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ABSTRACT

Garbrecht, J., 1990. Analytical representation of cross-section hydraulic properties. J. Hydrol., 119:
43-56.

An alternative power function representation of hydraulic properties for one-dimensional flow
routing in channels with compound cross-sections is put forward. The hydraulic properties of
interest are cross-section flow area, wetted perimeter and conveyance factor. The independent
variable is flow depth. The alternative power function representation is continuous with flow depth
and it follows the trend of suddenly changing hydraulic property values at overbank elevation. It
is applicable to a large range of complex section shapes which may include overbank channels,
natural levees and minor channel irregularities such as sand bars and small terraces where
traditional simple power functions have failed. The alternative power function representation is
simple and highly efficient from the computational point of view. Its performance is illustrated for
several actual compound cross-sections. Efficiency and extended capabilities make it an attractive
procedure for one-dimensional channel flow routing in drainage networks where hydraulic
properties of many cross-sections need repeated evaluation.

INTRODUCTION

Hydraulic properties of channel cross-sections (hereafter referred to as HP)
are required for numerical channel flow routing. HP of interest are generally
cross-sectional area, wetted perimeter (or top width) and conveyance factor.
They are a function of stage, and therefore, require repeated evaluation during
flow routing as stage varies with discharge. This calls for an efficient, yet
accurate, scheme to quantify HP. A reliable approach is the tabular representa-
tion of HP with interpolation for flow depths between tabulated values (Cunge,
1975; Cunge et al., 1980). This procedure becomes storage intensive when a
large number of cross-sections are considered such as in the hydrologic
evaluation of complex drainage networks. A more expedient approach replaces
the tabulated values by smooth curves and evaluates these for desired flow
depths. This approach is well suited for regular concave cross-section shapes
that display smooth changes in top width with flow depth. One practical and
popular scheme is the power function approximation of HP with flow depth as
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the independent variable (Li et al., 1975; Simons et al., 1982). This representa-
tion is simple and highly efficient from the computational point of view. It
allows the use of an analytical Newton—-Raphson solution technique for
backwater profile computations (Brown, 1982). Its disadvantage is a poor per-
formance for irregular or compound cross-sections (Cunge, 1975; Cunge et al.,
1980).

The simple power function approximation has subsequently been adapted to
account for overbank flow (Brown, 1982). Two sets of coefficients are used, one
for main channel flow conditions, and the other for overbank flow conditions.
Even though the adaptation resulted in a better fit of the data, a discontinuity
occurs when coeficients are switched as the free water surface reaches and
exceeds overbank elevation. This may result in stability problems during
numerical solution of the flow routing equations.

A further adaptation forced the power function to go through the HP value
of the main channel at overbank elevation, thus eliminating the discontinuity
(Brown, 1982). However, this can lead to serious errors in the estimation of HP
values for overbank flow conditions because it forces the power function
through two points, namely origin and main channel HP at overbank elevation
and, therefore, leaves only one degree of freedom to approximate the actual
data. Even though some of these limitations have been recognized (Posey, 1950;
Cunge, 1975), the power function approximation remains an effective approach
in numerical channel flow routing, particularly when a large number of cross-
sections must be repeatedly evaluated as for channel flow routing in complex
drainage networks.

In this paper practical numerical relations to determine representative HP
for one-dimensional flow routing in channels with compound sections are
presented and an alternative power function representation is put forward. The
proposed alternative is more accurate than the traditional power function, and
it is applicable to complex cross-sections with overbank channels where tradi-
tional power functions have generally failed. Applicability and limitations of
this alternative are discussed, and the performance is demonstrated for field
situations.

APPROACH AND LIMITATIONS

The HP which are considered in this paper are: cross-section flow area,
wetted perimeter and conveyance factor. The power function approximation
applies for fully turbulent and one-dimensional uniform open channel flow
assumptions. A compound cross-section is assumed to consist of a single main
channel subsection and an optional right and left overbank subsection.
Natural levees may be present along the main channel. Overbank flow esta-
blishes as the free water surface in the main channel exceeds overbank or levee
elevation. Minor irregularities in the shape of the compound section, such as
sand bars or small terraces may be present. The proposed method is primarily
targeted towards natural channel sections with smooth changes in top width
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with flow depth as opposed to man-made rectangular or trapezoidal canals.
Examples of compound sections, natural levees, and shape irregularities for
which this method applies are given throughout this paper. Finally, Manning’s
uniform flow formula is used to relate section geometry and channel flow
parameters.

CROSS-SECTION DEFINITION AND DISCRETE REPRESENTATION

A channel section generally consists of two subsections: a main channel
subsection and an optional right and/or left overbank channel subsection. For
an effective numerical evaluation of its hydraulic properties, a section is
discretized into simple elements. An element is defined as the portion of the
section between two consecutive break points. Break points are points defined
by a pair of x, y coordinates on the profile of a section as shown in Fig. 1. The
x value is the horizontal distance from some arbitrary reference point, and the
y value is the elevation or the vertical distance from some arbitrary reference
elevation. Beginning of overbank channels are defined by the break points
separating main channel and overbank subsections. When overbank elevations
on both sides of the main channel are not equal, the lower of the two elevations
determines the beginning of overbank flow.

A section discretization is shown in Fig. 1 for cross-section 24 on the Little
Washita River, Oklahoma. The break points for the section in Fig. 1 are given
in Table 1. The section is defined by a main channel flanked by two overbank
channels. The main channel is about 80 m wide and the overbanks are about 3
times as wide as the main channel. Overbank channel flow begins at stage
elevations above the overbank elevation of 359.6m a.s.l.
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Fig. 1. Cross-section 24, Little Washita River, Oklahoma. Beginning of left and right overbank
channels defined by break points 5 and 12, respectively. Horizontal to vertical distortion is 34 to 1.
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TABLE 1

Break points for cross-section 24, Little Washita River, Oklahoma

Break point Horizontal Elevation Break point Horizontal Elevation
number reference x y, a.s.l. number reference x y, a.s.l.
(m) (m) (m) (m)

1 61.3 361.5 10 277.7 355.9

2 7.7 360.4 11 285.0 359.2

3 114.3 : 359.1 12 292.6 359.6

4 152.4 359.5 13 349.0 359.8

5 211.8 359.7 14 406.9 359.5

6 240.8 3569.2 15 419.1 359.0

7 258.5 355.5 16 443.5 358.9

8 270.4 354.6 17 483.1 359.6

9 271.9 354.0 18 517.6 361.5

DEFINITION OF HYDRAULIC PROPERTIES

Flow area is the cross-sectional area of the flow normal to the direction of
flow; wetted perimeter is the length of the line of intersection of the channel
wetted surface with a cross-sectional plane normal to the direction of flow;
hydraulic radius is flow area divided by wetted perimeter (Chow, 1959). For a
discretized section, such as shown in Fig. 1, the above parameters are computed
as follows;

NS
A=Y 4 1)
W YW @)
R = AW 3)

where: A is flow area; W is wetted perimeter; R is hydraulic radius; i is section
element counter; NS is number of section elements at or below the free water
surface. Manning’s uniform flow relation is used to express discharge and flow
velocity as a function of cross-section hydraulic parameters:

1
Q = — ARG~ 4
n
where: @ is discharge; n is Manning’s channel roughness value; R is hydraulic
radius; S is slope of energy line in longitudinal direction.

The conveyance is a measure of water carrying capacity of a cross-section.
With Manning’s uniform flow formula, it is defined as (Chow, 1959):

K = %AR%’ (5)



CROSS-SECTION HYDRAULIC PROPERTIES 47

where K 1s conveyance, and n is Manning’s roughness coefficient. The
conveyance is evaluated for an entire subsection and not as a summation over
section elements because the latter violates the uniform velocity distribution
assumption and can lead to inaccurate results. Indeed the evaluation of flow
velocity with Manning’s equation applied to each section element results in a
different flow velocity value for each element. This is inconsistent with the
postulate of a single mean flow velocity implied by the application of the
uniform flow formula. In the particular context of this paper, this means that
the conveyance cannot be evaluated for each section element and then summed
over the entire subsection to produce a conveyance value that is consistent
with the initial assumptions.

For compound cross-sections total conveyance is the sum of the main and
overbank channel conveyance values. This follows from the observation that
for a section with both deep and shallow subsections, such as a river in flood
stage with overbank flow, the flow in each portion is quite different and should
be computed separately (Posey, 1950; Chow, 1959). Therefore, total conveyance
correctly equals the sum of the conveyance of the main and overbank channels:

K, = K, + K, ()

A one-dimensional representation of hydraulic radius for compound sections
is given as a conveyance weighted average over the subsections:
K.R, + K,R,

e @

C

where subscript ¢ stands for compound section, m for main channel subsection,
and o for overbank subsection. The corresponding value of the coefficient of
equivalent roughness (Manning’s n) is found by manipulating eqns. (5)-(7) to
yield:

A RZ/B
ne = S ®)

c

Representative hydraulic radius and equivalent roughness, as given by eqns.
(7) and (8), respectively, assures continuity and a smooth increase in total
conveyance as the free water surface reaches and rises above overbank
elevation. Furthermore, total conveyance value, when computed with eqns. (7)
and (8), is identical to the sum of the main channel and overbank conveyance
values. Therefore, the same total discharge is obtained from Manning’s
equation with parameters R, and n, as if the previously stated approach by
Chow (1959) and Posey (1950) for compound cross-sections were followed.
Therefore, eqns. (7) and (8) are equivalent one-dimensional representations of
hydraulic radius and roughness for compound cross-sections.

As a final note, the equivalent hydraulic radius for compound sections is not
necessarily a monotonous increasing function of flow depth. This follows from
the one-dimensional and uniform flow assumption. A decrease may occur as
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flow transits from predominantly main channel to predominantly overbank
flow. Main channel flow conditions are characterized by a comparatively deep
and narrow main channel configuration with large hydraulic radius at bank
full stage, whereas overbank flow conditions are characterized by comparative-
ly shallow and wide flood plains with smaller hydraulic radius. Thus, one
should expect a gradual transition of the equivalent hydraulic radius from a
large to a smaller value as flow depth increases to establish significant
overbank flow. This decrease is followed by a renewed increase as flow depth
continues to increase. The change in the value of the equivalent hydraulic
radius with flow depth is shown in Fig. 2 for the cross-section depicted in Fig.
1. Because of its functional behavior with flow depth the equivalent hydraulic
radius cannot be approximated by a power function and must be evaluated
using eqn. (7).

The equivalent roughness for compound sections is constant for main
channel flow conditions, because resistance to flow is given by a single value
for the main channel. As overbank flow establishes and dominates, it rapidly
converges to a value determined by eqn. (8) (Fig. 2). Because the equivalent
roughness is essentially two constant values with a short transition range, the
power function is not an appropriate approximation and the equivalent
roughness value should be evaluated using eqn. (8).
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Fig. 2. Change in value of the representative hydraulic radius and Manning’s n value with depth
for cross-section 24 on the Little Washita River, Oklahoma (see Fig. 1).
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POWER FUNCTION REPRESENTATION OF CROSS-SECTION HYDRAULIC PROPERTIES

Experience has shown that for simple and concave cross-sections without
flood plains a plot of HP vs. flow depth generally produces a straight line on
log-log scales. Fitting a least squared regression through this data and trans-
forming back into the linear domain yields the traditional power function
representation for hydraulic properties of a cross-section (Brown, 1982): -

HP = mDr )

where HP is the hydraulic property, D is flow depth and m and p are coefficients
of the power function.

In the presence of significant flood plains, eqn. (9) may perform poorly,
because a discontinuity in HP values generally occurs at overbank elevation.
This is illustrated in Fig. 3 by the dashed line for flow area, wetted perimeter
and conveyance factor for cross-section 24 displayed in Fig. 1. The poor perfor-
mance of the simple power function is especially noticeable for those HP that
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Fig. 8. Power function approximation of cross-section properties for cross-section 24 of the Little
Washita River, Oklahoma. Solid line is alternative power function approximation (APFA), dashed
line is simple power function approximation (SIPFA).
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exhibit a marked discontinuity at overbank elevation, such as wetted
perimeter.

An alternative power function for compound cross-sections approximates
the HP by two power functions: one power function for main channel flow
conditions and a separate power function for overbank flow conditions. The
power function for main channel flow conditions is identical to the one given
by eqn. (9). The coefficients are derived from actual HP data for main channel
flow conditions only:

HP = mD* forD < D, (10)

The second power function, applicable for overbank flow only, is derived in a
translated coordinate system that has its origin defined by flow depth at
overbank elevation and corresponding main channel HP value, as illustrated
in Fig. 4. A simple power function is derived using HP data for overbank flow
conditions in the translated coordinate system. Subsequent back transforma-
tion into the original coordinate system results in a power function with two
additional constants: D), the overbank elevation and HP, the value of the
hydraulic property at D,.

HP = my(D — D,Y* + HP, for D > D, (11)

at overbank elevation. As a result the new approximation reproduces the
abrupt change in trend of the section property for flow depths at and above
overbank elevation. Applying this alternative power function to the cross-
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Fig. 4. Schematic diagram of the derivation of the power function for main channel and overbank
flow conditions.
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section depicted in Fig. 1 results in a good approximation of the section data
as shown by the solid line in Fig. 3.

The alternative power function representation given by eqns. (10) and (11) is
more accurate than the traditional simple power function approximation
because:

(1) main channel and overbank flow conditions are represented by separate
and independent relations;

(2) each relation retained all three degrees of freedom for an optimal fit of
the respective data;

(3) continuity in the approximated HP values is preserved at overbank

elevation while the abrupt change in data trend is reproduced.
The above listed features of the alternative power function representation
make it more accurate and applicable to a large number of compound cross-
section shapes as illustrated by three case applications presented in the next
section.

CASE APPLICATIONS

The performance of the alternative power function for HP of compound
sections is tested on three sections of the Little Washita River, Oklahoma. The
first section, Section 24, was presented previously (Fig. 1). The second section,
Section J1, is characterized by two large overbank channels, high natural
levees and a pronounced sand bar in the main channel (Fig. 5). Flow takes place
in the main channel until the free water surface exceeds the natural levee
elevation at 342.7m a.sl. At higher water surface elevations both main
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Fig. 5. Cross-section J1, Little Washita River, Oklahoma. Horizontal to vertical distortion is 83 to 1.
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Fig. 6. Cross-section F1, Little Washita River, Oklahoma. Horizontal to vertical distortion
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channels and overbank channel are actively conveying flow. The third section,
Section F1, has a rectangular shaped main channel, and two overbank
channels of different size and shape (Fig. 6). Overbank flow establishes as the
free water surface exceeds 323.8m a.sl. For all three sections Manning’s
roughness value is estimated at about 0.04 for the main channel and about 0.06
for the overbank channel. The breakpoint values for Sections J1 and F1 are
given in Table 2.

The selected sections are inappropriate for evaluation by the simple power
function approximation and its adaptations because of the sharp discontinuity
in HP as main channel flow transits to overbank flow conditions. But the
sections are well suited for the proposed alternative power functions (eqns. (10)
and (11)) which can follow the abrupt change in data trend at overbank
elevation. The results of the section evaluation with the alternative power
function representation are given in Table 3. This table provides the coeffi-

TABLE 2

Break points for cross-sections J1 and F1, Little Washita River, Oklahoma

Break point Horizontal Elevation Break point Horizontal Elevation
number reference x y, a.s.l number reference x y, a.s.l.
(m) (m) (m) (m)
Cross-section J1
1 21.0 343.6 17 276.1 399.3
2 41.1 342.6 18 279.8 338.6
3 91.6 341.7 19 283.1 339.3
4 182.5 341.5 20 286.5 340.5
5 199.6 341.5 21 287.1 342.7
6 279.8 342.1 22 292.9 342.7
7 239.2 342.0 23 298.7 342.3
8 245.9 342.3 24 314.5 342.0
9 250.8 343.0 25 332.2 341.9
10 252.9 343.0 26 339.2 341.7
11 255.1 342.5 27 358.1 341.5
12 257.5 342.5 28 375.8 341.5
13 261.8 340.9 29 396.2 342.3
14 266.7 340.2 30 423.6 342.7
15 270.6 341.6 31 486.3 343.2
16 273.1 341.3
Cross-section F1
1 256.0 324.6 10 282.5 321.1
2 259.7 323.1 11 283.5 321.8
3 263.0 323.0 12 289.0 323.9
4 264.3 323.8 13 294.1 324.2
5 265.8 323.8 14 314.6 324.0
6 270.4 321.5 15 335.3 323.4
7 270.7 321.0 16 340.8 323.1
8 271.6 321.0 17 362.7 323.2
9 271.9 321.1 18 373.4 324.6
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TABLE 3

Coefficients of power functions and corresponding standard errors for sections J1, F1 and 24

Power function Coefficient Power S.E.

Section J1
Main channel Avs. FD 4.57 1.903 44
WP vs. FD 9.03 0.970 9.2
C vs. FD 83.66 2.525 71
Overbank channel A vs. FD 539.67 0.222 20.5
WP vs. FD 438.23 0.081 11.8
C vs. FD 10013.29 0.339 0.7

Section F1
Main channel A vs. FD 11.09 1.362 2.5
WP vs, FD 16.33 0.314 6.3
Cvs. FD 232.36 2.061 79
Overbank channel A vs. FD 111.09 0.575 12.8
WP vs. FD 105.87 0.249 19.7
C vs. FD 3113.27 0.834 0.9

Section 24
Main channel A vs. FD 4,11 2.148 11.2
WP vs. FD 9.12 1.107 17.8
D vs. FD 60.23 2.843 17.0
Overbank channel A vs. FD 440.16 0.936 6.7
WP vs. FD 370.43 0.081 1.3
C vs. FD 10180.06 1.337 0.3

A, flow area; WP, wetter perimeter; C, conveyance factor; FD, flow depth.

cients of the power function and corresponding standard error for the main and
overbank channels, respectively. The standard error ranges from 0.3 to 20%
with an average for all HP and all three sections of under 8%. A plot of the HP
data and the fit by the alternative power function representation is shown in
Figs. 3, 7 and 8 for visual interpretation. In all three cases the power functions
approximate the data relatively well.

SUMMARY AND CONCLUSIONS

The representation of hydraulic properties of channel sections by power
functions has been an effective and popular approach. However, traditional
power functions have generally failed to adequately represent compound
sections because they are unable to follow abrupt changes in the trend of HP
values as flow depth increases through overbank elevation and overbank flow
establishes. The proposed alternative power function bypasses this problem by
defining two connected power functions: one for main channel and the other for
overbank flow conditions. The first power function for main channel flow
conditions originates at the zero HP flow depth location and it is applicable
until overbank elevation is reached. The second power function for overbank
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Fig. 8. Hydraulic property approximation by the alternative power function for cross-section F1 of
the Little Washita River, Oklahoma.

flow conditions is derived in a translated coordinate system that has its origin
defined by flow depth at overbank elevation and corresponding main channel
HP value. Thus, this second power function retains all degrees of freedom to
fully approximate the changing trend of data for overbank flow conditions and
it is not subjected to any restrictions imposed by the first power function.

The alternative power function representation reproduces the abrupt
change in trend of the HP values as flow depth increases through overbank
elevation. It also maintains continuity in HP values for the full range of flow
conditions and therefore makes it attractive for incorporation into numerical
and analytical flow routing methods.

Application of the alternative power function representation to actual
compound section where traditional simple power functions have failed have
resulted in good approximations. For the tested conditions the alternative
power function representation is more accurate than traditional power
functions. It is also applicable to a larger range of complex sections including
natural levees and minor channel irregularities such as sand bars and small
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terraces. The method is best suited for natural channels which generally
display smooth changes in top width with depth as opposed to man-made
rectangular or trapezoidal canals. The alternative power function representa-
tion is simple and highly efficient from the computational point of view. Its
efficiency and extended capabilities make it a very attractive procedure for
one-dimensional channel flow routing in drainage networks where a large
number of cross-sections need repeated evaluation.

REFERENCES

Brown, G.0., 1982. Known discharge uncoupled sediment routing. Ph.D. Thesis, Colorado State
University, Fort Collins.

Cunge, J.A., 1975, Applied mathematical modeling of open channel flow, In: K. Mahmood and V.
Yevjevich (Editors), Unsteady Flow in Open Channels. Vol. 1. Water Resour. Publ. Fort Collins,
CO.

Cunge, J.A., Holly Jr., F.M. and Verwey, A., 1980. Practical Aspects of Computational River
Hydraulics. Pitman Publishing, Boston, MA.

Chow, V.T., 1959. Open Channel Hydraulics. McGraw-Hill, New York.

Li, R.M., Simons, D.B. and Sterns, M.A., Nonlinear kinematic wave approximation for water
routing. Water Resour. Res. II (2): 245-252.

Posey, C.J., 1950. Gradually varied channel flow. In: H. Rouse (Editor), Engineering Hydraulics.
Wiley, New York.

Simons, Li and Associates, 1982. Engineering Analysis of Fluvial Systems. Simons, Li and Assoc.,
Fort Collins, CO.



