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Abstract—Soil moisture is a fundamental data source used by
the United States Department of Agriculture (USDA) Interna-
tional Production Assessment Division (IPAD) to monitor crop
growth stage and condition and subsequently, globally forecast
agricultural yields. Currently, the USDA IPAD estimates surface
and root-zone soil moisture using a two-layer modified Palmer soil
moisture model forced by global precipitation and temperature
measurements. However, this approach suffers from well-known
errors arising from uncertainty in model forcing data and highly
simplified model physics. Here, we attempt to correct for these
errors by designing and applying an Ensemble Kalman filter
(EnKF) data assimilation system to integrate surface soil moisture
retrievals from the NASA Advanced Microwave Scanning Ra-
diometer (AMSR-E) into the USDA modified Palmer soil moisture
model. An assessment of soil moisture analysis products produced
from this assimilation has been completed for a five-year (2002
to 2007) period over the North American continent between
23 N—50 N and 128 W—65 W. In particular, a data denial
experimental approach is utilized to isolate the added utility of
integrating remotely sensed soil moisture by comparing EnKF soil
moisture results obtained using (relatively) low-quality precipita-
tion products obtained from real-time satellite imagery to baseline
Palmer model runs forced with higher quality rainfall. An analysis
of root-zone anomalies for each model simulation suggests that
the assimilation of AMSR-E surface soil moisture retrievals can
add significant value to USDA root-zone predictions derived from
real-time satellite precipitation products.

Index Terms—Agriculture, data assimilation, remote sensing,
soil moisture.
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I. INTRODUCTION

T HE International Production Assessment Division (IPAD)
is the agricultural forecasting division of the Office of

Global Analysis (OGA) within the U.S. Department of Agricul-
ture’s (USDA) Foreign Agricultural Service (FAS). IPAD is re-
sponsible for providing monthly global crop estimates and pro-
jected crop yields to monitor global crop conditions and ensure
agricultural economic security. These estimates are used for de-
cision making by the U.S. Government to determine food-in-
secure geographical regions and their potential for affecting na-
tional security. Consequently, IPAD plays an active role in mon-
itoring and enhancing world food security by alerting policy-
makers of potential food security problems well in advance,
working closely with the U.S. Agency for International Devel-
opment (USAID), and providing direct support to the Famine
Early Warning System (FEWS-NET).

IPAD relies on many information sources and utilizes a con-
vergence of evidence methodology for comparing data, mini-
mizing risk of error, and maximizing the reliability of foreign
crop production, area, and yield forecasts during the growing
season. In an effort to determine anomalous meteorological con-
ditions indicating times of water stress or flooding which impact
these crop condition assessments, IPAD analysts compare cur-
rent global agro-meteorological conditions against a database
of archived satellite imagery and crop yields. To this end, es-
timates from IPAD are derived from a merging of many data
sources including satellite remote sensing and ground observa-
tions, and more than 20 years of climatology and crop behavior
data over key agricultural areas. To most efficiently manage
these data sources, IPAD has developed a series of analytical
tools, crop models, and hazard calendars within a Crop Condi-
tion Data Retrieval and Evaluation (CADRE) Data Base Man-
agement System (DBMS).

A crucial requirement of these global crop yield forecasts is
the regional characterization of root-zone soil moisture. By cap-
turing the impact of agricultural drought (i.e., the lack of root-
zone soil moisture) on crop health and eventual yield, IPAD an-
alysts can better prepare for and prevent possible food shortages
and agricultural disasters. However, the accurate estimation of
regional soil moisture dynamics based on sparse ground mea-
surements is difficult due to soil moisture heterogeneity caused
by the spatial heterogeneity of precipitation events, land cover,
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soil properties, and topography. In particular, temporal and spa-
tial resolution of root-zone soil moisture is important for pre-
dicting adequate soil profile wetting and drying between pre-
cipitation events. Thus, root-zone soil moisture availability is a
major factor impacting IPAD yield forecasts.

The CADRE DBMS system estimates root-zone soil mois-
ture (and, therefore, the severity of agricultural drought) using
a modified 2-layer Palmer model forced by precipitation and
temperature datasets operationally obtained from the World
Meteorological Organization (WMO) and U.S. Air Force
Weather Agency (AFWA). However, soil moisture estimates
derived from this type of global modeling suffer from a range
of deficiencies including: poor quality rainfall input, uncer-
tain parameter values and over-simplified vertical and lateral
physics [1], [2]. This work aims at reducing the impact of
these deficiencies on IPAD root-zone soil moisture estimates
by assimilating surface soil moisture observations from the
NASA Advanced Microwave Scanning Radiometer (AMSR-E)
into CADRE using an Ensemble Kalman Filter (EnKF). In this
way, surface soil moisture dynamics observed by AMSR-E can
be used to indirectly update the root-zone through the vertical
soil moisture coupling of the 2-layer soil moisture model. The
hypothesis being that the improved temporal resolution and
spatial coverage of AMSR-E retrievals over ground station
data and model outputs used by IPAD will provide a better
characterization of surface wetness and enable more accurate
crop monitoring in key agricultural areas. While assimilation
strategies for improved root-zone soil moisture monitoring
have recently been presented [2]–[5], there still remains a need
for a quantitative evaluation of the utility of these assimilation
strategies for soil profile estimation. Within this study, we
explicitly test our hypothesis using a data denial experimental
design in which AMSR-E soil moisture retrievals are used to
correct root-zone model estimates (obtained using a low-quality
rainfall product) back to benchmark modeling levels based on
the input of high accuracy rainfall measurements. The assimi-
lated surface soil moisture retrievals and IPAD water balance
model are described in Sections II and III, respectively. Sec-
tion IV describes the EnKF-based data assimilation system
which is applied within the data denial experimental framework
described in Section V. Results are presented in Section VI,
and the summary and conclusions are given in Section VII.

II. AMSR-E SURFACE SOIL MOISTURE RETRIEVALS

This work is based on near-daily surface soil moisture esti-
mates derived from the satellite-based Advanced Microwave
Scanning Radiometer (AMSR-E). AMSR-E was launched in
2002 on board the NASA EOS Aqua satellite to provide global
coverage of passive microwave measurements of terrestrial,
oceanic, and atmospheric variables for the investigation of
global water and energy cycles [6]. Aqua follows a sun-syn-
chronous orbit with equatorial crossing at approximately 1330
Local Standard Time (LST) and completes full global coverage
every 2–3 days at the equator and more frequently at higher
altitudes. AMSR-E measures brightness temperatures at six
frequencies, 6.92, 10.65, 18.7, 23.8, 36.5, and 89.0 GHz, with
vertical and horizontal polarizations at each frequency. With
a fixed incidence angle of 54.8 and an altitude of 705 km,

AMSR-E provides a conically scanning footprint pattern with
a swath width of 1445 km. The mean footprint diameter ranges
from 56 km at 6.92 GHz to 5 km at 89 GHz.

In our approach, we retrieve surface soil moisture estimates
from AMSR-E brightness temperatures based upon an algo-
rithm developed by Jackson [7]. Jackson’s retrieval method uti-
lizes a physically based forward model of microwave emission
from the soil-vegetation-atmosphere medium. The algorithm
uses horizontally polarized AMSR-E brightness temperatures
at 10.7 GHz re-scaled to a 1/4 grid. The effective emissivity
from each pixel is calculated by independently modeling the
microwave emission from the bare soil layer and the emission
and attenuation from the vegetation layer. For proper imple-
mentation, the model requires ancillary input data including
soil texture and porosity, land cover, the Normalized Difference
Vegetation Index (NDVI). Surface temperature is estimated
from the AMSR-E vertically polarized 37 GHz brightness
temperature according to the equation presented in [8]. Effects
of atmospheric scattering at these wavelengths (10.7 GHz) are
considered to be minimal and neglected. Within this frame-
work, observed brightness temperatures from AMSR-E are
divided by measured soil temperature to estimate emissivity
over each pixel. This measured emissivity is then isolated and
used to solve for volumetric soil moisture by computing the
dielectric constant from the dielectric mixing model [9], soil
reflectivity from the Fresnel equations [10], and corrected for
vegetation effects as in [11]. In this way, a near-daily soil mois-
ture product is obtained by combining retrievals obtained from
both ascending (1:30 pm) and descending (1:30 am) AMSR-E
overpasses. The version of this algorithm applied to AMSR-E
brightness temperatures can be found in [12]. Recent evaluation
results suggest that this single-polarization approach is more
effective at retrieving soil moisture over the continental United
States than competing approaches based on multipolarization
brightness temperature [13]. Traditionally, the sampling depth
of soil moisture estimates at 10.7 GHz is assumed to be approx-
imately 1 cm depending on soil type, moisture content, etc. For
this study, the soil moisture estimates from AMSR-E are as-
sumed to represent a soil depth comparable to the surface layer
used by the IPAD modified Palmer model. Within the context
described here, the risk of error introduced from this mismatch
of sampling and modeling depth is considered minimal.

III. IPAD WATER BALANCE MODEL

The IPAD DBMS utilizes a wealth of data sources including
over 3000 ground observations from the WMO and climato-
logical estimates provided by the AFWA. The primary inputs
for the IPAD water balance model are daily maximum and
minimum temperature and precipitation accumulation. The
AFWA precipitation and temperature products are provided
by the AFWA Agricultural Meteorology modeling system
(AGRMET). Daily estimates are calculated from three-hourly
analyses of merged gauge reports from AFWA’s global surface
observation database and remotely sensed climatological data.
Consequently, the AFWA rain product is of high quality in
specific regions of the world (e.g., North America) in which
high-quality daily rain gauge observations are operationally
available. However, in other more data poor regions of the
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world, it relies heavily on uncertain satellite-based rainfall
retrievals, and is prone to high levels of error in short-term
rainfall accumulation estimates.

The two-layer soil moisture model used by IPAD was first de-
scribed by Palmer [14]. The two-layer soil moisture model is a
bookkeeping method that accounts for the water gained or lost in
the soil profile by recording the amount of water withdrawn by
evapotranspiration and replenished by precipitation. The avail-
able soil moisture capacity in for the soil column is calculated
from the available water content of both layers (i.e.,

and for the surface and root-zone model layers
respectively) derived from the FAO Digital Soil Map of the
World [15], soil texture and the total depth of the soil column.
The Palmer model surface layer is assumed to contain 2.54 cm
of water at soil saturation (i.e., cm), and the
lower layer depends on the depth of the effective root-zone cal-
culated from . Daily estimates of minimum and max-
imum temperature and precipitation are applied to the soil mois-
ture model in order to calculate the daily amount of soil mois-
ture withdrawn by evapotranspiration and replenished by pre-
cipitation for two layers of soil. Although the Palmer soil mois-
ture model is simplistic relative to more recent advances in hy-
drologic modeling, IPAD continues to use this model in order
to take advantage of its computational efficiency and histor-
ical database of global soil moisture climatology within their
DBMS. The purpose of this analysis is to quantify the added
value of assimilating surface soil moisture relative to an estab-
lished operational DBMS. Therefore, in order to accurately rep-
resent the current operational IPAD baseline system, we also
utilize the Palmer model with our data assimilation system. For
each day, soil moisture in the Palmer model surface layer is
calculated as

(1)

where is soil moisture content in the surface layer from the
previous day, is precipitation, is potential evaporation,
and is a diffusion term discussed below. No runoff is calcu-
lated for this version of the model; excess water is lost from the
system. The root-zone soil moisture is adjusted as

(2)

where is the previous day root-zone soil moisture and
the net daily change in surface soil moisture. Thus, loss from
the root-zone depends on initial moisture content as well as on
the PE and P. A no flow boundary condition is assumed for the
bottom of the root-zone layer. In this context, all soil moisture
model calculations are in units of depth. For compatibility with
the volumetric soil moisture retrievals from AMSR-E, we trans-
formed soil moisture units from depth to volumetric content
during implementation of our data assimilation system (Sec-
tion IV) using soil porosity data from the Soil Survey Geo-
graphic (SSURGO) database. Consequently, data assimilation
results shown later are in volumetric units.

IPAD has altered Palmer’s original two-layer soil moisture
model shown above via a number of specific modifications.
First, moisture is depleted from the lower layer before the
surface layer is completely dry, thus allowing for a more

gradual and realistic depletion of the surface layer. The mod-
ified extraction function allows moisture to be depleted from
the surface layer at the potential evapotranspiration rate up to
75% of the surface capacity (or 75% of 2.54 cm of water).
When the surface layer is below 75% capacity, moisture is
extracted from the surface at a reduced rate with the lower layer
making up the remaining requirement. In addition, IPAD has
changed the model calculation of potential evapotranspiration
to be based on the modified FAO Penman-Monteith equation
described in [16]. Due to the lack of a global data set of wind
speed and relative humidity within the IPAD DBMS, the
potential evapotranspiration calculations assume a constant
wind speed of 2 m/s and estimate vapor pressure deficit from
minimum and maximum temperature. Atmospheric pressure
and extraterrestrial radiation are calculated from station lati-
tude and elevation. In its current operational implementation,
IPAD applies the Palmer model at daily time steps within a
stereographic projection with approximately 47 km horizontal
grid spacing at 60 latitude. Here, all data have been regridded
to a 1/4 resolution mesh for compatibility with the AMSR-E
soil moisture observations as discussed below.

In data assimilation systems, the constraint of root-zone soil
moisture values using surface observations is based on the
presence of cross-correlation between errors in surface and
root-zone soil moisture predictions made by the model. Such
cross-correlation typically requires the presence of diffusion
by which anomalies in one layer are vertically propagated
into neighboring layers. Within the 2-layer Palmer model
used by IPAD, vertical coupling between layers is relatively
simplistic and allows recharge of the top layer (and diffusion
to the root-zone) based on an assigned value of fractional
water volume. Below the fractional water threshold of 75%,
root-zone moisture recharge is halted. This artificial truncation
of soil moisture diffusion results in a complete loss of coupling
between the two layers and reduces the value of surface soil
moisture retrievals for constraining deeper root-zone moisture.
However, this problem can be eased with the addition of a
simple linear diffusion term

(3)

where is a constant diffusion coefficient. Surface and root-
zone soil moisture contents are then adjusted by following
(1) and (2).

This added diffusion term results in a more gradual soil mois-
ture gradient between the surface and root-zone layers, and en-
sures sufficient vertical communication between the two layers.
Here the coefficient in (3) has been assigned a constant value
of 17.9 mm based on a sensitivity analysis as described in Sec-
tion VI. The impact of this modification on data assimilation
results will be discussed later.

IV. ENSEMBLE KALMAN FILTER

The increased availability of satellite remote sensing prod-
ucts has led to improved meteorological, oceanographic, and
land surface predictions through the merging of satellite obser-
vations with numerical models [17], [18]. Sequential data as-
similation techniques use auto-recursive analyses to optimally
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merge model estimates with state observations. If properly done,
such merging should yield improved state predictions relative to
the accuracy of either the model or observations. Filtering-based
applications of data assimilation techniques rely on the avail-
ability of an observation at time that can be related to the
state vector via a known observation operator

(4)

where represents a random perturbation of the observations.
Here, such perturbations are assumed to be Gaussian with a
known covariance of .

In this study, a 1-D Ensemble Kalman filter (EnKF) is ap-
plied. The EnKF is a nonlinear extension of the standard Kalman
filter first demonstrated by [19] and has been successfully ap-
plied to land surface forecasting problems [20]. It is based on
adding random errors to the model’s internal states or forcing
to produce an ensemble of model states and predicted obser-
vations where refers to a particular realization within
the ensemble. This Monte Carlo ensemble is then used to sample
the error covariance of the remotely sensed observations
and the cross-correlation between these observations and each
forecasted state variable . The updating step of the
EnKF utilizes these error covariance estimates to optimally up-
date forecasts in response to observations based on the calcula-
tion of the Kalman gain, defined as

(5)

and the application of the Kalman filter updating equation

(6)

to each realization within the ensemble. Note that “ ” and “ ”
notation is used to signify state estimates made before and after
updating in response to observations at time . As in (4), rep-
resents a random Gaussian perturbation of the observation with
covariance . After updating via (6), each ensemble member is
forecasted in time until the next available observation using the
dynamic model. The EnKF state estimate at any time is obtained
by sampling the mean of the ensemble.

Our particular implementation of the EnKF integrates soil
moisture observations from AMSR-E with the modified Palmer
two-layer soil moisture model described in Section III by ap-
plying a 1-D EnKF at daily time-steps when AMSR-E obser-
vations are available. However, before the AMSR-E soil mois-
ture retrievals can be assimilated, the modeled and observed
(AMSR-E) data must be scaled to a common climatology to
reduce potential biases and differences in dynamic range that
commonly exist between modeled and observed surface soil
moisture products. By removing time-invariant biases from the
observation data, the two datasets can be optimally merged to
allow more efficient assimilation [1]. The removal of multiplica-
tive and additive errors in this way also provides an objective
basis for the comparison of soil moisture anomalies and a basis
for properly validating the system.

To establish a representative climatology for both AMSR-E
and IPAD modified Palmer model surface soil moisture datasets,

we constructed a retrospective analysis of archived data from
June 2002 to June 2007. The AMSR-E product was rescaled
using standard normal deviates based on a mean and standard
deviation climatology of AMSR-E soil moisture retrievals and
the surface layer of the IPAD soil moisture model within a
31-day sampling window centered on a particular day of the
year. In this way, the AMSR-E retrievals are transformed such
that their climatology is comparable to the climatology for
top layer soil moisture estimates produced by the IPAD-mod-
ified Palmer model. The climatologically rescaled AMSR-E
data are then introduced as observations to the EnKF using
sequential observations of AMSR-E and climatological data.
Since AMSR-E observations are preprocessed into surface soil
moisture estimates (assumed to be consistent with the top layer
of the Palmer model), our observation operator in (4, 6) is
simply .

As noted above, the implementation of the EnKF requires
that a Monte Carlo ensemble of Palmer model predictions be
generated. Because modeling parameters are static within the
Palmer water balance, we assume a temporally constant mod-
eling error for the surface layer. Each member of the model
ensemble is generated by applying independent Gaussian noise
directly to the Palmer model surface and root-zone soil mois-
ture states. The statistical properties of this noise determine the
size of and in (5). Here, surface layer perturba-
tions were assumed to be mean-zero with a standard devia-
tion of 0.03 cm cm . Our choice of model error is based on
a priori model runs over the United States and is considered re-
alistic. The same stochastic perturbation is also applied to the
root-zone after it has been scaled by the to ensure a
physically consistent volumetric perturbation for the entire soil
column (i.e., shifts in the root-zone layer are dampened rela-
tive to the surface layer according to the soil column water ca-
pacity). In this way, the perturbations diminish with increases in
soil column depth, porosity, and water holding capacity.

An additional challenge in applying the EnKF to the assimila-
tion of surface soil moisture retrievals into a land surface model
is the accurate estimation of the observation error in (5). The
relative magnitude of (versus competing errors assumed to be
present in the model, i.e., ) determines the size of in (5),
and, thus, the amount of weight applied to observations upon the
implementation of (6). The accuracy of remotely sensed passive
microwave observations vary greatly over different land cover
types due to signal attenuation by vegetation and increased scat-
tering over rough terrain [10], [21]. At the wavelengths used by
AMSR-E, the accuracy of observed soil moisture is significantly
degraded over areas of vegetation water content greater than ap-
proximately 5 kg/m [22]. Therefore, regarding AMSR-E soil
moisture accuracy, should correlate significantly with vegeta-
tion density. We exploit this relation by adjusting the magnitude
of in relation to vegetation type and canopy opacity based
on vegetation water content as in

(7)

and

(8)
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Fig. 1. Schematic of the data denial experiment utilized in this analysis. The experiment is based on the use of AMSR-E soil moisture retrievals and an EnKF
to correct the open loop experiment (forced by the satellite-based TRMM 3B40RT rainfall product) back to benchmark results (obtained using the gauge-correct
AFWA rainfall product).

where is the AMSR-E incidence angle and is a coeffi-
cient that depends on vegetation type and is assigned based
on published values for similar sensor parameters and land
cover conditions [11]. In this case, is set to 0.3 for wooded
grasslands and shrubs, grasslands, and croplands, and 0.28 for
closed bushlands, open shrublands, and bare soil. Since the
accuracy of AMSR-E soil moisture retrievals quickly dimin-
ishes in areas of vegetation water content above 5.0 kg/m ,

is set to 1.00 cm cm (effectively driving to zero) for
these pixels (e.g., pixels classified as forested). To discern
land cover classes, we apply the 8-km MODIS land cover
classification data set produced by the University of Maryland
(http://glcf.umiacs.umd.edu/). The EnKF was employed with
an ensemble of 30 members perturbed with Gaussian noise
having an initial standard deviation of cm cm .
Equation (7) was derived by performing multiple runs of the
filter over many different land cover types (i.e., various and
combinations) for the entire dataset and incrementally adjusting

until the normalized filter innovations best matched those
expected from a properly parameterized filter (i.e., serially
uncorrelated and having a temporal second moment of one)
[23]. This dynamic approach ensures that the filter is placing
an appropriate relative weight on the model predictions and
AMSR-E observations over varied landscapes. As noted above,
forested areas of the domain are masked from the analysis due
to the inability of AMSR-E to estimate soil moisture in such
areas.

V. EXPERIMENT DESCRIPTION

For evaluation of the data assimilation system de-
scribed above, we focus on the creation of a five-year
(06/19/2002–06/19/2007), 1/4 latitude/longitude root-zone
soil moisture analysis product over North America. A data
denial framework is employed to evaluate the analysis product
by comparing three separate root-zone soil moisture products.

The three products are created by 1) forcing the two-layer
Palmer model with a high-quality precipitation product (the
benchmark run), 2) forcing the model with a lower-quality
satellite-based precipitation data set (the open loop run), and
3) employing an EnKF to assimilate AMSR-E soil moisture
retrievals into the open loop run (the EnKF run). The AFWA
gauge-corrected precipitation data described in Section III was
used for the benchmark loop. This product is a merged analysis
of blended surface observations and remotely sensed estimates.
Consequently, it is of relatively high-quality in areas of world
like our North American study domain which possess good rain
gauge coverage. For precipitation forcing in the open loop and
EnKF loop, we applied the uncorrected real-time precipitation
3B40RT product provided by the Tropical Rainfall Measuring
Mission (TRMM) [24]. 3B40RT is a real-time, satellite-only
precipitation product that accurately reflects the challenges
of obtaining operational rainfall information within data-poor
land areas lacking adequate ground observations. Unlike the
AFWA product, it is not corrected using ground rain gauge
data over North America. This lack of ground gage correction
typically introduces root-mean-squared errors (RMSE) of 5 to
10 mm/day into TRMM 3B40RT daily rainfall accumulation
amounts over the central United States [25].

Following the procedure outlined in Section IV, the AMSR-E
observations have been scaled to the climatology of the TRMM-
forced Palmer model. Using this approach, the application of the
EnKF to assimilate remotely sensed soil moisture retrievals in
the EnKF run can be evaluated based on how efficiently it trans-
forms root-zone soil moisture results from the open run (gen-
erated with the least accurate rainfall product) to match bench-
mark root-zone soil moisture (generated using the most accu-
rate rainfall product). A flowchart of this data denial process is
demonstrated in Fig. 1. Note that similar approaches have been
successfully applied in previous attempts to evaluate the added
benefit of assimilating remotely sensed observations into a land
surface model (see, e.g., [3] and [13]).
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Modeled and observed soil moistures are often not rep-
resentative of each other due to inconsistent modeling and
sensing depths and time-invariant multiplicative and additive
errors [26]. In this case, we are evaluating the performance of
the EnKF using two distinct rainfall products, each having a
unique climatology and bias. As a result, proper validation of
the soil moisture analysis products is challenging. Therefore,
to maintain continuity between the rainfall products and ensure
a true evaluation of the EnKF performance, we removed the
long-term bias from the TRMM data (i.e., matched long-term
mean of the AFWA precipitation) and scaled the AMSR-E
observations to the bias corrected TRMM forced (i.e., “open
loop”) model run estimates prior the its inclusion into either the
open loop or EnKF runs.

Using the approach in Fig. 1, we quantitatively evaluate the
filter performance by calculating the improvement in RMSE,
determined relative to the benchmark run, found between the
open loop and EnKF runs. The RMSE difference noted upon
assimilation of AMSR-E soil moisture is referred to as the “delta
RMSE”. By taking these differences, we can evaluate the degree
of improvement provided by the EnKF application from the sign
and size of delta RMSE values.

In addition, after each run was completed, anomalies were
calculated from climatological expectations for each model run.
The calculation of climatological expectations on a given day
of the year are based on the available multiyear heritage of each
soil moisture product (2002 to 2007) and the 31-day mean sam-
pling approach described in Section IV. From these anomaly
values, another diagnostic was calculated from the difference in
Pearson’s correlation coefficient between the runs (i.e., “delta
”). Because seasonal variations are removed during this proce-

dure, improvements in such an “anomaly” delta metric can be
attributed solely to enhanced skill with regard to anomaly de-
tection and is independent of a product’s particular climatology
and/or bias. To accurately forecast deviations in yield versus his-
torical expectations, IPAD analysts are primarily interested in
identifying anomalies in root-zone soil water anomaly condi-
tions (i.e., relative wet or relative dry versus an expected sea-
sonal soil moisture climatology). Therefore, it is expected that
a comparison of delta anomalies, reflecting areas/conditions
of interest, is an appropriate test of the potential added value of
the integrated product for IPAD agricultural drought monitoring
applications.

VI. RESULTS

We aim to show through our data denial strategy that comple-
mentary information from AMSR-E observations can improve
the spatial and temporal characterization of root-zone soil mois-
ture when applied to the IPAD modified Palmer model. The
target areas for IPAD are nonforested land—particularly regions
with potential for agricultural development. As an initial exer-
cise, the impact of including the vertical diffusion term in (2)
was investigated by applying the data denial strategy with mul-
tiple choices for ranging from 0 to 25 mm. In general, results
associated with the inclusion of the diffusion term (i.e., )
lead to improved data denial delta and delta RMSE results

relative to the baseline case of no diffusion . This indi-
cates that inclusion of the term results in a more efficient cor-
rection of root-zone soil moisture errors associated with poor
rainfall forcing. Since it appears to provide a more realistic rep-
resentation of vertical water flow, the diffusive term in (2) was
included in all subsequent denial exercises. A specific value of

mm was selected based on an analysis of the sensi-
tivity between delta and . However, modest levels of sensi-
tivity between delta and suggest that the following results
are relatively insensitive to the detailed specification of .

Assessment of the system for particular land cover types is
possible by evaluating time series generated during the entire
five-year simulation period over selected areas. Fig. 2 shows
a time series of the benchmark (blue lines), open loop (green
lines), EnKF cases (red lines), and AFWA precipitation product
for a 1/4 pixel box in the South-Central United States (39 N
and 90 W). Land cover in this pixel is predominantly cropland,
with maximum vegetation water content approaching 4 kg/m .
Note how contrasts in the accuracy of rainfall products forcing
between the benchmark and open runs leads to substantial dif-
ferences in both surface and root-zone soil moisture predictions.
These differences are partially compensated for via the EnKF-
based assimilation of surface soil moisture retrievals. Despite
the fact that AMSR-E cannot directly observe the root-zone,
application of the EnKF (red lines) ensures that the benefits of
the surface observations extend downward into the root-zone,
and the EnKF root-zone soil moisture predictions are better
able to capture benchmark variations relative to the open loop
case. These improvements are realized in both the surface and
root-zone soil moisture layers throughout much of the time-se-
ries. For example, during the latter half of 2003, multiple pre-
cipitation events are missed by the open loop. It is clear during
this time period that assimilation of the AMSR-E observations
leads to more realistic soil moisture predictions (i.e., higher cor-
relation with benchmark run) in both layers. For this particular
location, the application of the EnKF leads to a delta of 0.09
for root-zone anomalies and a delta RMSE of cm cm
for root-zone raw values. The agricultural landscape at this site
is a good representation of an IPAD target area and effectively
demonstrates the added value of assimilating AMSR-E obser-
vations into the TRMM-forced, IPAD-modified Palmer model.

In order to examine the geographic extent of areas in which
the assimilation of AMSR-E soil moisture retrievals adds value
to IPAD root-zone soil moisture model estimates, the analysis
in Fig. 2 was extended over the North American continent
between 23 N—50 N and 128 W—65 W. For each 1/4
grid in this domain, delta RMSE and delta values were
calculated using daily soil moisture estimates obtained between
06/19/2002–06/19/2007. To reduce the impact of snow on our
analysis, we examined only the growing season (May–October)
for the region north of 42 N and east of 112 W. The analysis
for the remainder of the North American region was applied
to the entire year. Fig. 3 plots the root-zone soil moisture delta
RMSE. Red (negative) pixels indicate areas of reduced delta
RMSE and improvement upon the nonupdated, TRMM-forced
open loop. In comparison, blue (positive) pixels represent an
increase in error and degradation of the soil moisture estimates.
Because in (5) is effectively set to zero for very densely
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Fig. 2. Time-series of benchmark soil moisture (blue), EnKF soil moisture (red), open loop run soil moisture (green), and AFWA precipitation (black) over
cropland area for the 1/4 grid cell location at 39 N and 90 W.

Fig. 3. Root-zone delta RMSE soil moisture results over North America for the five-year data denial experiment. Negative (positive) values shaded in red (blue)
indicate areas of improvement (degradation) relative to the open loop upon application of the EnKF.

vegetated areas (i.e., kg/m ), a large portion of the
domain has no delta RMSE, particularly in the Northeast and
Northwest United States. This figure illustrates the improved
correlation of the EnKF root-zone soil moisture results with
benchmark values for most of the un-masked regions of the
Midwest and Pacific regions, particularly in northern Texas,
Oklahoma, Kansas, and within the Ohio River Basin. Negative
delta RMSE values are found for much of the lightly vegetated
or bare soil regions of the domain, with a majority of the
improvements in RMSE being greater than 0.016 cm cm .
Degradation of root-zone RMSE indicated by positive (blue)
shading in the figure is limited mostly to Iowa, Minnesota, and
Wisconsin. These areas of degradation are relatively isolated
and of small intensity (majority lower than 0.06 cm cm ) yet
indicate error introduced into the moisture estimates from the

assimilated AMSR-E observations. Some possible explanations
for this introduced error are discussed below.

In a similar manner to Fig. 3, Fig. 4 illustrates root-zone
anomaly delta for the same time period. Positive (red) gains
in correlation coefficients indicate that the assimilation of
AMSR-E surface soil moisture retrievals is enhancing IPAD’s
ability to characterize soil moisture anomalies (by creating
a higher degree of consistency with the benchmark results).
Conversely, negative (blue) values indicate areas of degradation
with respect to the benchmark run upon implementation of the
EnKF. Positive soil moisture impacts are observed along a wide
swath of the central United States. Negative differences are
generally restricted to mountainous (e.g., Western Colorado,
Western Wyoming and Idaho), closed canopy shrubland areas
(e.g., Eastern Montana, Central New Mexico) and/or heavily
vegetated regions (e.g., the Upper Midwest) known to be
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Fig. 4. Root-zone delta � soil moisture anomaly results over North America for the five-year data denial experiment. Positive (negative) values shaded in red
(blue) indicate areas of improvement (degradation) relative to the open loop upon application of the EnKF.

challenging for soil moisture remote sensing at the 10.7-GHz
frequency used here. However, the spatial pattern of improved
root-zone soil moisture correlation is similar to the delta RMSE
results, with well-defined increases of delta (predominantly
greater than 0.08) along the Southern United States. The calcu-
lation of significance levels for these correlation improvements
is complicated by the presence of substantial temporal and
spatial auto-correlation within root-zone soil moisture fields
[27]. However, even very conservative hypothesis testing
indicates that the large-scale pattern of improvement in the
Southern United States is significant at a 95% confidence level.
In addition, it has been shown that even modest improvements
in correlation-based skill are often of great value in operational
settings [2].

Poor performance in desert areas of Southern Arizona and
Nevada reflect known difficulties with microwave-based surface
soil moisture retrievals in highly arid regions. In contrast, the
spatial pattern of negative delta values near Minnesota and
Iowa in Fig. 4 is more difficult to interpret. The removal of the
cold season from the analysis should mask the potential de-
grading impact of ground snow cover on AMSR-E retrievals.
Several other potential factors may contribute to poor results in
this area. First, this area has an extensive network of wetlands,
rivers, and streams. In addition, it is relatively densely vegetated;
the primary crop grown in these regions is corn which can ex-
ceed 5 kg/m during the growing season. Both of these factors
can have a negative impact on AMSR-E soil moisture retrievals.
Also, it is evident from the dataset that this region also
has a higher maximum water capacity ( 25 cm) than most other
areas of North American (not shown). The combination of high

and low annual evapotranspiration in these areas may
lead to slowly varying root-zone soil moisture dynamics and,
therefore, little basis on which to evaluate the improved detec-
tion of temporal root-zone soil moisture variations.

Fig. 5 sub-divides the root-zone delta correlation results in
Fig. 4 into five main land cover classes included in the study
to demonstrate the effectiveness of the system over selected
land cover types. Land cover classes shown are: 1-wooded
grasslands and shrubs, 2-closed bushlands, 3-open shrublands,
4-grasslands, 5-croplands, and 6-bare soil. Each box is a
culmination of all pixels of similar land cover. It is evident
from the figure that there is a net improvement (i.e., positive
mean delta value as shown by the horizontal line) for all
land cover classes—with an overall mean increase in delta
of 0.04. Pixels dominated by grasslands (i.e., land cover 4)
show the most improvement with a mean delta value of 0.05.
The analysis also indicates that the filter performs reasonably
well in croplands, giving a mean increase in delta of 0.04.
Improvements in such agricultural areas are, of course, the
highest priority for the USDA IPAD DBMS. However, there are
areas of reduced performance. The delta analysis varied most
over pixels dominated by land cover type 2 (closed bushlands).
Some of this variance can simply be explained by the diversity
of land surface conditions encapsulated within the rather broad
“closed bushlands” classification (e.g., evergreen, deciduous,
and herbaceous vegetation found within areas of varying topo-
graphic relief). This leads to a large number of pixels of mixed
performance being lumped into land cover type 2 relative to
the other land cover types (e.g., 3449 pixels are classified as
land cover type 2 versus 615 for land cover type 5). In addition,
AMSR-E performance over areas of wooded grassland (i.e.,
land cover type 1) and closed shrublands (i.e., land cover type
2) is not expected to be optimal due to vegetation density
limitations (see Section II). Still, the assimilation of AMSR-E
observations into the IPAD modified Palmer model improves
root-zone anomaly correlations for many pixels within these
domains and demonstrates the utility of this methodology.
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Fig. 5. Box plot of root-zone delta � soil moisture anomaly results over North
America for the five-year data denial experiment. Positive values indicate areas
of improvement over the open loop realized upon AMSR-E soil moisture data
assimilation. Land cover values are: 1-wooded grasslands and shrubs, 2-closed
bushlands, 3-open shrublands, 4-grasslands, 5-croplands, and 6-bare soil.

VII. SUMMARY AND CONCLUSIONS

This analysis attempts to define the contribution of integrating
AMSR-E soil moisture retrievals into the drought detecting ca-
pability of the USDA IPAD soil moisture model. Given that
the TRMM 3B40RT rainfall product (used to force the open
loop case within the data denial experiment) accurately reflects
the quality of real-time rainfall accumulation data available in
data-poor areas, results in Figs. 2–5 provide a credible estimate
of the added utility provided by AMSR-E surface soil mois-
ture retrievals for drought applications (like the USDA IPAD
DSS) requiring near real-time root-zone soil moisture estimates
within (potentially) data-poor land regions. Net improvement is
noted in our ability to track root-zone soil moisture temporal
dynamics (Figs. 2–4) and is observed for all nonforested land
cover types within the North American study domain—most
notably cropland areas of prime importance for the IPAD agri-
cultural drought DSS (Fig. 5). The data denial experiment con-
ducted here is limited in that it focuses solely on the ability of
AMSR-E soil moisture retrievals to reduce modeling errors as-
sociated with poor-quality rainfall errors. However, for global
modeling applications based on real-time rainfall observations
obtained from satellite sensors, such errors are expected to be
large, and may dominate the total modeling error budget [28],
[29]. Follow-up work with an alternative data denial design is re-
quired to examine the potential skill associated with correcting
other error sources (e.g., the poor internal estimation of evap-
otranspiration by the model). In addition, our data denial ex-
perimental design can be extended by employing soil moisture
estimates from each model run within a crop forecasting model.
In this manner, the value of integrating AMSR-E soil moisture
retrievals into the IPAD modified Palmer model can be further
evaluated by identifying times of water stress on crop forecasts
initialized by each model run.

This methodology holds promise for applying remotely
sensed soil moisture observations for more accurate char-
acterization of root-zone conditions at the regional scale,

with possible application in crop yield forecasting and the
monitoring of anomalous agro-meteorological events. Studies
demonstrating the added benefit of using remotely sensed soil
moisture observations as shown here are essential given the
expected launch of several soil moisture-focused missions in
the near future. For example, the European Space Agency
(ESA) Soil Moisture and Ocean Salinity (SMOS) mission in
2009 and the National Aeronautics and Space Administration
(NASA) Soil Moisture Active/Passive mission scheduled for
launch before 2014 will both provide improved global soil
moisture observations that can be used to further enhance the
global characterization of agricultural drought conditions.
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