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[1] Errors in remotely-sensed soil moisture retrievals
originate from a combination of time-invariant and time-
varying sources. For land modeling applications such as
forecast initialization, some of the impact of time-invariant
sources can be removed given known differences between
observed and modeled soil moisture climatologies.
Nevertheless, the distinction is seldom made when
evaluating remotely-sensed soil moisture products. Here
we describe an Observing System Simulation Experiment
(OSSE) for radiometer-only soil moisture products derived
from the NASA Hydrosphere States (Hydros) mission
where the impact of time-invariant errors is explicitly
removed via the linear rescaling of retrievals. OSSE results
for the 575,000 km2 Red-Arkansas River Basin indicate that
climatological rescaling may significantly reduce the
perceived magnitude of Hydros soil moisture retrieval
errors and expands the geographic areas over which
retrievals demonstrate value for land surface modeling
applications. Citation: Crow, W. T., R. D. Koster, R. H.

Reichle, and H. O. Sharif (2005), Relevance of time-varying and

time-invariant retrieval error sources on the utility of spaceborne

soil moisture products, Geophys. Res. Lett., 32, L24405,

doi:10.1029/2005GL024889.

1. Introduction

[2] Despite the fact that the subsurface moisture prog-
nostic variable in a land surface model is often labeled ‘‘soil
moisture’’, it is more accurately considered a model-depen-
dent index of wetness [Koster and Milly, 1997]. Simply put,
measured and modeled soil moistures do not have the same
meaning and are not directly interchangeable. The assimi-
lation of a measured soil moisture into a land surface model,
for applications such as forecast initialization, requires that
the measurement and model data be scaled to a common
climatology [Reichle and Koster, 2004].
[3] One approach is to transform both modeled and

remotely retrieved soil moisture (qmod and qobs) into standard
normal deviates to ensure they share common first and
second moment statistics. If mobs and mmod represent the

mean soil moisture from observations and the model,
respectively, at a given time of year (over many years)
and a given location, and if sobs and smod represent the
corresponding standard deviations, then the standard normal
deviates of both soil moisture variables (q0mod and q0obs) can
be calculated following

q0 ¼ q� mð Þ=s: ð1Þ

[4] Transformation to consistent normal deviates effec-
tively removes the impact of time-invariant additive and
multiplicative errors from comparisons between modeled
and observed soil moisture and provides an objective basis
for the intercomparison of anomalies. Such transformations
have profound implications for the error estimates assigned
to remotely-sensed soil moisture. Consider the following
extreme example. A satellite retrieves volumetric soil mois-
ture with an absolute error of 4% volumetric. The error takes
the form of a constant bias resulting from the incorrect
assignment of some time-invariant property such as soil
type. In this example, the time series of measurement normal
deviate anomalies from the sensor is identical to the time
series of anomalies that would be derived from an unbiased
measurement system. Furthermore, because the scaling pro-
cess in (1) focuses on anomalies alone, the impact of the bias
on the scaled observations is completely removed. For model
applications, the biased time series of soil moisture measure-
ments can be considered perfect after scaling. Of course,
errors in sensor measurements have both time-invariant and
time-varying sources. Still, if the time-invariant sources are a
significant fraction of the total, the effective error of a soil
moisture measurement, from a modeling standpoint, may be
significantly less than the stated absolute error. Despite this
fact, validation goals for spaceborne soil moisture products
are typically given in terms in absolute (or unscaled) root-
mean-square (RMS) error.
[5] Preliminary results with remote sensing products

imply that the impact of time-invariant errors may be large.
Figure 1 plots independent surface soil moisture retrievals
obtained from the Tropical Rainfall Mission Microwave
Imager (TMI) [Bindlish et al., 2003] and Advanced Micro-
wave Scanning Radiometer (ASMR-E) [Njoku et al., 2003]
for a 1� lat/long box in the U.S. Southern Great Plains
(centered at �102.5�W and 35.5�N) during the 2003 calen-
dar year. A seasonally-varying bias results in TMI retrievals
being generally wetter than comparable AMSR-E retrievals.
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The presence of this bias implies that each product pos-
sesses a distinct climatology - with respect to each other as
well as to any modeled or in situ soil moisture product
[Drusch et al., 2005]. These differences will inflate remote
sensing RMS error statistics without degrading the real
value of retrievals for modeling applications. Of course,
the single year plotted in Figure 1 is insufficient to deter-
mine whether the biases seen in Figure 1 are stable on an
inter-annual basis and thus constitute a true climatological
difference. Given temporal shortcomings in both remotely-
sensed and ground-based soil moisture data sets, Observing
System Simulation Experiments (OSSE’s) provide the only
currently feasible approach for studying this issue. Here we
present a 20-year OSSE executed to examine the relative
contribution of time-varying and time-invariant error
sources to the overall uncertainty of radiometer-only soil
moisture retrievals from the planned NASA Hydrosphere
States (Hydros) mission [Entekhabi et al., 2004]. Implica-
tions of this decomposition on the perceived value of
Hydros soil moisture products for land surface modeling
applications are examined.

2. OSSE Approach

[6] The observing system simulation experiment (OSSE)
described here is based on a methodology previously
developed by Crow et al. [2001, 2005]. It has four distinct
components: (1) a land surface model to predict surface
geophysical states, (2) a forward microwave emission
model to convert these states into microwave brightness
temperature (TB), (3) an orbit and sensor model to realisti-
cally degrade TB fields, and (4) a retrieval model to invert
simulated TB observations back into soil moisture.

2.1. Land Surface Modeling

[7] The 1-km surface (0–5 cm) soil moisture (q), 5-cm
soil temperature (T5 cm), and surface skin temperature fields
(T0) underlying the OSSE are derived from long-term
(October 1980 to July 2000) TOPmodel Land Atmosphere
Transfer Scheme (TOPLATS) [Peters-Lidard et al., 1997]
simulations over the 575,000 km2 Red-Arkansas River
Basin (H. O. Sharif et al., Multi-decadal high-resolution
hydrologic modeling of the Arkansas/Red River Basin,
submitted to Journal of Hydrometeorology, 2005).

2.2. Forward Microwave Emission Modeling

[8] Following Crow et al. [2005], model-generated q,
T5 cm and T0 are combined with ancillary data to simulate

1-km H-polarization microwave brightness temperature
(TB) via:

TB ¼ Ts 1� rð Þ exp �t= cos fð Þð Þ þ T0 1� wð Þ

� 1� exp �t= cos fð Þf g½ � 1þ r exp �t= cos fð Þf g½ � ð2Þ

where Ts is the effective soil temperature defined as
(T0 + T5 cm)/2, t is the vegetation nadir opacity, f the
incidence angle, w the single scattering albedo, and r the soil
reflectivity. In turn, vegetation nadir opacity is defined as

t ¼ bW : ð3Þ

The coefficient b varies with vegetation type and W is the
total columnar vegetation water content. Foliar vegetation
water content is estimated for the Red-Arkansas River
basin using archived (1980 to 2000) 8-km AVHRR NDVI
products and the regression relationship of Jackson et al.
[1999]. A woody-vegetation correction factor is applied to
convert the foliar W value into the total columnar (i.e.
trunk, branches, and foliar) value required by (3).
[9] Soil reflectivity (r) is calculated as

r ¼ rs exp �hð Þ ð4Þ

where h is assumed to be 0.1 of the surface RMS
height and rs is the Fresnel reflectivity of the equivalent
smooth surface. This reflectivity depends on j and the
dielectric constant of the soil. Dielectric information
can be derived from soil moisture using the mixing
model of Dobson et al. [1985] and known soil sand (S)
and clay (C) percentages. For water surfaces, the forward
calculation is

TB ¼ T0 1� rsð Þ; ð5Þ

and rs is calculated via Klein and Swift [1977].
Vegetation parameters b, w and h are assigned using a
1-km land cover classification and a lookup-table
populated with typical literature values [Crow et al.,
2005]. Soil S and C are based on a soil classification
map.

2.3. Orbital and Scanning Model

[10] A simplified orbital simulation model of the Hydros
platform and antennae [Crow et al., 2001] provides acqui-
sition times and spatial locations for all footprint centers
that fall within the Red-Arkansas River Basin during an
estimated two-year Hydros mission life. Hydros orbit and
scan characteristics are based on preliminary mission
design parameters presented by Entekhabi et al. [2004].
For each individual footprint over the forward half of the
radiometer’s scan, a two-dimensional Gauss function is
used to obtain a weighted averaged of the TB field and
approximate the spatial support of the actual Hydros
antennae gain function [Drusch et al., 1999]. Footprint
TB antennae noise is randomly sampled from a mean-zero
Gaussian distribution with a standard deviation of 1 K.
Afterwards, perturbed TB observations are binned onto a
36-km fixed earth grid. Observations from both the as-
cending and descending orbital scans are used and multi-
ple footprint centers within a single bin are merged via
simple averaging. Footprint-centers calculated during a

Figure 1. Time series of 2003 AMSR-E and TMI surface
soil moisture retrievals for the 1� grid square centered at
�102.5�W and 35.5�N.
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two-year Hydros mission life are recycled ten times in
order to cover the approximately 20-year period over
which land surface model output is available.

2.4. Soil Moisture Retrieval Model

[11] Coarse-scale ancillary values of b, h, Ts, W, w, S,
and C are obtained by aggregating the 1-km fields used in
the forward-modeling component of the OSSE to 36-km.
After aggregation, synthetic noise is added to 36-km Ts, W
and b fields to mimic actual operational conditions.
36-km Ts and W noise is sampled from a mean-zero
Gaussian distribution with standard deviations of 1.5 K
and 0.3 kg m�2, respectively. All W and Ts noise is
modeled as both spatially and temporally independent. In
addition, some misclassification of surface vegetation is
expected. To represent this impact, b noise is sampled
from a mean-zero Gaussian distribution with a standard
deviation of 0.2. Because this error arises from uncertainty
in a static classification and/or look-up table, it is assumed
to be time-invariant. Using these ancillary data fields, the
simulated 36-km TB fields described in Section 2.3 are
converted then into 36-km soil moisture products using the
Jackson [1993] algorithm. The approach neglects differ-
ences between soil and canopy temperatures by assuming
T0 = Ts. Given known 36-km ancillary values of h, w, Ts,
b, W, f, S and C, this allows (2) to be solved for rs which,
in turn, is converted into a soil moisture estimate using the
Fresnel equations and the soil-mixing model of Dobson et
al. [1985].

3. Results

[12] Using the approach described above, 20-years of
OSSE-simulated Hydros soil moisture products are pro-
duced at a footprint-scale of 36-km. The fine-scale (1-km)
TOPLATS soil moisture fields underlying the OSSE (see
section 2.1), determined through the forcing of the land
model with observational data, are directly aggregated to
36-km and are treated as benchmark ‘‘truth’’. For each
36-km grid cell in the modeling domain and each day of
the year, we then calculate the mean (m) and standard
deviation (s) of the retrieved (qobs, simulated via the
OSSE) and the benchmark (qmod, generated via the land
surface model) soil moisture products. In order to mini-

mize uncertainty in OSSE-generated statistics due to
random effects, all results are based on the pooling of
five separate OSSE realizations perturbed using indepen-
dent synthetic noise.
[13] Differences between the benchmark and OSSE-

simulated Hydros soil moisture products are due to a
discrete number of error sources: simplifying assump-
tions employed in the retrieval model, noise added to
36-km b, W and Ts fields, noise added to TB retrievals,
gridding interpolation errors, and aggregation errors
reflecting the neglect of sub-footprint-scale heterogeneity
in the retrieval process. A portion of these errors
manifest themselves as a bias in simulated soil moisture
retrievals. The 20-year length of the OSSE allows mmod
and mobs to be calculated for each day of the year and,
subsequently, the correction of climatological biases on a
daily time step. Figure 2 demonstrates the impact of this
correction by plotting the ratio between the RMS error
of the original OSSE retrievals (qobs) and the RMS error
calculated after OSSE results have been corrected for the
impact of time-invariant biases (qobs + mmod � mobs).
Especially over heavily vegetated areas, the correction of
long-term biases leads to a substantial reduction in RMS
retrieval error.
[14] If a sufficient heritage of observations exists to

calculate climatological statistics, time invariant errors in
spaceborne soil moisture products can be removed by
scaling raw retrievals into appropriate standard normal
deviates using (1). For modeling applications, the truest
reflection of retrieval value is how well these deviates
correlate with actual soil moisture anomalies. Using the
20-year history of the OSSE, we calculated climatological
soil moisture statistics and rescaled both benchmark and
OSSE-retrieved soil moisture products into standard nor-
mal deviates using (1). Unscaled RMS error results and
the temporal correlation between rescaled OSSE and
benchmark soil moisture fields were then examined on

Figure 2. The reduction in RMS error (RMSE) associated
with bias correction of OSSE results.

Figure 3. Fraction of the 575,000 km2 Red-Arkansas
River Basin where OSSE-simulated soil moisture retrievals
satisfy RMS and R accuracy thresholds. RMS error is
calculated between unscaled OSSE-simulated and bench-
mark soil moisture products. R is calculated between
standard normal deviates of both soil moisture products.
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a grid-cell by grid-cell basis within the Red-Arkansas
River Basin. Blue diamonds (and the single green trian-
gle) in Figure 3 indicate lightly vegetated grid cells where
the RMS error of unscaled retrievals is below 4%
volumetric (the official absolute accuracy goal for Hydros
retrievals). Red circles in Figure 3 denote the fraction of
the basin where this RMS threshold is not met but the
correlation coefficient (R) between the benchmark and
OSSE normal deviates remains above 0.5. Past work with
real spaceborne soil moisture retrievals has indicated that
an anomaly correlation coefficient of 0.32 (against in situ
data) leads to improved soil moisture estimates after
assimilation of the retrievals into a global land surface
model [Reichle and Koster, 2005]. A slightly higher
correlation coefficient may be required to add value when
focusing on regions where higher quality forcing data is
available. Therefore, as a conservative estimate, we as-
sume that a correlation coefficient of 0.5 represents the
minimum required to add value to global model predic-
tions. Based on this threshold, a substantial fraction of the
total basin area failing the RMS threshold (red circles and
black crosses) retains value for land surface modeling by
virtue of a sufficiently large anomaly R (red circles only).
In these areas, the value of Hydros retrievals is under-
estimated by the impact of time-invariant errors on RMS
statistics.
[15] Red circles in Figure 3 cover approximately 36% of

the Red-Arkansas River Basin and denote areas where
Hydros observations retain the ability to detect soil moisture
anomalies despite failing to meet a 4% volumetric RMS
error threshold. The spatial extent of these areas exhibits
some sensitivity to assumptions concerning the type of error
sources represented by the OSSE. For instance, adding a
time invariant RMS error of 0.1 to the sand (S) and clay (C)
fractions used in the retrieval model will increase the extent
of the red circles from 36% to 42% of the basin. Conversely,
modeling all error sources (i.e. b, W, S and C) as completely
uncorrelated in time reduces the spatial fraction of red
circles in Figure 3 from 36% to 30%. It is worth noting
that even in this final case, where decidedly pessimistic
assumptions are made concerning the temporal properties of
retrieval errors, significant levels of anomaly correlation are
retained in some areas of the Red-Arkansas Basin otherwise
failing the 4% volumetric RMS error threshold. Despite
temporally uncorrelated parameter perturbations, OSSE-
simulated retrieval errors retain some temporal invariance
due to land surface aggregation efforts which tend to
manifest themselves as temporally persistent biases [Crow
et al., 2001].

4. Conclusions

[16] In this study we assess the relative contribution of
time-invariant versus time-varying sources of uncertainty
on soil moisture retrieval errors simulated within an
Observing System Simulation Experiment (OSSE) for
Hydros radiometer-only soil moisture products. While
both types of error contribute directly to RMS retrieval
errors, time-invariant errors can be removed given known
differences between observed and modeled soil moisture
climatologies and will not impact the value of Hydros
retrievals for most land surface modeling applications.

[17] Results demonstrate that time-invariant biases do
contribute significantly to absolute errors in OSSE-simulated
Hydros retrievals (Figure 2). Consequently, retrievals over
large areas of the Red-Arkansas River basin that nominally
fail the Hydros RMS error goal of 4% volumetric (due to
heavy vegetation) retain both an ability to detect the presence
of soil moisture anomalies and their value for land surface
modeling (Figure 3). Traditional remote sensing validation
relies heavily on unscaled absolute RMS errors to assess
retrieval value. The analysis suggests that this reliance may
lead to the underestimation of the spatial extent over which
Hydros soil moisture retrievals possess value for land surface
model applications.
[18] Two caveats are worth noting. While our analysis

assumes that climatological soil moisture statistics are
accurately known, such statistics are seemingly difficult
to calculate for sensors with 1- to 3-year mission lives.
However, it appears possible to approximate long-term
soil moisture statistics from shorter time periods by
using spatial coverage as a proxy for temporal averaging
[Reichle and Koster, 2004]. In addition, while the spatial
and temporal dynamics of soil moisture fields and
spaceborne retrieval errors has been modeled to our best
knowledge, OSSE results can only approximate the
magnitude and structure of errors in Hydros soil mois-
ture products. More definitive treatment of retrieval
errors will only be possible once the Hydros radiometer
is in orbit.
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