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ABSTRACT 

 
Agricultural management strategies are needed to improve lives of people in harsh, 

dryland regions. If the upcoming season’s climate was predictable, farmers could tailor practices 
to match anticipated climate, reducing risks during adverse seasons, while investing more to 
benefit from favorable seasons. Such a possibility has long been a dream, but there is reason for 
optimism that our ability to predict climate is improving. In this paper we describe climate 
forecasts and discuss potential applications at the farm level. Climate forecasts include local 
early indicators of future climate, correlation of local climate to global processes, and dynamic 
modeling of climate processes. Operational forecasts offer potential to guide production 
decisions, such as crop species or cultivar selection, fertility management, area to be planted, 
pest management, intensity and timing of grazing and purchase, sale, or movement of animals. 
Management decisions related to marketing, labor, and diversification, and regional decisions 
relating to input supply, markets, transportation, storage, or community health services could 
also be guided by climate forecasts. Forecasts have sufficient utility to guide decision-making in 
some regions for some seasons. To move forward, continued improvement and evaluation of 
forecasts skill are needed. Improvements in forecasting tools for regions that gain little from 
current forecasts and forecasts of extreme events should be a focus for further work. Uncertainty 
analysis for scenario simulation, tools to assess tradeoffs within a whole farm context, and better 
methods to communicate probabilistic outcomes are needed. Perhaps most critical is engaging 
farmers as partners in development of new tools to support decision-making on-farm and using 
seasonal climate forecasts within the context of overall risk analysis and management of an 
agricultural system.  
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INTRODUCTION 
 

The arid and semiarid dryland regions of the world provide some of the harshest 
environments for human sustenance and multiple investments are needed to improve lives of 
people in these regions (Steiner et al., 1988). One investment that may have potentially large 
payoff is in the area of development, adaptation, and implementation of climate forecasting 
systems for agricultural management in dryland regions. Because these regions have marginal 
and unreliable precipitation, prevailing agricultural systems are highly conservative. Farmers in 
these regions must minimize risk of crop loss or loss of the costs of agricultural inputs. Such 
losses can jeopardize economic and food security of the household. The conservative systems, 
however, do not allow the farmers and rural communities to maximize benefits during more 
favorable years. If the upcoming season’s climate was more predictable, farmers could tailor 
practices to match anticipated climate, reduce economic and crop failure risks during adverse 
seasons, while investing in higher production inputs to benefit from more favorable seasons.  

While knowing the next season’s climate has long been a dream of people in harsh 
dryland regions of the world, today there is reason for optimism that our ability to predict future 
seasonal climates is improving. A comprehensive summary of research and applications related 
to seasonal climate forecasts with application to agriculture and natural resource management 
were reported in Hammer et al. (2000); readers are referred to this resource for more detailed 
information. In this paper, our objective is to present an overview of operational climate 
forecasts and discuss evaluation and interpretation of these forecasts for relevance at the farm 
scale. We then illustrate potential forecast applications for farm management decisions within 
the context of cropping/grazing systems in the Southern Great Plains of the US.   
 

OVERVIEW OF CLIMATE FORECASTING 
 

Climate forecasting is an age-old concept, and initiatives to improve and use such 
forecasts are underway in many regions of the world. For example, brightness of stars in the 
Pleiades constellation near winter solstice was used traditionally as an indicator of variation in 
summer rainfall and autumn harvest in the Andes. Orlove et al. (2000) recently reported that 
poor visibility of the Pleiades in June was caused by increased sub-visual high cirrus clouds. 
This phenomenon was observed during El NiZo years, and was often associated with low rainfall 
during the subsequent growing season. This finding provided a different perspective of 
traditional knowledge about the climate system and presents an opportunity to extend traditional 
knowledge into modern technologies. Climate forecasts will be discussed in terms of local early 
indicators of future climate, correlation of regional climate to global processes, dynamic 
modeling of climate processes, and available operational climate forecast systems.   
 
Early Indicators in Local Climate Records 
 

Pioneering research conducted in the 1970's by J. I. Stewart and others (Stewart and 
Hash, 1982; Stewart and Kashasha, 1984; Stewart and Faught, 1984; and Stewart, 1988) 
developed the concept of response farming. The basis of response farming was the identification 
of correlations between date of onset of the rainy season with both the length of the growing 
season and total seasonal precipitation. Such relationships gave an early indication of the type of 
season to be expected. Management responses were then developed to match the most probable 
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Table 1. Probability of seasonal rainfall based on April precipitation in Mildura, Victoria, 
Australia. (V. Sadras, 2002, personal communication).  

Seasonal Rainfall “DRY” April† “WET” April 

mm %‡ % 

50 4 0 

100 16 4 

150 40 8 

200 60 36 

250 96 68 

300 100 88 

350  96 

400  96 

450  100 
† “Dry” indicates April rainfall < 13 mm, the median rainfall for this location, and “Wet” 
indicates April rainfall > 13 mm.
‡ Based on a 25 year precipitation record, each year represents 4% probability. 

type of growing season. With early onset, and in anticipation of a good rainy season, longer 
growing season crops could be planted and higher level of inputs could be purchased. With late 
onset indicating higher probability of low rainfall, a conservative management system could be 
followed to ensure food security and minimize economic risks. The approach was originally 
developed in Kenya and was later extended to Sub-Saharan West Africa, the Mediterranean 
region, and parts of Asia. Response farming is generally most applicable to Mediterranean and 
monsoonal climates, where virtually all of the annual precipitation comes in the rainy season; it 
is less applicable to continental climates where precipitation may come in any season, though 
usually there are months or seasons with higher and more reliable precipitation. Mediterranean, 
monsoonal, and continental climate patterns are illustrated in Steiner et al. (1988). McCown et 
al. (1991) evaluated response farming in Kenya and found that while some economic benefit and 
risk reduction could be realized through variable management under response farming, the 
benefit was smaller than that realized by adoption of a few simple fixed management changes, 
relative to prevailing practices. 

Stewart’s work provided the basis for later research by Sadras et al. (2003) who 
developed systems for the southeast Australia Mallee region to adjust seasonal management 
based on April precipitation. The participatory research identified April precipitation as relevant 
to farmers’ decision-making. Sadras (2002) developed correlation relationships between April 
precipitation and growing season precipitation (Table 1) for subregions, and simulated 
profitability for “conservative” and “risky” strategies across a forty-year climate record (Fig. 1). 
The figure presents profit differences of “conservative” vs. “risky” strategies in such a way that a 
positive difference indicates benefit to the conservative strategy while a negative difference 



indicates benefit to the riskier strategy.  In many years, the profit difference between the two 
systems was relatively modest, but a manager following a set, rather than responsive strategy, 
would miss the opportunity for much larger profit to the intensive system during several of the 
wet forecast years or would miss the far higher profit for the conservative 

Fig. 1. Estimated impact of cropping strategy on profitability in wet and dry forecast seasons. 
(Source: Sadras et al., 2003).  

system in several of the dry forecast years.  The “conservative” and “risky” systems varied by 
subregion and by soil type, allowing farmers to focus on the systems most relevant to a particular 
location. Particularly for drier sites, adoption of a dynamic cropping strategy by selecting a 
conservative regime when April precipitation was below the median and a riskier (more 
intensive) regime when April precipitation exceeded median indicated overall improved 
economic return (simulated), particularly during the most extreme years. 
 
Correlation of Regional Climate to Global Processes 
 

Another body of research has explored correlation of historic climate at a particular 
location or region to ocean-atmosphere patterns observed elsewhere on the globe. Tropical 
Pacific Ocean patterns have exhibited numerous and diverse links with weather and climate in 
many parts of the globe. Such linkages across large distances in the earth: atmosphere system are 
often called “teleconnections”.  

One such teleconnection described early in the 20th century was the Southern Oscillation, 
based on the difference in atmospheric pressure at Darwin, Australia, and Tahiti. This pattern 
was shown to be correlated to Indian monsoonal rainfall and later to precipitation in many parts 
of Australia and other parts of the globe. For example, Hutchinson (1992) described how the 
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Southern Oscillation Index (SOI) was correlated with year-end rainy season precipitation in 
Somalia, with an absence of high precipitation seasons in years with a high SOI, but great 
variability of precipitation in low SOI years. Stone et al. (1996a) described five phases of the 
SOI and developed correlations between SOI and precipitation patterns in various regions of 
Australia. A more recently described atmospheric pressure pattern is the North Atlantic 
Oscillation that shows correlations with temperature and precipitation patterns in eastern North 
America, northern Europe, and northern Asia.  

The best-known teleconnection is linkage of sea surface temperature (SST) in the 
equatorial Pacific with global precipitation and temperature patterns. This phenomenon is called 
El NiZo during times when the SST is high relative to the long term average, and La NiZa when 
SST is lower than average. These SST patterns are correlated to temperature and precipitation 
patterns in many parts of the world (e.g., Phillips and McIntyre, 2000). Because the SST and 
atmospheric pressure patterns are linked phenomena, the term El Nino-Southern Oscillation 
(ENSO) is commonly used.  

More recently, the Indian Ocean Dipole (IOD) was described which might provide better 
insight into the monsoonal precipitation on the Indian subcontinent or Western Australia. The 
correlation of the IOD and the ENSO to monsoonal precipitation in India is of opposite sign, so 
the impacts of both must be considered in forecasting precipitation for that region.  

Although this paper focuses most strongly on precipitation, forecasting temperature is 
also important in reducing risk in many agricultural systems. Stone et al. (1996b) described SOI 
correlation with frost dates in the Australian spring wheat [Triticum aestivum, (L.)] belt, with the 
potential that later planting dates or varieties with greater frost tolerance could be selected when 
the risk of a late frost was above average. Lobell and Asner (2003) reported that US corn and 
soybean yields across major production regions were correlated with maximum temperature 
during the past two decades. Generally negative correlations of yield to temperature were found 
in the Southeastern US and much of the Midwestern corn-soybean belt while positive 
correlations were seen further west and north in the Great Plains. Such correlations have 
management and marketing implications for farmers who could select different options based on 
forecasts of higher or lower than normal temperature.  
 
Dynamic Climate Models 
 

Increasing knowledge of atmospheric and global processes is leading to rapid 
improvements in dynamic global circulation models (GCM) that simulate the global system and 
can reproduce many of the patterns observed through the years. Climate forecasting is a rapidly 
advancing field of research and operation, based on the rapid advances in basic knowledge of 
oceanic and atmospheric processes, improved remote sensing and environmental monitoring 
technologies, and increased computing power. Forecasts can utilize GCMs in two ways, either 
for direct forecast of precipitation and climate patterns in particular regions, or in a hybrid 
format. The hybrid format forecasts sea surface temperature and atmospheric pressure patterns 
(as a forecast of the ENSO phase) and then uses statistical correlations of ENSO patterns to 
forecast precipitation and temperature patterns for various parts of the world. Whether in the 
GCM or hybrid mode, incorporation of other ocean temperature and atmospheric signals, as well 
as land surface moisture and snow cover impacts, may improve forecasts in the future for regions 
of the globe that have weak or undetectable correlation to the ENSO signal.  
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Operational Climate Forecasts 
 

Operational forecasts are being made by various groups around the world. A widely 
utilized forecast of global and regional climate is made by the International Research Institute for 
Climate Prediction (http://iri.columbia.edu/climate/). In Australia, the Queensland Department of 
Primary Industry and the Commonwealth Bureau of Meteorology release seasonal climate 
forecasts     based     on    ENSO    and    SOI    signals    for    Queensland    and    the    
Australia continent (http://www.bom.gov.au/climate/ahead), or globally 
(http://www.longpaddock.qld.gov.au/index.html). The U.S. National Oceanic and Atmospheric 
Administration’s Climate Prediction Center (http://www.noaa.gov/climate.html) releases 3-
month seasonal climate forecasts covering the coming year for the US.  

All of these forecasts are statements of probability of future climate states, relative to the 
normal distribution of climate for that particular region and that particular season. The forecasts 
are not a prediction of one particular future climate pattern, but a statement of probability of a 
range of possible outcomes across a season. Regardless of whether the forecast is above or below 
normal, any outcome within the probability distribution may be realized. Additionally, because 
of high variability within seasons, wet seasons may exhibit short-term, dry periods or vice verse. 
Because of the inherent uncertainty, economic value of a forecast increases as the skill of the 
forecast increases and varies depending on what application is made with the forecast (e.g., 
Gadgil et al., 1995).  

Hammer et al. (1996) reported that tactical management based on five phases of the SOI 
increased profit and reduced risk compared to fixed management in Australian wheat regions. 
The tactical responses included selection of cultivar maturity and N–fertilization strategy based 
on forecast frost dates and seasonal precipitation. In simulation studies focused on Zimbabwe, 
Phillips et al. (1998) emphasized the relative importance of forecasting favorable seasons and 
managing for enhanced productivity, compared to forecasting adverse seasons. This may be a 
reflection of the risk-adverse management systems developed to avoid total crop failure during 
drought years.  Because forecasts are a relatively new product, and the forecasts are being 
released to new user groups outside the traditional meteorology community, new methods for 
evaluation are needed. Schneider and Garbrecht (2003a, 2003b) developed indices to evaluate 
seasonal forecasts for agricultural applications. In their system, "usefulness" addresses the 
question of how often, and by how much, the forecasts predict departures from normal. The 
"dependability" index assesses how often the forecasts predict the direction of precipitation 
departures from normal, and is assessed separately for wet and dry forecasts. "Effectiveness" 
combines "usefulness" and "dependability" to define the frequency of forecasts offering 
dependable predictions of useful departures, answering the question "How often can I do better 
using these forecasts?". Their "effectiveness" index for the NOAA/CPC forecasts for the 
continental US (Fig. 2) is highest in the Desert Southwest and Florida, with good results in the 
Pacific Northwest, northern Rocky Mountains, and along the Gulf Coast from Texas to the 
coastal Carolinas.  The forecasts are available for 3-12 months out, but the skill level declines 
rapidly after 6-months out.  For the regions with high "effectiveness", these forecasts may have 
considerable water resource and agricultural implications. Given increasing forecast skills for 
some regions and seasons, the question remains of how to downscale and interpret the impact of 
forecasts for applications at a local level.  As illustrated in Fig. 3, the probability distribution of 
forecast precipitation, relative to normal, will usually not exhibit the same deviation from 



Fig. 2. Effectiveness index for NOAA/CPC forecasts for 3-month total precipitation  

 normal as the probability distribution of an outcome simulated for forecast and normal climate 
scenarios. 
 

APPLICATIONS TO AGRICULTURE 
 

 Climate forecasts are based on average precipitation across relatively large regions (e.g., 
in the contiguous US, the forecasts are made for 102 climate divisions). For application to 
decision-making at a farm level, it is important to know how climate at that particular location 
relates to the climate in the forecast division (Fig. 4). If the local climate distribution differs 
significantly from the forecast division, then the seasonal forecast may need to be interpreted 
relative to the local normal, rather than the regional normal. A critical early step in this process is 
engaging the user community to determine their understanding of climate and weather, and find 
out how they might want to apply climate forecasts to their system (e.g, Letson et al., 2001). 
 Because a climate forecast is a probabilistic statement, interpretation must deal with the 
uncertainty associated with the forecast. A climate forecast for precipitation is a surrogate for 
information about the likely amount of crop water use (Fig. 5), which is associated with large 
impacts on yield (Stewart and Steiner, 1990). There is considerable uncertainty in the 
relationship between crop yield and soil water content due to amount and distribution of growing 
season precipitation (Fig. 5b). Uncertainty also exists in the relationship between crop yield and 
growing season precipitation due to differences in precipitation effectiveness and soil water 
supply (Fig. 5c). 
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Fig. 3. Interpreting the impact of seasonal climate forecasts for farm-level management decision 
remains an area of uncertainty. (Source: Schneider, 2002) 

Fig. 4. Differences between the 30-year July-August-September precipitation distribution 
averaged across the Central Oklahoma Forecast Division and for a single station within that 
division, Kingfisher, Oklahoma.
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Fig. 5. Conceptional relationship of crop yield to a) crop water use, b) soil water at planting, and 
3) growing season precipitation.
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Fig. 6. Tercile precipitation for a station in central Oklahoma illustrating the ability of CLIGEN 
to replicate National Weather Service (NWS) monthly mean observed precipitation. (Source: 
Zhang, 2003) 

 Since soil water depletion is a major component of crop water use and is highly variable 
at planting time in many regions, opportunities to integrate measurement of soil water content at 
planting with use of climate forecasts should be investigated. Robinson et al. (2002) found that 
pre-plant soil water content provided the best forecast of dryland crop yields in the northern 
Australian grainbelt, but relatively few farmers accurately measured soil water content prior to 
planting.  Prior to turning to seasonal climate forecast to reduce risks, there usually will be 
greater return to first analyzing risks associated with the current management system, adopting 
good agronomic practices, and implementing relatively straightforward monitoring (such as soil 
water or soil nutrient contents) into decision-making processes. Good farm managers who have 
done this may realize additional risk reduction through use of seasonal climate forecasts.   
 Crop growth models are often used to simulate probable production or profitability 
outcomes associated with a climate forecast. Most crop models require daily weather data. For 
analysis of performance of a management scenario in a variable climate, crop models are run 
over a number of years in order to determine a range of outcomes associated with a range of 
climate conditions. Researchers generally use long-term historical weather data or weather 
generators that produce daily values based on the mean and standard deviation of historical 
climate records for a location.  
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 To describe the system response to a management scenario in a variable climate, some 
researchers have utilized tercile analysis. To do this, alternative scenarios are contrasted for the 
driest, average, and wettest one-third of the climate years on record. If a climate forecast was 
available, a farmer might select the scenario that performed best for the driest tercile when the 
forecast was for higher probability of below-normal conditions and the scenario that provided 
the best outcome for the wettest tercile when the forecast was for a higher probability of above-



normal precipitation. Zhang (2003) showed that the CLIGEN weather generator produced the 
same distribution of monthly mean precipitation as historical climate data in Oklahoma (Fig. 6). 
Subsequent analyses utilizing the generated climate years and the WEPP model showed that 
yield distribution of winter wheat was responsive to dry, average, and wet precipitation regimes, 
but was only responsive to initial stored soil water in central Oklahoma in the driest years (Fig. 
7). While this simulation approach demonstrates crop yield sensitivity to annual wet or dry 
climate conditions, the potential of the tercile approach is more limited for risk-based decision-
making based on seasonally issued forecasts and seasonally sensitive agronomic productivity. 
Also, the selection of climate conditions associated with one tercile limits the flexibility to 
reflect the risk of the full range of possible outcomes provided by the forecasts.  

Fig. 7. Tercile analysis of probability distribution of WEPP-simulated yield in dry, average, or 
wet years, with either 40% or 70% stored soil water at planting. (Source: Zhang, 2003) 

 Another approach uses analog climate years, based on a climate indicator. For instance, 
the Queensland Center for Climate Applications contrasted scenarios for the five phases of the 
SOI index (Stone et al., 1996a) by selecting all years in the historical record that match the 
current phase of the SOI as analogs for the probable climate for the upcoming season. A third 
approach that is currently under consideration by the authors is modification of weather 
generators to produce a full range of possible climate sequences that reflect the frequency 
distribution of the seasonal climate forecast. These generated alternative climate sequences are 
then fed into an agronomic model to estimate the range of agronomic responses that correspond 
to the seasonal climate forecasts. The frequency distribution of the agronomic responses then 
provide the necessary information to establish the production risk associated with that forecast, 
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which can be used in crop enterprise budgets to compare alternative crops or assess the 
profitability of a certain scenario.  Carberry et al. (2002) have worked with Australian farmers 
who have had some successes in using of seasonal climate forecasts in farm level decision-
making. Their system, FARMSCAPE, combined soil monitoring and simulation with the climate 
forecasts, and involved farmers, advisors, and researchers working together closely.  Their 
experience indicated that seasonal climate forecasts without the other tools provided little 
benefit.   

 
Management Decisions Impacted by Climate Variability 
 
 There are numerous levels of decision-making that could be guided by climate forecasts. 
These include agronomic, crop/livestock, household economic or business decisions, as well as 
regional-level decisions. Agronomic decisions may include things such as crop selection, e.g., 
maize vs. sorghum vs. millet as a summer crop depending on the probability distribution of 
growing season precipitation.  For a given species, selection of a long vs. short season cultivar 
could be guided by precipitation or temperature forecasts. Greater planting density and narrow 
rows have the potential to capture more radiation and potentially produce higher yields in good 
seasons, but may be more drought prone due to more rapid depletion of stored soil water. 
Fertility levels can be adjusted based on anticipated precipitation to reduce risks associated with 
yield reduction and economic loss. In some regions, the amount of area to be planted may be 
adjusted based on seasonal forecasts, or crops could be planted in heavier soils if the forecast is 
for dry conditions or on more freely draining soils if a wet season is anticipated. There is also 
potential to anticipate the pressure associated with some crop pests based on forecasts [e.g., 
Maelzer and Zalucki (2000) reported correlation of Helicoverpa species infestation with SOI, up 
to 6-15 months in advance].  
 In crop/livestock systems, decisions may relate to planning for future stocking rates; 
management of a particular forage crop for grazing, haying, or in some instances grain harvest; 
intensity and timing of grazing on different areas; the need for supplemental feed; and to guide 
purchase, selling, or movement of animals based on anticipated forage/feed availability.  
 At the household level, business decisions could include marketing or hedging based on 
climate forecasts in the local area as well as in major global production areas for a particular 
crop. Forecast of unfavorable seasons might lead to decisions to diversify farm enterprises. In 
some cases, climate forecasts might influence decisions about the need for off-farm income 
relative to the need for on-farm labor and food security.  
 At the regional level, climate forecasts could guide decisions such as anticipated need for 
inputs (fertilizers, seeds of different crop species and varieties), market capacity, storage, and 
transportation needs; community health service requirements associated with climate variability 
(e.g., Bi et al., 1998); or drought preparedness planning and implementation (Dilley, 2000; Finan 
and Nelson, 2001).  
 
Decision Points in a Cropping/Grazing System in the Southern Great Plains  
 
 To illustrate potential applications of climate forecasting to agricultural decision-making, 
we have selected a major cropping/grazing system common to the Southern Great Plains of the 



Fig. 8. Beef production systems in the USA, including cow/calf production, stocker grazing, and 
confined finishing. 

US, with winter wheat, cold- and warm-season perennial grasses, summer annual crops, and beef 
cattle (Bos taurus) as major components. The beef cattle system we will discuss is the “stocker” 
phase of beef production in the US. The beef system in the US dominantly consists of three 
phases: cow/calf production, stocker growth, and feedlot finishing. These phases often occur 
with different owners for each phase and often take place in geographically separate regions 
(Fig. 8). Cow/calf production is predominantly located in the southeastern US, but is also 
important in rangelands of the semiarid and arid west. Stocker animals are weaned at about eight 
months of age and frequently are transported to other regions for additional weight gain, utilizing 
perennial grasses and other forages. The Southern Great Plains is the destination for large 
numbers of these animals, generally being shipped into the area in the fall. The stocker cattle are 
grazed on native and introduced perennial grasses as well as annual forages. An important forage 
in the Southern Great Plains is winter wheat, often grown as a dual-purpose crop that provides 
fall and winter forage for grazing as well as a subsequent grain crop. The economic return to 
wheat farmers from stocker grazing can equal the economic returns of the grain crop.  
 The Great Plains is a sub-humid to semi-arid region that extends from central Canada to 
central Texas. There is a strong east-west annual average precipitation gradient of approximately 
100 mm decrease with each 160 km from roughly the 100th meridian toward the Rocky 
Mountains. The climate at El Reno, Oklahoma, in the sub-humid region illustrates year round 
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Fig. 9. Monthly mean precipitation and temperature for Canadian County, Oklahoma. 1971-
2000. 

distribution of precipitation with the peak in May and June, and relatively low precipitation in 
the hottest months of July and August, when potential evapotranspiration greatly exceeds 
precipitation (Fig. 9). The dominant native prairie species are warm season grasses, but 
considerable opportunity exists to grow cool season perennials and annual crops. Winter 
temperatures can present favorable or unfavorable conditions for plant growth, with extreme 
variability within and between years.  
 This system is summarized in Table 2 which identifies numerous decisions that are 
required throughout the year, often with multiple, complex factors involved and tradeoffs across 
five major enterprises that comprise the system. Some decisions could be strongly impacted by a 
seasonal climate forecast (see underlined decisions in Table 2) but even those would also be 
influenced by additional factors. Some of the climate-sensitive decisions might be guided using 
existing crop models (e.g., decision whether or not to plant a summer annual following wheat 
harvest), while others would require whole farm models that incorporate crop, livestock, and 
marketing issues. Additional factors that have a large impact on economic viability or quality of 
life for a farm family may not be largely influenced by climate.  
 Continuous mono-culture of winter wheat is fairly common in much of the Southern 
Great Plains. These lands, often intensively tilled, have low organic carbon level soils and the 
surface is often left bare in the summer when intensive convective storms present a great risk of 
erosion. The soils are also subject to erosion by wind, further degrading the soil and presenting 
air quality and visibility problems in the region. The farmers chose continuous wheat cropping 
because of their reliance on the dual purposes of the wheat to maintain economic returns. 
Planting a short season summer annual following harvest of wheat grain in June would provide 
cover to protect the soil from erosion as well as providing carbon and potentially nitrogen to the 
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soil. Additionally, it would provide a high quality forage in August and September to supplement 
warm season perennial pastures that have low forage quality at that time. The feasibility of 
double cropping depends on availability of soil water for germination and establishment. 
Additionally, July and August are the least reliable months for rainfall in this region.  If summer 
cropping is implemented, there is a need for precipitation in September or October to recharge 
the soil water for planting and establishment of the next wheat crop. The likelihood of success 
would be enhanced by recharge of soil water in late May and early June when the wheat crop 
was maturing and using little water. At wheat harvest in June, soil water content could be 
measured and seasonal climate forecasts for summer and fall would be available. The summer 
forecasts for this region have very low utility at this time (Schneider and Garbrecht, 2003b) so 
crop models using normal precipitation distributions might be most suited for evaluating 
alternative scenarios (plant a summer annual or don’t plant a summer annual). However, the fall 
climate forecasts have better skill, particularly in El NiZo years, so a forecast of higher than 
normal odds of high fall precipitation might increase confidence in the decision to plant a 
summer annual.  A seasonal forecast for fall precipitation that is above or below normal odds 
might also influence decisions about stocking rates and delivery dates of stockers for fall/winter 
grazing.  
 Based on the acceptable dependability of seasonal forecasts in some regions and some 
types of seasons (Schneider and Garbrecht, 2003b), as well as the rapidly advancing state of 
knowledge in the ocean:atmosphere:climate arena, we believe these forecasts are good enough to 
help guide management decision-making to reduce risks associate with climate variability. In our 
research, we’re focusing on how to apply these climate forecasts to tactical decision-making at 
the farm level. This will require a broad approach to evaluating and managing risks, such as 
described by Carberry et al. (2002). The wheat-stocker-grass system described above is one of 
the initial systems we will examine. Additional applications are being explored in the area of soil 
and water conservation and water resource management.  
 

NEXT STEPS TOWARD APPLYING CLIMATE FORECASTS 
TO DRYLAND FARMING 

 
 The state of knowledge in the ocean:atmosphere:climate arena is rapidly growing and 
evolving so people focusing on applications of seasonal forecasts for decision-making will need 
to stay apprised of developments in this field of science, and how the new knowledge is feeding 
into operational forecasts. The forecasting skill of current technologies varies greatly by region 
and it will require ongoing research to develop effective forecasting tools for regions that 
currently gain little from forecasts. The strength of teleconnectic signals, as well as directions of 
the phases, can have large influences on the magnitude and regional distribution of the climate 
impacts (Izaurralde et al., 1999) The potential economic gain from improved climate forecasting 
indicates that investment in such research is justified (Petersen and Fraser, 2001; Jones et al., 
2000). As forecasts rely more and more on dynamic models, the variability of both the initial 
values of driving variables as well as uncertainty within the model formulation must be 
considered (Palmer, 2000).  
 Another area that needs additional research attention is forecasting climatic extremes. 
Forecast of probability distributions of future climates contains the most reliable information in 
the middle 80% of the distribution. The distributions have little reliability in the upper or lower 
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10% probability. However, impacts of extreme cases are often the most critical, particularly in 
the areas of food security risks during drought and natural resource/environmental risks 
associated with either drought or floods.  
 Integration of climate forecasts with historical data bases and crop simulation models will 
allow risk-based analyses of alternative management scenarios. Two immediate tasks include 1) 
development of techniques to temporally and spatially downscale the climate forecasts to daily 
time series for particular locations needed to drive crop models, and 2) quantify the uncertainty 
of climate forecasts and uncertainties of crop models including those associated with input 
variables, model parameters, and the models themselves. Without such uncertainty analysis 
reliable crop forecasts are impossible. In addition, since many management decisions involve a 
multitude of issues, single crop models will have limited application to many of the assessments. 
Advances in tools to evaluate alternatives and tradeoffs in terms of the whole farm system are 
needed.  
 Perhaps the most critical need is engagement of farmers as partners in development of 
new tools to support tactical decision-making on-farm and using seasonal climate forecasts in the 
context of overall risk analysis and management. This will require development of better 
methods to communicate probabilistic outcomes for farm decision-making (Perry, 1994). It will 
also require assessment of climatic risks as only one of many factors that might impact decision-
making. Whether at the farm level, or rural community level, uncertainty in the socioeconomic 
and policy arenas can inhibit adoption of climate forecasts (e.g., Eakin, 1999) or other new 
technologies. 
 



Table 2. Decision points in an agricultural management calendar for Southern Great Plains (USA) cropping/grazing system 
(Decisions that are underlined may be influenced by seasonal climate forecast).   
 

Enterprises within the System †  
Month 

Winter 
Wheat 

Summer 
Perennial 

Winter 
Perennial 

Summer 
Annual 

Stocker 
Cattle 

 
Tactical Decisions to be Made 
Issues That May Influence Decision 

January graze     Is wheat growth adequate to support feed requirements of 
the cattle on the pasture? Are alternative forages 
available? Is supplemental feeding needed to maintain 
animal body weight?  

February graze  
 
 
 
  

  sell first 
set of 
stockers 

Grow wheat to grain? If so, remove cattle prior to 
growing point emergence aboveground. Decision 
impacted by cattle and grain futures markets, forage 
availability, and precipitation forecast.  
Spring fertilizer? What is status of soil fertility, stored soil 
water and prospects for seasonal precipitation?  

March graze out  graze   Bale wheat in May? If so, remove cattle prior to 
jointing/heading.  

April graze out  graze    

May end graze 
out or cut 
hay 
 

fertilize? 
weed 
control? 
burn? 

graze   As temperatures warm, monitor cool season perennial 
growth and forage quality to determine end of grazing 
season.  
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Enterprises within the System †  
Month 

Winter 
Wheat 

Summer 
Perennial 

Winter 
Perennial 

Summer 
Annual 

Stocker 
Cattle 

 
Tactical Decisions to be Made 
Issues That May Influence Decision 

June grain 
harvest 

 
graze 

end 
grazing 

 
 
 
sow? 

 Summer double crop following wheat harvest? What is 
the soil water storage and seasonal precipitation 
forecast? Is there adequate forage available elsewhere on 
the farm for anticipated needs? Do you need to fix 
nitrogen with a summer crop or is there a need to build 
soil organic matter with a cover crop? 

July  graze? 
hay? 
 
 
 
 
 
forage 
quality 
dip 

 graze? 
based on 
need for 
greater 
forage 
quantity 
or quality 
 
 

contract 
for cattle?

What is the anticipated carrying capacity of stocker cattle 
in the upcoming season, based on current forage 
conditions, cropping plans for the autumn/winter season, 
and climate forecasts? What is the purchase price for 
cattle and what are future prices for cattle when I want to 
sell? Will there be adequate return to justify supplemental 
feeding or would a lower stocking rate with minimal 
supplemental feed requirement be better? Would early or 
late delivery be better, based on anticipated sowing date 
of wheat, and anticipated condition of fall perennial 
forages, given the climate outlook for fall and winter?  

August  poor 
forage 
quality 

 graze? 
hay? 

sell or 
deliver to 
feedlot? 

Is forage quality adequate to sustain gain? Is 
supplemental protein needed or grazing of summer 
annual? If forage is greater than anticipated, is there 
benefit in holding these cattle longer than planned, or is 
there more benefit in selling and stockpiling available 
forage for the next animals?  
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Enterprises within the System †  
Month 

Winter 
Wheat 

Summer 
Perennial 

Winter 
Perennial 

Summer 
Annual 

Stocker 
Cattle 

 
Tactical Decisions to be Made 
Issues That May Influence Decision 

September sow for 
grazing 

 graze harvest start to 
buy cattle 
 
delivery  

Determine area to plant wheat, which fields first, variety, 
seeding rate, fertilizer amount, as influenced by plans for 
cattle enterprise and climate outlook. As temperatures 
cool, monitor cool-season perennial growth to determine 
when grazing can start.  

October sow for 
grain 

 graze    

November   graze   Is fall growth of the wheat adequate to begin grazing; are 
there other fall forages that should be utilized?  

December 
 

graze     Is wheat growth adequate to support feed requirements of 
the cattle on the pasture? Are alternative forages 
available? Is supplemental feeding needed to maintain 
animal body weight?  

 
† Approximate seasons for: 
 Winter wheat   October to early June, for grain production 
 Summer perennials 
  Native  June to August, forage quality dip in late July to August 
  Introduced Late May to early September, forage quality dip in late July to August 
 Winter perennials March to June, September to November or later with low stocking density or delayed grazing start  
 Summer annual If double cropped with wheat, mid-June to early July planting. 
  Grazing July-September 
  Hay  August or September 
  Cover  Terminate in August to allow recharge of September rains for wheat 
  Grain  August to late September, depending on species and cultivar 
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 Stocker cattle  In general, delivered, following weaning, in mid to late fall and grazed until ~ August. However, 
management is highly variable. Land area per animal for spring/summer grazing is ~25% of the area 
required for fall/winter grazing. The area not needed for summer grazing can be harvested for hay or 
grain. Additional cattle can be purchased in late winter and/or mid spring as forage availability 
increases. 
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