. (2003) used a co‐located cokriging
estimator to investigate soil nutrient mapping with soil
sampling data and an aerial hyperspectral image. A single
hyperspectral image band was selected for each soil nutrient
factor based on the correlation between the nutrient factor
and the image band. When compared with regression
analysis, results from co‐located cokriging showed better
correlations and accuracy with smaller RMSE (root mean
squared error). Misaghi et al. (2004) developed a model to
forecast strawberry yield using several different artificial
neural network techniques. Data collected included aerial
imagery, soil parameters, and plant parameters from a 0.8 ha
strawberry field. Geostatistical techniques were used to
produce more input by interpolation for training and testing
the models. Three network models (multilayer perceptrons,
generalized feed‐forward, and modular neural networks)
showed the best results for yield prediction vs. actual yield.
Bajwa and Mozaffari (2007) tested various spatial models for
analyzing variations in green normalized difference
vegetative index (GNDVI), a vegetation index derived from
aerial remote sensing data utilizing green and near‐infrared
wavelengths in response to nitrogen treatments and petiole
nitrate content. Five spatial models were developed by
incorporating the spatial correlation structure in the
regression model through various covariance models. Ortiz
et al. (2007) studied spatiotemporal variability of southern
root‐knot nematode infection in cotton for site‐specific
management.  Semivariograms were used to study the
spatiotemporal  variability of root‐knot nematode, and
canonical correlation and cross‐correlograms were used to
study spatial correlation between root‐knot nematode and
soil properties. Soil properties highly correlated with root‐
knot nematode population density were entered into a logistic
regression model to create a map of probability risk for root‐
knot nematode population density. Ge et al. (2007a) used the
regression‐kriging method to account for spatial dependence
among soil samples and aid in prediction model development
with soil reflectance spectra measured with a spectro-
radiometer in visible and NIR wavelengths. For each soil
property, semivariance analysis of prediction residuals from
principal component regression revealed strong spatial
dependence in Na; medium spatial dependence in Ca, Mg,
and sand; weak spatial dependence in K and P; and a pure
nugget effect in Zn and clay. Fitted theoretical semi-
variograms were then used to develop the regression‐kriging
models. Both the principal component regression and
regression‐kriging models were tested with the validation
set, and their prediction capability was evaluated by R2 and
RMSE. The results showed that the regression‐kriging
models were able to predict most soil properties with
reasonably high R2 and low RMSE.

A new airborne multispectral remote sensing system with
built‐in camera stabilization was developed for crop
management  (Lan et al., 2009). Experiments were conducted
to evaluate the performance of the system integrated with
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automatic camera stabilization using a three‐CCD (charge‐
coupled device) MS 4100 multispectral camera (Geospatial
Systems, Inc., West Henrietta, N.Y.). Multispectral images
were acquired using the integrated imaging system over a
115�ha cotton field. With the processed imagery, spatial
relationships between the aerial images and ground‐
measured values of normalized difference vegetation index
(NDVI) and soil apparent electrical conductivity were
modeled and estimated.

The goal of the study presented herein is to investigate and
compare the model‐driven and data‐driven approaches in
spatial modeling and analysis for spatial prediction of ground
soil and crop canopy coverage variability using aerial
multispectral images obtained by the airborne imaging
system described by Lan et al. (2009).

OBJECTIVES

� To apply the spatial econometric and geostatistical
methods for modeling ground soil apparent electrical
conductivity and crop canopy vigor using airborne
remote sensing imagery.

� To compare different spatial models to evaluate their
performance in modeling ground soil apparent
electrical  conductivity and crop canopy vigor.

MATERIALS AND METHODS
FIELD OF INTEREST

A 40 ha crop field for this study was located in the eastern
part of Burleson County, Texas (30° 33′ 35.61″ N, 96° 26′
25.89″ W). Dominant soil types in the field include a Ships
clay (very‐fine, mixed, active, thermic Chromic Hapluderts)
and a Belky clay (fine, mixed, active, thermic Entic
Hapluderts). The field has been on a corn‐cotton rotation in
recent years. Cotton was planted in March 2007 and
harvested in September. Conventional methods were
practiced for insect and weed control.

AERIAL MULTISPECTRAL IMAGERY

Lan et al. (2009) described a TerraHawk system (Frontier
Electronic Systems Corp., Stillwater, Okla.) for automated
airborne imaging using an MS 4100 multispectral camera,
position‐based camera triggering using GPS, and a system for
automatic camera stabilization. This integrated multispectral
imaging system was mounted on a single‐engine Cessna 210
(Cessna Aircraft Co., Wichita, Kans.) for imaging the field in
fly‐overs. During the fly‐overs, an IRR 180 irradiance
radiometer (Frontier Electronic Systems Corp., Stillwater,
Okla.) was set up to accumulate incoming solar irradiance.
After the fly‐overs, the digital numbers of the acquired
imagery were converted to percent reflectance using the
recorded data of solar irradiance. Figure 1 illustrates a
georeferenced color infrared (CIR) image of the cotton field
acquired on 20 September 2007 at a flight altitude of 2600 m
(image resolution of 1.56 m pixel‐1). The red color on the
image indicates the cotton crop canopy prior to harvest.

GROUND‐BASED DATA COLLECTION
Prior to planting in 2007, soil apparent electrical

conductivity (ECa) was measured at shallow (0 to 0.3 m) and
deep (0 to 0.9 m) depths using a Veris 3150 EC system (Veris
Technologies, Inc., Salina, Kans.). At full canopy, crop vigor

N

Figure 1. Georeferenced color infrared image of the cotton field acquired
on 20 September 2007 using MS 4100 camera in TerraHawk system on
Cessna 210.

was measured using a Green Seeker handheld data collection
and mapping unit (model 505, NTech Industries, Inc., Ukiah,
Cal.), which output NDVI values over the field.

Both Veris and Green Seeker datasets are spatially dense,
and it is necessary to reduce the size of the datasets so that
they can be effectively handled in statistical software
packages. From each of the Veris and Green Seeker datasets,
300 points were randomly extracted to form new Veris and
Green Seeker datasets for modeling, and an additional
150�points were extracted to form the datasets for model
validation.  Figure 2 shows the boundary of the study field,
soil types, and the selected modeling and validation data
points for both Veris and Green Seeker datasets.

SPATIAL DATA ANALYSIS
In this study, two different methods were used to model

ground sensor measurements using aerial remote sensing
data. The two methods are model‐driven spatial regression
and data‐driven geostatistics. REML was used to estimate the
model parameters in geostatistics; this geostatistical method
is referred to as REML‐geostatistics for the remainder of the

(a) (b)

Figure 2. Field boundary of the study field and sample locations for
(a)�Veris and (b) Green Seeker. Dominant soil types in this field are ShA
(Ships clay, 0% to 1% slopes, rarely flooded), ShB (Ships clay, 1% to 3%
slopes, rarely flooded), and BaA (Belk clay, 0% to 1% slopes, rarely
flooded).
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discussion herein. Multiple linear regression as OLS was also
implemented as a non‐spatial modeling alternative. All
spatial models were compared with the non‐spatial model for
each variable. The predictor variables used to model the
ground sensor measurements (Veris measured shallow and
deep soil ECa, and Green Seeker measured NDVI) were three
original bands (Green, Red, and NIR) and two derived
vegetation indices [NDVI = (NIR‐Red)/(NIR+Red), and
GNDVI = (NIR‐Green)/(NIR+Green)] from the aerial CIR
image.

The selection of these five variables for modeling was
based on our research experience. While factors such as
salinity, soil textures, water content, organic matter, cation
exchange capacity, macro‐nutrients, and drainage class can
all affect ECa (Corwin and Lesch, 2005), previous studies
have shown that soil clay content and hence soil moisture
content is a principal driving factor for the spatial
heterogeneity  of soil ECa in this area (Ge et al., 2008;
Stanislav et al., 2009). Soil moisture content further
correlates to crop growth (Stanislav et al., 2009; Stanislav et
al., 2010) and canopy optical properties that are captured by
different bands of the remote sensing images. Therefore, it is
reasonable to use these three original bands and two derived
indices to model ground‐based measurement such as soil
ECa.

The Akaike information criterion (AIC) (Akaike, 1974)
and the Bayesian information criterion (BIC) (Schwarz,
1978) were used for model comparison:

( )[ ]dN −�−= ^log2AIC (1)

( ) ⎥⎦
⎤

⎪⎣
⎡ −�−= N

d
N log

2
^log2BIC (2)

where N is the sample size of the observations, d is the
number of the parameters being estimated of the model, and

�̂  is the parameter vector of the model.
AIC and BIC have been used for model comparison in

terms of the principle of parsimony (Tukey, 1961). In
explaining this principle Tukey (1961) stated that “among
model equivalent regressors for y, prefer one with fewest
estimated coefficients.” Therefore, the best model with
minimal AIC and BIC should be the one with least
parameters,  and the final model will be optimum in terms of
minimum AIC and BIC values.

MODEL‐DRIVEN SPATIAL REGRESSION
The model‐driven approach to spatial statistics is

concerned with relevance of spatial effects on model
specification and estimation (Anselin, 1988). The spatial
structure is modeled using simultaneous maximum
likelihood estimation. The dependent variable or residuals
are a function of a spatially weighted average of neighboring
point data. To characterize spatial dependence, spatial
weight matrices are constructed and then included in a
specially structured regression model.

Spatial weight matrices are designed to represent
neighborhood relationships. A spatial matrix of vicinities is
defined for introduction of microlocalization factors and
spatial dependence within regression models. The matrix is
used in spatial models to relate a variable at one point in space

to the observations for that variable in other spatial units in
the system.

In general, there are two patterns of spatial dependence in
regression analysis: spatial lag and spatial error. Corres-
pondingly, there are two methods for introducing the spatial
weight matrix (W) into the multiple linear regression model:

� Include Wy as an independent variable, which
constructs a spatial lag regression model, where y is a
vector of observations on the dependent variable. If the
spatial lag component is ignored, then the OLS
estimates are inconsistent and biased.

� Include Wu as an independent variable of u, which
constructs a spatial error regression model, where u is
the sample vector of the residue of the multiple linear
regression model. If the spatial error component is
ignored, then the OLS estimates are inefficient but still
unbiased.

A spatial lag regression model is a general spatial
autoregressive model in which the explanatory variables
include a spatial lagged dependent variable (Baller et al.,
2001):

( )I0�

��XyWy

2,ND~

ρ

�

++=

(3)

where ρ is the coefficient of Wy, X is a matrix of observations
on the explanatory variables, � is the vector of multiple linear
regression coefficients on the explanatory variables, � is the
vector of independent and identically distributed (i.i.d.) error
terms, ND is the normal distribution, σ2 is the variance of �,
and I is the identity matrix with ones on the main diagonal
and zeros elsewhere.

A spatial error regression model includes an error term
that follows a spatial autoregressive process, and the
explanatory variables only contain exogenous variables
(Haining, 1995):

( )I0�

�uWu

u�Xy

2,ND~ �

+�=
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(4)

where u is the vector of the spatially autocorrelated error
term, � is the vector of i.i.d. errors, and λ is the coefficient of
Wu. Other terms are the same as in equation 3.

DATA‐DRIVEN REML‐GEOSTATISTICS

The data‐driven approach is based on geostatistics. This
approach assumes that the spatial structure, such as soil types
or management zones in agriculture, is continuous. Spatial
modeling with this approach involves fitting spatially
distributed data for parametric estimates or an empirical
semivariogram of a spatial process.

Geostatistics is a widely employed approach to model
datasets that exhibit spatial correlation in agriculture based
on variogram modeling of regression residuals. Geostatistics
also provides an interpolation technique (kriging) that can
predict response variable at unsampled locations (Journel
and Huijbregts, 1981). Geostatistics and regression can be
integrated to combine the features of both techniques.
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Table 1. Multiple linear regression models of Veris measured shallow and deep
soil apparent electrical conductivity and Green Seeker measured NDVI.

Model AIC BIC

Veris measured shallow soil ECa y = 471.8 ‐ 44.42(Green) + 42.27(Red) ‐3.262**(NIR) + 1836*(NDVI) ‐ 1820(GNDVI) 2980 3006
Veris measured deep soil ECa y = ‐110.3 + 21.87(Green) ‐ 6.197(Red) ‐ 7.579**(NIR) + 27.59(NDVI) + 718.7(GNDVI) 2921 2947
Green Seeker measured NDVI y = 0.9717 + 0.0696(Green) ‐ 0.1057*(Red) + 0.0102(NIR) ‐ 3.43(NDVI) + 2.726(GNDVI) ‐668.3 ‐642.4

Table 2. Calibrated spatial regression models and AIC and BIC values of Veris measured
shallow and deep soil apparent electrical conductivity and Green Seeker measured NDVI.

Model[a] AIC BIC

Veris measured shallow soil ECa
Spatial lag regression y = 0.9392***(Wy) + 1.649(Green) + 7.493*(Red) ‐ 3.608(NIR) ‐ 1307*(NDVI) 

‐ 17.36(GNDVI) ‐ 40.87
2820 2850

Spatial error regression y = 63.81 + 6.977(Green) ‐ 34.88*(Red) ‐ 3.608(NIR) + 179.9(NDVI) + 361.8(GNDVI) + u
u = 0.9519***(Wu)

2827 2827

Veris measured deep soil ECa
Spatial lag regression y = 0.9416***(Wy) + 58.16*(Green) ‐ 36.7*(Red) ‐ 7.247**(NIR) + 272.4(NDVI) 

+ 2128(GNDVI) ‐ 374.4*
2767 2796

Spatial error regression y = ‐341.6* + 60.44*(Green) ‐ 34.88*(Red) ‐ 8.26**(NIR) ‐ 1359*(NDVI) + 2370(GNDVI) + u
u = 0.9496***(Wu)

2769 2798

Green Seeker measured NDVI
Spatial lag regression y = 0.5941**(Wy) + 0.0749(Green) ‐ 0.0989(Red) + 0.0066(NIR) ‐ 3.238(NDVI) 

+ 3.059(GNDVI) + 0.2538
‐674.7 ‐645.1

Spatial error regression y = 1.95* ‐ 0.0042(Green) ‐ 0.0746(Red) + 0.0166*(NIR) ‐ 2.012(NDVI) ‐ 0.0485(GNDVI) + u
u = 0.8069***(Wu)

‐681.7 ‐652.1

[a] Statistically significant coefficients are indicated by asterisks, where * indicates p < 0.1, ** indicates p < 0.01, and *** indicates p < 0.001. 
Parameters with no asterisks are therefore not significant at the 0.1 level.

Table 3. REML‐geostatistical models of Veris measured shallow and deep soil apparent electrical conductivity and Green Seeker measured NDVI.
Model[a] AIC BIC

Veris measured shallow soil ECa y = 88.8 + 2.13(Green) + 10.09(Red) ‐ 4.087(NIR) + 262.1(NDVI) + 194.2(GNDVI)
c0 = 431.3; c1 = 1207; a = 684; ns = 26.3%

2757 2791

Veris measured deep soil ECa y = ‐158.2 + 39.95(Green) ‐ 23.69(Red) ‐ 5.596(NIR) ‐ 925.6(NDVI) + 1603(GNDVI)
c0 = 220.7; c1 = 816.5; a = 235; ns = 21.3%

2698 2732

Green Seeker measured NDVI y = 1.726 ‐ 0.0078(Green) ‐ 0.0623(Red) + 0.0151(NIR) ‐ 1.582(NDVI) ‐ 0.1692(GNDVI)
c0 = 0.0045; c1 = 0.0021; a = 400; ns = 68.2%

‐679.8 ‐646.5

[a] c0 = nugget, c1 = partial sill, a = range of the fitted variogram models, and ns = c0/(c0 + c1).

Geostatistics takes into consideration that the residuals from
multiple linear regression are spatially dependent in which
OLS regression estimates are no longer optimum. In a matrix
representation,  geostatistical regression can be expressed as:

eW�Xy += (5)

where e is the vector of regression residuals, and W is the
residual covariance matrix, which is determined by a
covariance function having three parameters (c0 as the
nugget variance, c0+c1 as the sill variance, and a as the
range). Other terms are the same as in equation 3. In this
study, the model parameters (� and W) were estimated by
REML, i.e., maximizing the residual maximum likelihood
function, and the spherical covariance function was chosen
to model the residual covariance structure among the
selected sampling points.

SOFTWARE TOOLS
All the models were computed using R statistical software

(www.r‐project.org). Spatial lag and error regressions were
performed in the spdep contributed package (http://cran.mtu.
edu). The REML‐geostatistics was performed in the geoR
contributed package (http://cran.mtu.edu).

RESULTS AND DISCUSSION
The results of the multiple linear regression model

calibration are presented in table 1. The statistically
significant coefficients are indicated by asterisks, where
*�indicates p < 0.1, ** indicates p < 0.01, and *** indicates
p < 0.001. Parameters with no asterisks are therefore not
significant at the 0.1 level.

SPATIAL REGRESSION
The spatial lag and error regression models were

determined for Veris measured shallow and deep soil ECa
and Green Seeker measured NDVI, respectively. Table 2
shows the results of the calibrated spatial regression models.
The results indicated that the spatial regression models
should have a much better ability in prediction of the spatially
varied data over the field with significantly lower AIC and
BIC values compared to the OLS multiple linear regression
models.

Based on the AIC and BIC values, the spatial lag
regression provided better models for Veris measured
shallow and deep soil ECa, and the spatial error regression
provided the better model for Green Seeker measured NDVI.
The comparison of the magnitude of the ρ and λ values
(larger values indicate higher spatial autocorrelation)
indicated that the Veris measurements (deep and shallow)
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Table 4. RMSE values of OLS and REML‐geostatistical model
validation of Veris measured shallow and deep soil apparent
electrical conductivity and Green Seeker measured NDVI.[a]

Model

Veris
Shallow Soil

ECa

Veris
Deep Soil

ECa

Green
Seeker
NDVI

OLS 0.146 0.306 0.165
REML‐geostatistics 0.096 0.186 0.149

n

y

yyn

i i,measured

di,predictei,measured∑
−

=
= ⎟

⎟
⎠

⎞
⎢
⎢
⎝

⎛
1

2

[a]
RMSE

have a higher spatial continuity (in terms of the spatial lag
models for spatial correlation) than Green Seeker NDVI
(in�terms of the spatial error model).

REML‐GEOSTATISTICS AND MODEL VALIDATION

Table 3 shows the results of the calibrated models of
REML‐geostatistics.  The results indicated that the REML‐
geostatistical  models are even better than the spatial
regression models for soil conductivity, with significantly
lower AIC and BIC values. Therefore, compared to the
spatial regression models and the OLS multiple linear
regression models, the REML‐geostatistical models should

   
Figure 3. Predicted versus Veris measured shallow soil apparent electrical conductivity (mS m‐1) of the validation set using (left) ordinary least squares
and (right) REML‐geostatistics (dashed line is 1:1 line).

   
Figure 4. Predicted versus Veris measured deep soil apparent electrical conductivity (mS m‐1) of the validation set using (left) ordinary least squares
and (right) REML‐geostatistics (dashed line is 1:1 line).

   
Figure 5. Predicted versus Green Seeker measured NDVI of the validation set using (left) ordinary least squares and (right) REML‐geostatistics
(dashed line is 1:1 line).
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have the best ability in prediction of the spatially varied soil
conductivity data over the field. Comparison of the ns ratios
(lower values indicate higher spatial autocorrelation) also
indicated that the Veris measurements (deep and shallow)
have a higher spatial continuity than the Green Seeker
measured NDVI in terms of the REML‐geostatistical models.

Table 4 shows the RMSE values of OLS and REML‐
geostatistical  model validation for Veris measured shallow
and deep soil ECa and Green Seeker measured NDVI. The
scatter plots of the model validation are shown in figures 3,
4, and 5. The results indicated that the REML‐geostatistical
models provided consistent predictions. The measured
values were significantly better than the corresponding OLS
models, with smaller RMSE values and higher correlation
between the predicted values and the measured values along
the 1:1 line.

The results in table 1 indicate that the OLS models can be
used to predict ground‐based measurements by airborne
remote sensing imagery. However, the statistical
significances of the models are relatively low. It seems that
remote sensing imagery is capable of capturing the large‐
scale variation, and hence the general trends in the ground‐
based dataset can be modeled and predicted by remote
sensing imagery. However, there is significant small‐scale
(or local) variation in the datasets that cannot be effectively
modeled and predicted by remote sensing imagery.
Therefore, we have to resort to spatial prediction methods to
model this small‐scale variation by the data itself. This is the
reason why spatial regression and REML‐geostatistics
outperformed the OLS method. With the results in tables 2
and 3, based on comparison of the AIC and BIC values, the
REML‐geostatistical  models were best for all variables, and
the OLS models fared poorly for all variables. The spatial lag
and error regressions provided comparable models to REML‐
geostatistics.  For the spatial regression models, both ρ and λ
are significant at p < 0.001 level, indicating very strong
spatial correlation in lags and errors. By accounting for
spatial dependence, regression coefficients change.
Apparently, coefficients estimated by the spatial regression
and REML‐geostatistics are more reasonable, and the OLS
coefficients are less efficient.

Statistically  significant correlation between the aerial CIR
image and Veris measured ECa data indicated that, even
though soils under the crop canopy cannot be directly seen
from the remote sensing image, some soil properties can still
be inferred from remote sensing images. For example, in
these non‐saline fields, soil ECa is primarily determined by
soil clay content and moisture condition (Corwin and Lesch,
2005). Soils with moderate ECa (such as loamy soils) have
a set of desirable attributes (such as favorable hydraulic
conductivity, good structure for root development, good
aeration conditions, etc.) that stimulate crop growth and
produce a greater amount of biomass, which further
influences the optical properties of the crop canopy. It is
through this soil‐crop interaction that soil ECa can be
modeled by remote sensing imagery. This would also hold for
any soil property that is a crop growth limiting factor during
a season (such as macro‐ and micro‐nutrient levels, pH, or
lime requirement).

It is interesting to note that the Green Seeker NDVI
resulted in models do not fit as well as Veris measured
shallow and deep soil ECa for all three prediction methods:
OLS, spatial regression, and REML‐geostatistics. Veris

measured shallow and deep soil ECa were modeled
comparably, with much lower AIC and BIC values. A number
of reasons may explain why the Veris method gave better
results. First, the Green Seeker NDVI measurements might
have contained a lot of random noise, which made the
modeling result inferior. This can be verified by larger nugget
to sill ratios (ns) in the NDVI residuals (table 3). Second, the
Green Seeker data were highly skewed to the right with
relatively few high values, whereas the Veris datasets were
quite symmetrical. The normality assumption made by OLS,
spatial regression, and REML‐geostatistics might be violated
by the skewed distribution of Green Seeker NDVI.

In this study, three ground‐based (and spatially dense)
variables (Veris measured deep and shallow ECa and Green
Seeker measured NDVI) were focused on. For these types of
data (also including spatially dense yield monitor data),
kriging might be sufficient to produce high‐resolution GIS
layers for site‐specific crop management. However, there are
many other relevant data, such as soil property and crop
physiological measurements, that can be collected through
soil and crop sampling. One feature of this type of data is that
they are expensive and spatially sparse. Auxiliary datasets
obtained from remote sensing imagery would be very useful
as co‐variables to interpolate these datasets into GIS layers.
Methods discussed in this study (spatial regression and
REML‐geostatistics)  would provide versatile techniques for
data analysis; this indicates advantages to using remote
sensing imagery.

CONCLUSIONS
This study investigated and compared three methods

(OLS multiple linear regression, spatial regression, and
REML‐geostatistics)  in spatial modeling and analysis for
spatial prediction of ground soil and crop canopy coverage
variability using aerial multispectral images. A number of
conclusions are drawn from the results of the study:

� Although ground‐based measurement can be modeled
and predicted by airborne remote sensing imagery with
the OLS method, the remote sensing imagery is only
capable of capturing the large‐scale variation and
modeling and predicting general trends in the ground‐
based dataset. To model and predict the significant
portion of small‐scale, local variation in the datasets,
spatial prediction methods such as spatial regression
and geostatistics are needed.

� The significant correlation between the aerial CIR
image and Veris measured ECa data indicated that
some soil properties can be inferred via remote sensing,
even though soils under the crop canopy cannot be seen
directly from the remote sensing image. The moderate
correlation between the aerial CIR image and Green
Seeker measured NDVI might be caused by highly
right‐skewed, non‐normally distributed data due to
random noise in the measurements.

� Airborne multispectral imagery provided informative
co‐variables to interpolate the spatially dense, ground‐
based variables (Veris measured deep and shallow ECa
and Green Seeker measured NDVI) into GIS layers.
The methods of spatial regression and geostatistics
provided versatile techniques for analysis of the
datasets.
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