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Abstract

Rangeland carbon fluxes are highly variable in both space and time. Given the expansive areas of rangelands, how rangelands respond to
climatic variation, management, and soil potential is important to understanding carbon dynamics. Rangeland carbon fluxes associated with Net
Ecosystem Exchange (NEE) were measured from multiple year data sets at five flux tower locations in the Northern Great Plains. These flux tower
measurements were combined with 1-km2 spatial data sets of Photosynthetically Active Radiation (PAR), Normalized Difference Vegetation Index
(NDVI), temperature, precipitation, seasonal NDVI metrics, and soil characteristics. Flux tower measurements were used to train and select
variables for a rule-based piece-wise regression model. The accuracy and stability of the model were assessed through random cross-validation
and cross-validation by site and year.

Estimates of NEE were produced for each 10-day period during each growing season from 1998 to 2001. Growing season carbon flux
estimates were combined with winter flux estimates to derive and map annual estimates of NEE. The rule-based piece-wise regression model is a
dynamic, adaptive model that captures the relationships of the spatial data to NEE as conditions evolve throughout the growing season. The carbon
dynamics in the Northern Great Plains proved to be in near equilibrium, serving as a small carbon sink in 1999 and as a small carbon source in
1998, 2000, and 2001. Patterns of carbon sinks and sources are very complex, with the carbon dynamics tilting toward sources in the drier west
and toward sinks in the east and near the mountains in the extreme west. Significant local variability exists, which initial investigations suggest are
likely related to local climate variability, soil properties, and management.
Published by Elsevier Inc.
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1. Introduction

Grassland systems, faced with large-scale agricultural con-
versions, are some of the most altered systems in the world
(Butcher, 2004; White et al., 2000; WRI, 2000). Rangelands
make up 40% of the Earth's surface (WRI, 2000) within which
temperate grasslands contain about 18% of global carbon
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reserves (Burke et al., 1997). As future demands on ecosystems
increase, the value of ecosystem services, including carbon
mitigation and ecosystem health will also continue to increase
(Costanza et al., 1997).

This study describes an adaptive data-driven piece-wise
regression methodology to estimate Net Ecosystem Exchange
(NEE) at 10-day time steps during the growing season. These
estimates are summed and added to winter flux estimates to
create 1-km resolution maps of annual carbon fluxes for the
ecoregion. An analysis of the spatial patterns and responses
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Fig. 1. Distribution of grass and shrub lands in the Northern Great Plains. The boundaries of the ecosystems are in white. The locations of the five flux towers are
shown.
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through time will lead to a better understanding of climatic
variability and land management practices on the Net Ecosys-
tem Exchange of carbon.

The Northern Great Plains grassland ecosystem for this study
(see Fig. 1) includes the Northwestern Glaciated Plains,
Northwestern Great Plains and the Western High Plains north of
41° N latitude (CEC, 1997; McMahon et al., 2001; Omernik,
1987). The Northern Great Plains comprises a transition from
moister andmore intensive agricultural regions to the east to dryer
lands dominated in the south andwest by native grasslands, where
agriculture is controlled by access to irrigation. The boundary
between the Northwestern Great Plains and the Western High
Plains marks the transition between blue grama-buffalo grass
(Bouteloua gracilis) and winter wheat (Triticum aestivum) to the
south and mostly wheatgrass–needlegrass (Pascopyrum smithii–
Stipa spp.) and spring wheat to the north (EPA, 2005). How will
Northern Great Plains rangelands respond to predicted increases
in winter precipitation and drier summer conditions and increased
weather variability (Wigley, 1999) or the introduction of new
varieties of drought resistant crops (Higgins et al., 2002) within
this highly variable and responsive ecological system? Method-
ologies described in this paper will assist in identifying how these
causal variables are reflected in changing carbon dynamics.

Micro-meteorological flux towers improve our understand-
ing of ecosystem responses to climate and quantify carbon
dynamics locally at great detail. Continental (Wofsy & Harriss,
2002) and international programs (Cihlar et al., 2003) have
prioritized the scaling up of localized flux tower measurements
to identify, monitor, and understand carbon sink and source
areas. The relationships between grassland CO2 and spectral
vegetation indices (e.g., Bartlett et al., 1990; Churkina et al.,
2005; Gilmanov et al., 2005; Wylie et al., 2004) provide
opportunities for scaling up localized tower measurements to
larger geographical areas.

Carbon absorbed and released as a result of biological activity
needs to be summed throughout the ecoregion to quantify
biological carbon sinks and sources. However, carbon fluxes can
only be directly measured for approximately 1-km fetch areas,
and the cost of direct measurement limits the number of locations
that can be measured. The key to understanding ecosystem
carbon dynamics lies in discovering robust relationships
between detailed knowledge collected at representative local
sites and spatial data that describe the entire ecoregion.

Two complementary approaches are possible to quantify the
relationships between flux tower measurements and spatial data.
The first approach is to define theoretical biophysical models of
carbon dynamics, to adapt these models to available spatial data,
and to calibrate and validate the models using flux tower
measurements. The second approach, described in this paper, is
to develop data-driven models at the flux towers using tower
measurements and spatial data measurements at the tower. These
data-driven models are evaluated in regard to known vegetation
physiology and are then applied across the ecosystem.

This paper describes (1) the spatial and tower data, (2) the
development of a data-driven model, (3) techniques to assess the
robustness of the model, and (4) the results of applying the model
to estimate NEE across the entire ecoregion. The spatial variables
must be able to quantify carbon fluxes in a manner that can be
justified given known physical characteristics of carbon dynam-
ics. To achieve robust estimates, the spatial distribution of the flux
towers and the years sampled at the towers must adequately
sample the variability of the environmental extremes in the



Fig. 2. Seasonal parameterization of the NDVI annual time series (after Reed
et al., 1994).

401B.K. Wylie et al. / Remote Sensing of Environment 106 (2007) 399–413
ecoregion. These conditions must be satisfied to confidently scale
measurements at flux towers to estimate annual carbon fluxes for
entire ecoregions.

The approach defined below creates a regional database of
Net Ecosystem Exchange that can be used to investigate within
and among year patterns of carbon flux.

2. Data

2.1. Spatial data sets

Carbon fluxes can be described as a function of vegetation
type and condition, soil characteristics, and climate. To scale
from flux towers to regions requires that appropriate regional
spatial data representing this information be available to model
the variation in carbon flux. These spatial data must have both
explanatory and predictive power to create regional carbon flux
maps for use in identifying, explaining, and quantifying carbon
sinks and sources. The resulting regional NEE database is in an
Albers map projection with 1-km pixels and has an NEE layer
for every 10 days during the growing season.

The National Land Cover Database (NLCD), derived from
the Landsat Thematic Mapper (TM) (Homer et al., 2004), was
used to identify the 1-km pixels for which at least 70% of the 30-
Fig. 3. Comparison of temperature (a), PAR (b), and precipitation (c) measured at
m NLCD pixels were classified as grass or shrub lands (Fig. 1).
52.3% of the pixels in the Northern Great Plains are classed as
grass or shrub lands. The NLCD has well documented accuracy
characteristics (Wickham et al., 2004).

Vegetation productivity was estimated from derivative
products created from the SPOT VEGETATION sensor (JRC,
2003). The Normalized Difference Vegetation Index was
selected to monitor change in vegetation productivity, including
monitoring the effect of water and temperature stress and
changes in land management or land use (Tucker, 1979).

NDVI ¼ qnir−qred
qnir þ qred

;where
qred ¼ red band
qnir ¼ near infrared band

�

NDVI correlationswith grassland biophysical parameters such
as green leaf area index, green fPAR, and green biomass have
been demonstrated (Cayrol et al., 2000;Wylie et al., 2002). The 1-
km SPOT VEGETATION NDVI daily data are aggregated to 10-
day composites using maximum NDVI compositing techniques
to minimize the effect of off-nadir pixels and atmospheric
attenuation. The 10-day composites were filtered temporally with
a weighted least-squares approach to further minimize the effect
of atmospheric attenuation and to allow the derivation of seasonal
characteristics (Swets et al., 1999).

Seasonal characteristics were derived from annual smoothed
NDVI time series (Reed, 2006; Reed et al., 1994). Phenologic
parameters selected for use in the model were the NDVI value at
onset of season (SOSN), the number of days from onset of
season (SSOST), the date of onset of season (SOST), and total
integrated NDVI (TIN) (Fig. 2). Day of year (DOY) and days
from summer solstice (SOLS) were considered in addition to
SSOST and SOST as means to incorporate time of year into the
model. The parameters extracted from the NDVI time series, as
do all of the variables, introduce uncertainties into the model. Of
particular concern is the sensitivity of start of the season to snow
cover in northern regions and sparse vegetation with associated
aerosols in arid and semi-arid regions. Nonetheless the phe-
nology extracted from remotely sensed data has the advantage
characterizing biologically significant parameters at relatively
high spatial resolution.
the tower versus estimates extracted from the spatial database for the tower.



Table 1
Flux tower descriptions (derived from Gilmanov et al., 2005)

Site years Ecosystem Elevation (m) Precipitation (mm) Temperature
mean Jan (°C)
Mean Jul (°C)

Network Sensor

Lethbridge 2000–2001 Northern mixed-short
grass prairie

960 378 −8.6
18.0

Ameriflux Eddy-
covariance

Fort Peck 2000 Northern mixed Prairie 634 310 −11.9
18.0

Ameriflux Eddy-
covariance

Miles City 2000–2001 Northern mixed Prairie 719 343 −8.7
23.5

Agriflux BREB

Mandan 1999–2001 Mixed prairie 518 404 −12.2
21.2

Agriflux BREB

Cheyenne 1998 Mixed prairie 1910 397 −2.5
17.5

Agriflux BREB
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Climate variables are derived from satellite imagery calibrated
with ground weather information. Daily Photosynthetically
Active Radiation (PAR) (Frouin & Pinker, 1995), daily total
precipitation, and daily average temperature (CDC, 2005; Xie &
Arkin, 1996) were aggregated to 10-day summaries. These
climate variables are very influential with respect to carbon
dynamics. Regional estimates of temperature and PAR agree
closely with measurements at the flux towers (Fig. 3a and b).
These variables tend to vary smoothly through space. Precipita-
tion, which is among the most critical variables for NEE
estimates, measured at the tower and from the regional data are
not highly correlated (Fig. 3c). Precipitation, frequently a
localized event (Frank, 2003), is not well represented in the
regional precipitation spatial data set. As a consequence, variation
in precipitation is, in effect, captured indirectly by the NDVI data.

The mean temperature varies from a low of 4 °C in the north to
a high of 13 °C in the south. The rainfall ranges from annual
minimums of 26.9 cm in the northwest to annual maximums of
47.5 cm in the southeast. Snowfall ranges from annual minimums
of 71.9 cm in the northeast and annual minimums of 133.6 cm in
the west. The climate variables are modeled at 0.25° or nominally
30 km. The coarse resolution of these data introduces significant
uncertainties into a 1-km resolution model.

Four variables-percent grass (PCTGRASS), percent C4

(C4PCT), percent surface clay content (PCTCLAYSURF),
and percent surface CO3 (CO3SURF)—from the State Soil
Geographic (STATSGO) Data Base were evaluated for
inclusion in the NEE model (USDA, 1995). Percent grass and
percent C4 capture soil related vegetation potential. Percent
surface clay content provides a measure of water holding
capacity, and percent surface CO3 quantifies soil inorganic
carbon. The soils database and its attributes are a one-time
estimate mapped for STATSGO at 1:250,000 with a minimum
mapping unit of 6.25 km2 and only 100–200 delineations per
quad (USDA, 1995). Many inclusions exist and most delinea-
tions are large and generalized. The percent grass and percent
C4 represent a single snapshot in time.

2.2. Flux towers

Data collected and research conducted at flux towers make
significant contributions to understanding and quantifying
carbon dynamics. Among the networks of flux towers that
monitor carbon dynamics are the Ameriflux (Running et al.,
1999) and Agriflux (Svejcar et al., 1997) networks. The U.S.
Department of Agriculture (USDA) Agriflux network of 12
locations, some with multiple sites, collects information
quantifying the effects of environmental conditions and
agricultural management decisions on carbon exchange between
the land and atmosphere. AmeriFlux is a research network used
in collecting, synthesizing, and disseminating long-term mea-
surements of CO2, water, and energy exchange for a variety of
terrestrial landscapes across the United States and throughout the
Americas. There are about 130 AmeriFlux sites with data
available through the FLUXNET “network of regional net-
works” (http://www.fluxnet.ornl.gov/fluxnet/index.cfm), and
about half of them have been in operation for 5 years or longer;
a few sites have data records of 10 years or longer. The
AmeriFlux network is led by the Department of Energy (DOE)
with joint support from the National Aeronautics and Space
Administration (NASA), National Oceanic and Atmospheric
Administration (NOAA), USDA, National Science Foundation
(NSF), and U.S. Geological Survey (USGS) (DOE, 2003).

The five flux towers in the region provide data and research
for use in model development and validation (Table 1). Both the
Bowen ratio energy balance (BREB) approach (Raupach,
1988) and the eddy covariance (EC) approach (Baldocchi,
2003; Moncrieff et al., 1997) are used to quantify water and
carbon fluxes at the Agriflux towers, while the eddy covariance
approach is used at all Ameriflux towers. The Bowen ratio
technique is limited to low stature vegetation (Angell et al.,
2001). Both the Bowen ratio (Angell et al., 2001) and the eddy
covariance (Flanagan & Johnson, 2005) techniques have been
shown to agree with chamber measurements. Some uncertainty
is introduced through the pooling of the EC and BREB
measurements. Ongoing research by Morgan and others is
designed to quantify this uncertainty (Morgan, 2006).

These rangeland flux towers arewell distributed throughout the
Northern Great Plains (Fig. 1). The Northern Great Plains extends
fromColorado to Alberta. The Fort Peck,Miles City, andMandan
towers lie within the heart of the ecoregion. The Lethbridge and
Cheyenne towers provided important samples to represent and
constrain northern and southern limits. The Lethbridge data were
used to construct and assess themodel, but the model could not be
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Fig. 4. Net Ecosystem Exchange measured at flux towers: Miles City (MC), Mandan (MA), Lethbridge (LE), Fort Peck (FP), and Cheyenne (CH).
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scaled up for theCanadian segment of the ecoregion since some of
the spatial data were not available for Canada.

Fig. 4 shows the years and locations for which NEE
measurements are available for 1998 through 2001. Most of the
flux tower data were for the 2000 and 2001 growing seasons—7
of the 9 site years. Since data for 1998 were only available at
Cheyenne, and Cheyenne had data for 1998 only, the Cheyenne
tower represents both a spatial and temporal extreme.

An inspection of the NEE time series (Fig. 4) shows that
substantial variability exists among years and sites. As these
measurements are used to train the regional model, we
hypothesize that the variation among the tower-years used
sufficiently bound the variation in the climatic conditions for the
ecoregion. Meyers (2001) stressed the importance of including
drought and wet years in carbon models to account for climate
variability extremes.

2.3. Flux tower data analysis

Flux towers provide detailed, but localized measurements, of
CO2 fluxes between the atmosphere and the land surface, sum-
marized at a 20- or 30-min time steps. The carbon flux estimates
have a growing season and a dormant season component.Whether
an area is a source or a sink is dictated by the balance between
growing season fluxes dominated by photosynthesis and dormant
season fluxes dominated by respiration (Frank et al., 2002;
Haferkamp & MacNeil, 2004). Rangeland systems tend toward
equilibrium (Baron et al., 2006; Dugas et al., 1999; Frank, 2002;
Frank et al., 2002; Sims & Singh, 1978), though water availability
resulting from climatic variation and management of the land can
drive this balance one way or the other (Gilmanov et al., 2005).

Gilmanov et al. (2005) described the methodology to fill data
gaps and integrate the flux measurements to derive 10-day
average estimates of NEE (Fig. 5a). At each flux tower, many
environmental variables are collected including temperature,
Photosynthetically Active Radiation (PAR), and precipitation
(Fig. 5c d and e). Precipitation at the Mandan flux tower typify
the temperate continental grassland regime dominated by
summer production and winter respiration.

Net Ecosystem Exchange (NEE) is the difference between
gross primary production, the carbon absorbed through photo-
synthesis, and respiration, the carbon respired by plants or released



Fig. 5. (a) Daily Net Ecosystem Exchange—solid line, ten-day mean Net Ecosystem Exchange—dotted line; (b) Gross Primary Production—solid line, Respiration—
dotted line, grey areas above the GPP line are net respiration, and grey areas below the GPP line are net production; (c) Photosynthetically Active Radiation; (d)
Temperature; and (e) precipitation.
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through decomposition of organic debris (Fig. 5b). If production
exceeds respiration, then a net carbon sink exists for the period
measured. In 2001 the rangeland at the Mandan, North Dakota,
flux tower (Fig. 5a) was a carbon sink with a net assimilation of
121 gC m−2 year−1.

Winter fluxesweremeasured at theMandan tower for 2001 and
the Miles City tower for 2000. The winter fluxes were estimated
for the ecoregion based on research conducted by Gilmanov
(2002), Frank et al. (2002), and Baron et al. (2006). The regional
meanwinter fluxwas estimated to be 0.53 gCm−2day−1 (Table 2).
Table 2
Winter flux estimates

Flux tower Winter seasons Mean C flux
(gC m−2day−1)

Reference

Mandan, ND Nov 16, 2001–
April 15, 2002

0.69 Gilmanov
(2002)

Mandan, ND Oct 24, 1999–
Apr 24, 2000

0.50 Frank et al.
(2002)

Oct 24, 2000–
Apr 24, 2001

Miles City, MT Jan 1–May 16 and
Nov 16–Dec 31, 2000

0.50 Gilmanov
(2002)

Lacombe, AB Oct 1, 2003–
Mar 31, 2004

0.44 Baron et al.
(2006)

Average 0.53
This mean value was added to the C flux estimates integrated over
the growing season.

3. Methods

3.1. Piece-wise regression models

A class of algorithms and methodologies called data mining
(Witten & Frank, 2000), machine learning (Fielding, 1999),
data-driven modeling (Solomatine, 2002), or data-dredging
(Burnham & Anderson, 2002), depending individual biases or
perspectives, were evaluated for scaling up the flux tower
information to regions. These data-driven models, with their
highly desirable characteristic of combining a variable selection
and data mining tool with an interpretable model result, are
increasingly used in the environmental community (Bell, 1999;
De'ath & Fabricius, 2000; Fielding, 1999; O'Connor &
Wagner, 2004; Zhang et al., 2005a).

Piece-wise regression models were selected as the most ap-
propriate approach for scaling the flux tower data to ecoregions.
Piece-wise regressions have been used for many years to handle
biological problems that are inherently discrete and nonlinear
(Toms&Lesperance, 2003). Burnham andAnderson (2002) stress
the importance of parsimony—the importance of avoiding both
over- and under-fitting of models. Data-driven models, if appro-
priately applied, can effectively capture the causal relationships



Table 3
Variables selected for use in cubist model (temperature and precipitation spatial
variables are filled with temperature and precipitation measurements at the
Lethbridge tower, since no spatial estimates were available)

Theme Utilization for
stratification

Importance for
prediction

Count Pct Weight Pct

PAR 486 43.5 1.727 14.4
NDVI 350 31.3 3.375 28.1
Days since start of season (SSOST) 231 20.7 0.347 2.9
Temperature (TEMP) 40 3.6 3.464 28.9
Precipitation (PPT) 11 1.0 1.228 10.2
Time integrated NDVI (TIN) 0 0.0 0.849 7.1
Value at start of season (SOSN) 0 0.0 1.012 8.4

Excluded variables were SOLSTICE, DOY, SOST, C4PCT, CO3SURF,
PCTCLAYSURF, PCTGRASS, and OMERNICK.
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that exist in the data. If data-driven models do not make biological
sense, then the models may be over-fit; that is, they may be
capturing noise, rather than meaningful relationships, in the data.
To state the obvious, over-fit models can be dangerous if used to
scale point measurements to form regional estimates. In this
project, Cubist1 rule-based piece-wise regression models (www.
rulequest.com) were defined to scale flux tower measurements up
to regions (Quinlan, 1992; Rulequest, 2004).

3.2. Northern Great Plains rangeland NEE model

The Cubist statistical software was used to implement a rule-
based piece-wise regression model to estimate the carbon flux at
1-km pixels for each 10-day period throughout the growing
season. NEE, NDVI, and TEMP are scaled to a byte data range to
better accommodate storage, analysis, and display of the
variables. The underlying assumption is that environmental
information spaces created using phenologically sensitive
variables can be fitted by linear regression equations. These
piece-wise equations are adaptive, allowing NEE to be estimated
for any given 10-day period for any year for any rangeland pixel
within the ecoregion.

The variables contribute within Cubist to (1) partition the
information space into sub-spaces that minimize within space
and maximize between space variation and (2) within each
information space, a multiple regression equation is fit. Cubist
produces an unordered set of rules to define these environmen-
tal information spaces. A pixel may satisfy more than one rule.
When more than one rule applies, the result is the mean value of
the predictions provided by the regressions (Rulequest, 2004).
The variables in each regression equation are sorted in
decreasing order based on their relative explanatory power
within the individual information spaces.

The model analysis seeks to ensure that (1) the most effective
variables are selected, (2) meaningful error estimates are
established, and (3) the best possible predictive model is
identified for estimating NEE throughout the ecoregion.
1 Any use of trade, product, or firm names is for description purposes only
and does not imply endorsement by the U.S. Government.
4. Results

4.1. Variable selection

Many Cubist models were tested and evaluated before
selecting the final model that was used for prediction. An
inspection of these models suggest that seven variables (Table 3)
selected from the 15 spatial data sets described above would best
explain the variation in NEE. Our goal is to create a meaningful,
parsimonious model that maximizes cross-validated R2 and
minimizes the number of variables.

The number of times a spatial variable was used in the rules to
stratify the training data can be quantified as the frequency or
percent utilization. This count gives an indication of the
importance of each spatial variable for stratification (Table 3).
Similarly, a nonlinear “Importance for Prediction” weight is
determined for each variable for each regression equation and
summed across the regression equations. This gives an
indication of the importance of each spatial variable in predicting
NEE. Variables that did not contribute to stratification and
explained little of the variation in the information spaces were
excluded from the final model.

Because NEE is the confounded effect of both Re and GPP,
functional relationships may not always be clear, but this model's
dependence on PAR, NDVI, and days since start of season
(SSOST) for stratification (rule criteria) make ecological sense.
These variables quantify the amount of light available for
photosynthesis, photosynthetic potential, and phenological de-
velopment. The model equations within the “rules” rely heavily
on NDVI and temperature and to a lesser degree on PAR and
precipitation. Moisture and temperature are often considered the
primary drivers of respiration. PAR is an important input in light
efficiency models. Yearly lagged effects, such as increased
nutrient availability after a drought, may be partially captured by
time integrated NDVI (TIN). Residual herbage levels from the
previous year affect soil water and temperature. This effect is
crudely accounted for in the NDVI value at the start of season
(SOSN).

Regression tree models were evaluated in the R statistical
software package to increase the basic understanding of the
relationships among the variables (R Development Core Team,
2005; Venables & Ripley, 2002). The R regression tree analysis
identifies competing variables at each split (Fig. 6). Variables
were evaluated based on how well they explained the expected
variation in NEE. Competing variables were selected over
primary variables if they better explained NEE dynamics and
plant phenology. An inspection of the Cubist variable rankings
in light of competing variables identified by R helps verify
Cubist rules that better explain NEE with fewer and more
biologically relevant variables. The relative magnitude of the
improvement among competing variables provides a measure of
the comparative value of each competing variable (Therneau &
Atkinson, 1997, 2005).

The first split is at an NDVI value of 140 (or 0.40 in original
NDVI units). This split is very strong in all models in Cubist and
in R. In both the left and right splits, the most important variable
is a date variable. For low values of NDVI, the most important

http://www.rulequest.com
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Fig. 6. Regression tree from R showing competing variables for each split. NDVI and temperature are rescaled to 0–255.
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date variable is “since start of season (SSOST).” For high values
of NDVI, the most important date variable is “day of year
(DOY)” (Fig. 6). At most splits, the three date variables, SSOST,
DOY, and “since summer solstice (SOLS),” are competing
variables (Fig. 6). The three variables are highly co-linear. While
DOYand SOLS are directly related (Fig. 7c), SSOST introduces
new information directly related to phenology. In Fig. 7a and b,
SSOSTcan be seen to contain site-specific information that does
not exist in DOY, that may provide an improved ability to
characterize sites and years. The use of SSOST alone provides
both parsimony and phenologic relevance.

4.2. Error estimates through cross-validation

Care must be taken to ensure the implementation of robust
biologically reasonable models given the proclivity to over-fit
Fig. 7. The time variables day of year (DOY), and days since start of season (SSOST)
1 is Miles City; 2 is Cheyenne; 3 is Fort Peck; 4 is Lethbridge; and 5 is Mandan.
models developed from training data with a small sample size
and significant noise (Quinlan, 1996). Cubist models compen-
sate for small sample size by using cross-validation to assess
models for robustness and provide a realistic estimation error. In
random cross-validation, data are divided into n random subsets.
A model is developed or trained using n-1 of the subsets and
tested on the subset that was withheld. A model is created for
each of the n subsets, where each iteration is a fold. Through a
drop one site or year approach, we further determine the model
stability if individual years or sites are not available.

Cross-validation is used to determine the stability of the
models, to calculate realistic error estimates, and to identify
influential samples. We need to accept the reality that the training
data only meet minimal size and distribution assumptions. This is
true whether the flux tower data are used for empirical scaling up
or for validation/calibration of a physical model. Flux towers are
are highly correlated and have similar, but not identical, relationships with NDVI.



Table 5
Cross-validation by site: LE is Lethbridge; MA is Mandan; PK is Fort Peck; CN
is Cheyenne; and MC is Miles City

Site withheld as test LE MA FP CN MC None

Sample size (train) 159 144 196 196 173 217
Mean Abs.
Difference (train)

0.45 0.29 0.36 0.37 0.38 0.35

Relative Error (train) 0.14 0.09 0.11 0.12 0.12 0.11
Sample size (test) 58 73 21 21 44 0
Mean Abs. Difference
(test)

0.46 0.66 0.31 0.55 0.59

Relative Error (test) 0.14 0.21 0.10 0.17 0.18

Table 6
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sited with independent research objectives rather than to support a
comprehensive mapping objective. Cross-validated estimates of
error are important conservative measures of the robustness of the
model. These three cross-validation methodologies, random, by
year, and by site, were used to evaluate the stability and robustness
of models derived from the available towers and selected spatial
variables.

4.3. Random cross-validation

The Cubist model is a five-fold cross-validated model, where
the number of folds is selected to be approximately the same as
the number of sites or years. In the random cross-validated
model, the database is randomly divided into five equal subsets.
By randomly selecting the withheld samples and testing against
samples, which are not used in the model construction, unbiased
and realistic error estimates are determined. An inspection of the
rules provides a subjective estimate of the stability of the rules
generated and the variables used in the models.

With the exception of Fold 5, splits at NDVI ∼140 and
SSOST ∼85 control the stratification. After NDVI and SSOST,
the next most important variable is PAR. Fold 5, which only
uses PAR as a splitting variable, has the largest mean absolute
error of the five-folds. In the R regression tree model (Fig. 6),
PAR is the first competing variable below NDVI for the first
split, but has considerably less explanatory power. An
inspection of PAR and NEE measurements at the Mandan
Flux tower (Fig. 5) shows that NEE is responsive to changes in
PAR.

The Mean Absolute Difference (MAD) is used by Cubist
to compare the model results, where MAD is in data units
(gC m−2day−1).

MAD ¼ 1
n

Xn
i¼1

jxi− x̄j

The flux tower measurements of NEE range from −6.2 to
11.0 gC m−2day−1. The interquartile range, which bounds 50%
of the data, is 3.8 gC m−2day−1 with a lower quartile at −1.4 gC
m−2day−1 and an upper quartile at 2.4 gC m−2day−1. The mean
value is 0.7 gC m−2day−1, while the median value is −0.01 gC
m−2day−1, suggesting a small negatively skewed distribution.

MAD for the random cross-validations range from 0.38 to
0.60 (Table 4), which are small, as are the relative errors (RE), in
proportion to the range of the estimates of NEE. The model
formed in Fold 5 controlled by PAR is atypical, and this is
reflected in the high MAD for Fold 5. However, when compared
to the interquartile range, MAD for the cross-validations is
acceptably small for even the largest instance.
Table 4
Mean Absolute Difference (MAD) values for five-fold random cross-validation

Random sample as test Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Sample size (test) 43 43 43 44 44
Mean Absolute Difference (test) 0.49 0.43 0.48 0.38 0.60
4.4. Cross-validation by site and year

De'ath and Fabricius (2000) suggested that cross-validation
by site is an effective method to compensate for the effect of a
limited number of sites with multiple samples selected from
each site. Likewise, cross-validation by year provides a means
to evaluate the influence of individual years. Cross-validation
by year or site has a simple and practical objective: do the
models continue to be effective even if one of the sites or years
of training data is missing.

To test for the effect of sites, five site models were created
with each one trained using four of the sites, while the
withheld site is used for testing. The results of site models are
compared to the results from the full model to determine
whether any of the sites are influential. The objective is to
better understand the impact of the individual sites on the
model. If an influential site is withheld, then the model should
not perform as well as a model that includes the samples from
that site. Therefore, influential sites provide important contri-
butions to the model. The five models with sites withheld are
compared to the model with all sites (Table 5). The MADs for
the by site training data (MADs from 0.29 to 0.45) are in the
same order of magnitude as are the MADs for the test data
(MADs from 0.31 to 0.66).

Mandan, the site with the largest test MAD value and a
substantial difference between training and test values, has the
largest sample size (73 of the 217 samples) and the greatest
annual precipitation. Total precipitation at Mandan for the 1999,
2000, and 2001 growing seasons (April through October) was
496, 406, and 437 mm, respectively, while the non-Mandan site
with the highest total growing season precipitation was only
342 mm. However, even the exclusion of this most influential
site does not produce an excessive MAD value. The inclusion of
Cross-validation by year

Year withheld as test 1998 1999 2000 2001 None

Sample size (train) 196 192 120 143 217
Mean Absolute Difference (train) 0.37 0.33 0.44 0.39 0.35
Relative Error (train) 0.12 0.10 0.14 0.12 0.11
Sample size (test) 21 25 97 74 0
Mean Absolute Difference (test) 0.55 0.91 0.49 0.48
Relative Error (test) 0.17 0.29 0.16 0.15
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Mandan provides a model that is robust across a wider range of
conditions.

Likewise, the MADs for the by year training data are in the
same order of magnitude as are the MADs for the test data
(Table 6). The largest MAD value for all of the cross-validations
was for 1999. Spring rainfall was extremely high for the 1999
growing season at Mandan, and Mandan was the only site that
had data for 1999 (0.91). This was the extreme year for the
extreme site, so the high value of MAD for this cross-validation
was not unexpected.

The methodology is robust under cross-validation. Condi-
tions across the region vary considerably. Rulequest, in its
Cubist tutorial, emphasizes the importance of having extreme
values represented to minimize the need for extrapolation
(Rulequest, 2004). The available training data include the
influential years and sites needed to capture extreme environ-
mental conditions.
Fig. 8. Scatterplots of the four stratifying variables and NEE at the towers. The splits
the colors used in the rule maps in Fig. 9.
4.5. Model description

After a thorough study of how the models respond to cross-
validation and variable selection, a final model was trained
using the seven selected variables and all of the flux tower data.
The model was applied to the spatial database to estimate NEE
for each 10-day period. The rules stratifying the piece-wise
regression are listed on Figs. 8 and 9.

The interrelationships among the variables by rule can be
seen in Fig. 8. The scatterplot of NDVI versus SSOSTshows the
clean partition formed by Rule 1 (red) and 3 (blue) for low
values of NDVI. The split point for SSOST is very close to
maximum NDVI. PAR and TEMP come into play for high
values of NDVI as Cubist minimizes variation as vegetation
approaches and passes peak vegetation greenness.

Fig. 9 shows the spatial distribution (May, July, and
September for 1998 through 2001) of the rules. Recall that
used are overlain on the scatterplots. The colors on the scatterplots correspond to



Fig. 9. Rule maps showing the distribution of the rule use through time and space.
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the Cubist model is a dynamic rule-base parameterization of the
carbon flux regression model. As the growing season progresses
different multiple regression models become active and move
across the landscape in response to changing environmental
conditions.

In May, Rule 3, an early green-up environmental information
space, dominates the ecoregion, although Rules 2 and 5 identify
environmental spaces that are already very green in earlyMay. By
early July most of the ecoregion is dominated by Rules 4 and
5 delineating regions of high biomass with the two rules
differentiated by higher temperatures in the south and lower
temperatures in the North. Some areas controlled by Rule 1 have
already advanced into senescence. By early September, most of
the ecoregion is dominated by Rule 1. Rules 2, 4, and 5 bound



Fig. 10. Annual NEE estimates for 1998 through 2001. Greens are carbon sinks, and reds are carbon sources. The new Cottonwood and Brookings flux tower sites will
help improve future carbon flux estimates. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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areas of high vegetation vigor in the east where more rainfall is
available. Rainfall is not directly included in themodel, but NDVI
acts as a surrogate for rainfall. The model adapts dynamically to
different environmental conditions through the year by applying
appropriate rules as changing environmental conditions dictate.
Fig. 11. A stable carbon source shows a localized early decrease in both NDVI and N
and 2 on map can be seen in the graphs as high peaks in June 2001, while the nega
4.6. Annual estimates

We used the rule-based piece-wise regression model to
estimate NEE for each 1-km pixel every ten days during the
growing season. By summing these 10-day estimates, we obtained
EE. The seasonal graphs of NEE and NDVI are for 2001. Positive NEE circles 1
tive NEE circles 1 and 2 on the map can be seen as lows in July 2001.
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a growing season carbon flux estimate. Finally, by adding winter
flux estimates to the growing season estimates, a total carbon
estimate is determined for the rangelands within the Northern
Great Plains ecoregion (Fig. 10).

For the four years estimated, the carbon fluxes for the Northern
Great Plains rangelands are in approximate equilibrium. The
ecoregion was found to be a small sink in 1999 and a small source
in 1998, 2000, and 2001, although the time series is too short to
provide a more definitive estimate of the state or trends in carbon
fluxes in the region.

Current research is directed to understanding the driving
forces that cause patterns such as the stable carbon source along
the Yellowstone River and near the Fort Peck Reservoir, shown
in Fig. 11. The seasonal graphs clearly show a sharp downturn
in NDVI and NEE at two source locations near the Yellowstone
River when compared to two sink locations north of the river.
The carbon source near the Fort Peck Reservoir is associated
with a clay soil, which is not true along the Yellowstone River,
where high growing-season temperatures are associated with
the source along the Yellowstone River, but not with the source
near the Fort Peck Reservoir.

Future research calls for field studies to explore these con-
sistent source and sink areas and to establish causal relation-
ships for patterns in the NEE data. This research may identify
patterns of carbon flux that represent local persistent weather
patterns, management practices, or soil characteristics or may
uncover false patterns that are artifacts of the spatial data sets
used. The maps of annual NEE in Fig. 10 document annual
trends in carbon flux. The 10-day database used to determine
annual estimates of NEE will be investigated further, particu-
larly in those anomalous areas to establish causal relationships
and to confirm patterns.

5. Discussion and conclusions

The rule-based piece-wise model permits an estimation of
NEE that holds up well under cross-validation and existing
knowledge of NEE process models. The essence of a data-driven
model is the constant search for new and better data that can help
explain and predict NEE within a known and accepted theoretical
framework. New sources of data continue to be investigated for
inclusion in the model.

Three fundamental data assumptions must be met to es-
tablish confidence and limits for the regional flux estimates.
One, the spatial distribution of the flux towers must adequately
sample the spatial variability of the environmental extremes in
the ecoregion. Two, the years sampled must adequately bound
the temporal variability of the environmental extremes in the
ecoregion. Three, the spatial variables selected for use in the
model must adequately and robustly quantify carbon fluxes in a
manner that can be justified given known biophysical charac-
teristics of carbon dynamics.

A corollary to these assumptions is the need to identify gaps
in available data to improve the quality of future models. A
data-driven approach has inherent strengths. The available
spatial data are imperfect surrogates for the information needed
to satisfy process models. Empirical, data-driven models adapt
to the idiosyncrasies of the available data and help build an
understanding of the relationships between NEE and the
available data. An outcome of this analysis is an improved
understanding of gaps in the knowledge base, which is needed
to accurately and precisely estimate carbon fluxes.

Of particular interest are more effective measures of water
availability and temperature, particularly in water limited ecosys-
tems (Austin & Vivanco, 2006). Haferkamp and MacNeil (2004)
stressed the importance of April–June precipitation when more
than 90% of the biomass of cool-season grasses and 75% of the
biomass of warm-season grasses are produced by the end of June.
NDVI presently acts as a de facto surrogate for water availability,
but spatial data quantifying soil moisture are under investigation by
NASA, NOAA, USDA, and others (Griffiths & Wooding, 1996;
Lakshimi, 2004; Lu & Meyer, 2002). Other aggregations of
precipitation, such as precipitation lags or a moving window of
precipitation accumulation, will be investigated.

A “growing degree days” variable is expected to be important
in future grassland ecoregion models (Frank &Hofmann, 1989).
Other spatial variables under consideration are remotely sensed
measures of vegetation residue and snow cover (Daughtry et al.,
2004; Hall et al., 1998; Nagler et al., 2003; Riggs et al., 2003).
The construction of new flux towers is being supported to
improve the spatial distribution of rangeland flux towers. It is
hoped that towers at Cottonwood and Brookings, South Dakota
(Fig. 10), will become available to help anchor the south and
central Northern Great Plains estimates.

The flux tower operators have conducted significant range-
land climatic and management research upon which interpre-
tation of regional models of carbon flux depend (Flanagan
et al., 2002; Frank, 2002; Frank et al., 2002; Haferkamp &
MacNeil, 2004; Heitschmidt et al., 2005; Meyers, 2001;
Morgan et al., 2004, Wever et al., 2002; Zhang et al., 2005b).
Detailed studies and data collected at sites provide the
understanding of the carbon dynamics needed to lend credence
to regional carbon studies.

A substantial amount of the uncertainty in the annual flux
estimates lies in the estimate of winter fluxes (Frank, 2002).
Methodologies will be investigated to reduce the uncertainty
associated with winter fluxes. The model needs to be extended
not only to new ecoregions but also to additional years to better
bound the inherent variability of these rangeland ecosystems.

Our intent is to extend the methodology into other rangeland
ecoregions to capture the full variability of the environmental
conditions represented in rangeland ecosystems. A coherent set of
rule-based piece-wise regression models will evolve to explain
and predict NEE throughout North American rangelands.
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