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[} Plant carbon/nitrogen ratio (C:N) exerts significant control over net primary
production (NPP) for most biomes, yet remote quantification at ecosystem scales is often
hindered by coarse spatial resolution and by the influence of variable plant water content
on spectral absorption, Consequently, remote sensing—based estimates for ecosystem
propertics can be masked by hectare-scale landscape patchiness and by drought stress. We
approached the water content problem first by identifying those spectra sensitive to plant
C:N but not sensitive to varying intensities of plant water stress under controlled
conditions. Then we tested formulae developed at a plant scale with monocultures on
mixed-grass prairie field plots several times during the growing season and derived an
optimum rangeland C:N formula (RCNF). The RCNF was cvaluated on pastures under
experimental grazing treatments using mid-resolution, multispectral sensors. Delineation
of canopy C:N within and between pastures was achicved under variable canopy
moisture conditions using either Landsat 5 or ASTER spectral data. Landsat 5 canopy C:N
ratios were estimated four times during the 2004 growing season with <14% error
(RMSE = 3.1). Estimates tracked ficld measurements, with greater C:N ratios in April
(between 30 and 34) and lower C:N in September (between 24 and 27), We also tested the
RCNF on ASTER satellite data on experimental grazing treatments and found ASTER
estimates were within 9.6% of field measurements (RSME = 1.5). Spatial and temporal
variability among grazing treatments and collections times were similar to remote
estimates despite variable plant moisture, indicating that rangeland C:N may be quantified
using current, economical, satellite sensors within 3 C:N units.

Citation: Phillips, R. L., O. Beexi, and M. Liebig (2006), Landscape estimation of canopy C:N ralios under variable drought stress in

Northern Great Plains rangelands, J. Geophys. Res., [1], G02015, doi:10,1029/2005JG000135.

1. Introduction

[z] Carbon/nitrogen ratio (C:N} drives terrestrial biogeo-
chemical processes, such as decomposition and mincraliza-
tion [Murphy et al, 2002], and as such can strongly
influence soil organic matter concentrations, C and N pool,
and turnover rates [Kefly et al., 2000; Schimel et al., 1996,
1997; Throop et al., 2004]. Leaf C:N ratio is also a highly
sensitive input parameter to net primary production (NPP)
models, such as the BIOME-BGC terrestrial ccosystem
model {White et al., 2000]. The relationship between leaf
N and photosynthetic assimilation capacity has been well
documented across a spectrum of climates [Wright ef al.,
2004], which can be approximated from C:N ratio for a
specific ecosystem. From a regional, rangeland management
perspective, C:N ratio is an indicator of vegetation quality
during the growing scason and litter quality at senescence.
Consequently, C:N represents a measurable landscape-scale
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signal of vegetation quality that, if remotely derived from
satellite data, could improve regional NPP and rangeland
quality assessment models by providing real-time C:N
values at ecosystem scales. Further, by employing multi-
spectral satellite data, input from archived imagery would
be available for retrospective NPP analyses, and for iden-
tification of precursors to climate change [Waring et af.,
1986], such as nutrient stress [Schime! ef al., 1990]. For
Northern Great Plains rangelands, sensors capable of
resolving hectarc-scale variability [Hunt et al., 2003] are
needed because plant C:N varies with management,
phenology, and meteorological conditions. However, mid-
resolution (<0.1 ha pixel™'), satellite-based models capable
of delineating measurable ecosystern properties associated
with vegetation quality are lacking [Moorhead et al., 1999],
We address this need for synoptic, ecologically relevant
models by linking plant-to-pasture experiments to derive
canopy-level C:N applicable to current, mid resolution,
multispectral, sensor data,

[3] Correlations between leat’ N content and spectral
reflectance have been documented for hyperspectral
sensors using hand-held and aerial platforms {Mutanga
and Skidmore, 2004, Wessman et al,, 1988], but the reli-
ability of such correlations under variable piant conditions
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Figure 1. Outline of experimental design, from p
development and validation.

remains uncertain. Detecting absolute plant N concentration
in the ficld with any optical sensor presents a problem
becausc stress associated with fluctuation in plant water
content can interfere with the spectral signal [Jacquemound
et al., 1996; Kokaly and Clark, 1999], Hyperspectral fly-
overs using aerial platforms are expensive to repeat, thereby
limiting research effotts aimed toward quantifying proper-
ties that change with plant growth and meteorclogy. Mid-
resolution multispectral satellites, such as Landsat S or
ASTER, that regularly orbit the Earth offer more spatio-
temporal options for both research and applications. We
address these remote data needs by first employing a
hyperspectral sensor under experimental conditions and
then convelving the data to fit multispectral sensors. We
address the issuc of plant water content by separating the
effect of water from the effect of C:N ratio on plant spectra,
By experimentally testing for the effects of plant C:N and
leaf’ water content on plant hyperspectral signatures, we
developed a satellite-based C:N ratio model applicable to
mixed-~grass prairic rangeland under variable drought stress,

[4] We hypothesized that by separating the spectral
response of leaf water content from the spectral response
of leaf C:N, we could derive a formula that would estimate
rangeland canopy C:N at ecologically relevant spatial and
temporal scales. We chose C:N ratio because of its signif-
icance at an ecosystem scale and because the spectral signal
is highly influenced by and includes information for both C
and N [Jacquemoud et al., 1996; Spamner ef al., 1985].
Consequently, we expected spectral delineation of N rela-
tive to total canopy C would be greater than for absolute N

2of

lant to pasture scales, required for spectral model

concentration [Beeri et al., 2005]. Moreover, we wanted to
determine those wavelengths affected by C:N for a range of
plant moisture conditions under controlled cenditions for a
cool season {C;) and a warm scason (C;) grass species
because we intended to scale-up to Northern Plains range-
land ccosystems, where species is an important source of
spectral variability {Tieszen ef al., 1997]. From there, we
proceeded to test results from the controlled study on
mixed-grass prairic using hyperspectral, plot-scale data,
Then we validated the most predictive spectral model
between April and September using two satellite sensors
on rangelands imposed with three grazing treatments. Fi-
nally, we examined whether our satellite-based model could
accurately capture spatial (field grazing treatments) and
temporal (seasanal variability) patterns by comparing C:N
values from plot measurements with our satellite-based
estimates (Figure 1),

2. Methods

[5] For the initial plant-level phase of this work, we grew
monocultures of cool scason Sandburg bluegrass (Poa
secunda (J. Presl)) and warm scason blue grama (Bouteloua
gracilis (Willd. ex Kunth) Lag. Ex Griffiths) from seed
(Wind River Sced Co., Manderson, Wyoming) under similar
controlled conditions to identify those spectral bands and
band combinations (indices) that were influenced by plant
C:N, but not by water content. Twelve flats of each species
were planted in potting soil and randomly assigned to
greenhouse bench space, where plants received ambient
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Table 1. Relative Spectral Indices Commonly Associated With Vegetation Stress, Vegetation Water Content, or High Productivity®

18] Index Name (Usage) Index Equation Plant Species Water Content C:N Ratio
1 NDVI (productivity) (RB00 — XGB0)/(NB00 + NG680Y <0.0001 0.6207 0.0031
2 SAVI_0.1 {productivity) L1 5 (A800 — X6BOY (X800 + X680 + 0.1) <0.0001 0.501¢ 0.0030
3 WDRVI_5 (productivity) (800 — 5 x X680Y (N800 + 5 x X688 <0.0001 0.0740 0.00630
4 EVI (productivity) 2.5 % (ANBOO — XN680)/(NB0O + 6 x X680 — 7.5 <{1.0681 0.4810 ©.0040
X A485 + 1)
5 ND4S (productivity) (X800 — X1675)/(X800 + N1675) <0.0001 0.0047 0.0569
6 ND47 (productivity) (A800 ~ XN2220)/(1\800 + 22220) <0.0001 <0.00¢1 0.0380
7 TC234 (productivity) ABOO x (NS55/0680) <§,0001 0.6506 6.0021
8 TC235 (productivity) A1675 x (NS55/M680) <0,0001 4.2377 0.4009
9 ND23 (productivity} (A555 — NOBOV(AS5S + AGRDY <0,0001 0.0256 <0.0001
1¢ T-band GVI (productivity) 0.72 + X1675 % 0,07 + N2220 x —0.16 + 2485 x <0.0001 0.909¢ 0.0270
—0.27 + X555 x —0.22 + X680 x —0.55 + X800
11 ND53 (vegetation siress) 1 —(\1675 — N680)(N1675+ N680) <{0.0601 0.3360 0060
12 ND73 (vegetation stress) 1 — (Z2220 — N680Y(N2220+ N68D) 0.0002 6.1000 0.4300
13 NID52 (vegetation stress) (NLGTS — AS55)/(N1675+ %5355) .1984 0.0239 0.0008
14 7-band wetness {moisture) X485 ¢ 0.14 + X555 x 0.18 + X680 x 0.33 + N800 0.9050 <0,0001 0.7876
% 0.34 + X1675 x —~0.62 + 22220 x —0.42
i5 SR71 (moisture} A2220/0485 0.0018 0.0364 0.0623
16 SR3i X640/7485 0.6226 8.3876 00010
17 SR31 AG80/ 1485 0.6090 0.8240 <0.0001
18 SRT60/485 N700/5485 <0,0001 0.0680 0.0030
19 ND(640-680) 1 = (N640 — MO8V (N640 + X68H) 0.0603 0.3740 <0.0001

"Algorithms listed are results from statistical tesis for the effeet of plant species, waler content, and C:N ratic on each index. Wavelengths (in nm) are
symbolized by A Those given in boldface were significantly affected by C:N ratio but not significantly affected by water content. I values indicating cifects

of plant species, waler content, and C:N ratio on specira are listed.

sunlight conditions and air temperature ranged from 18° to
30°C. Soil moisture remained near field capacity until
grasses had reached full cover, but prior to flowering,
35 days after planting. To induce progressive moisture
stress, we ceased watering plants for 3 weeks following
canopy closure. Spectral radiance (W m™2 str ' nm™') was
recorded between 35 and 75 days after planting for each
flat using a hand-held hyperspectral spectroradiometer
Field-Spec Pro {Analytical Spectral Devices Inc., Boulder,
Colorado). Spectra were recorded over a full leaf canopy
(~8 cm height) for a 6.6-cm diameter target area every
48 hours. To achieve a consistent and uniform target area
{(given the sensor 25° field of view), an aluminum arm was
constructed to hold the recording gun at a fixed distance of
I5 c¢cm above the plant canopy. The hand-held receiver
remained at a constant height and recorded 10 files within
the target area to obtain an average. Prior to recording
spectra for a target, calibration panel (Spectralon Labsphere
Inc., North Sutton, New Hampshire) radiance was
recorded. Reflectance (R) for cach wavelength (W) was
calculated using two calibration (C) and ten target (T)
records (W m™ str™! am™"y according to

Ry = [(Z:(’n)/iﬂ]/{(zf ck)/z]. (1)

We prevented interference from diffuse light by shielding
targets from direct sunlight during the measurement period
{between 1400 and 1600 hr) and applying a stable,
controled, 15W halogen light source (ASD Pro-Lamp) set
on focused mode and oriented 15° from nadir {or 75° above
the horizon). This method minimized radiance differences
between flats and days that could be attributed to irradiance
variability. Immediately following spectral measurements,
all aboveground plant material inside the 6.6-cm target was
destructively sampled. Most aboveground material was leaf,
rather than stem biomass. Plant material was weighed on a
microbalance and oven-dried at 60°C for 48 hours. After

recording dry weights, all plant material was pround
completely by hand using a mortar and pestle. All samples
wete analyzed for total C and N by dry combustion using a
LECO CN analyzer (LECO Corp, St. Joseph, Michigan).
Plant biomass, water content (g H,0 g™ fresh mass), C (g C
g™ dry mass), and N (g N g7 dry mass) were recorded for
each 6.6 cm target on cach date.

{s] We summarized the hyperspectral data for both spe-
cies and determined wavelengths () that responded linearly
to an increase in plant C:N ratio, Correlation analyses were
performed using all spectral records against plant C:N ratio.
Spectral regions most highly correlated with C:N ratios
were found in the red, blue, and midinfrared portions of
the spectra. Ratios and normatized difference ratios were
constructed using those wavelengths correlated with plant
C:N. Most wavelengths selected were applicable to muld-
spectral sensors satellite platforms (e.g., Landsat 5, ASTER,
SPOT, MODIS). We also included common vegetation
indices previously reported in the literature, such as the
Normalized Difference Vegetation Index (NDVT) and the
Enhanced Vegetation Index (EVI).

[7] We ran a separate analysis of variance for cach of the
indices as recorded by the spectroradiometer to determine
cffects of plant species, C:N, and water content (indepen-
dent variables) on index spectral response using the SAS
General Linecar Models (GLM) routine (v. 8). We were
interested in identifying those indices significantly affected
by C:N and not by plant water contend, given that plant
species would also influence spectra, This three-way anal-
ysis of variance reduced the number of potential spectral
algorithms for C:N detection from [9 to 12 (boldface in
Table 1). For each of the remaining 12, we used regression
analyses to construct a set of 24 lincar and quadratic
cquations to serve as candidate formulac for predicting
C:N in the subsequent plot-scale phase of our study. These
were evaluated visually by plotting predicted values versus
residuals to ensure homogeneity of regression variance.
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[8] We proceeded to the plot-scale phase by testing these
formulae in working rangelands. We conducted hyperspec-
tral ground surveys for rangelands located at the USDA-
ARS Northemn Great Plains Research Laboratory (NGPRL)
in Mandan, North Dakota, three times during the growing
scason (24 June, 2 August, and 23 August 2004). We
collected plot-scale data from t]ucc grazing treatments; a
moderately grazed (2.6 ha stecr Y mixed- -grass prairie, a
heavily grazed (0.9 ha steer™ ") m:xcd -grass prairie, and an
ammdily fertilized (45 kg N ha™"), heavily grazed (0.9 ha
steer™ ") field of crested wheatgrass (Agropyron desertorum
(Fisch. ex. Link) Schult) intersceded with B. gracilis
[Liebig et al, 2006]. Spectral reflectance (nadir) was
recorded at 1100 hr 1.5 m above the canopy in four 1-m?
plots selected at random within each treatment on each date.
Directly after spectra were :ecmdcd standing biomass and
litter was harvested using 0.25 m” quadrats and material was
separated into litter, standing-dead, and standing-live mate-
rial. Carbon and N concentrations for each pool (standing-
live, standing-dead, and litter) were determined by dry
combustion and the weighted mean calculated to include
all plant material for canopy C:N. The high contribution of
standing-dead and litter to aboveground biomass in the field
necessitated inclusion of these pools, since rangeland pixels
include a mix of plant live and dead materials, including
detritus.

[9] Plot-scale data coliected 24 June, 2 August, and
23 August (ground-truth hyperspectral and canopy C:N)
were used to evaluate the 24 lincar and quadratic candi-
date formulae constructed from the greenhouse phase of
our study (boldface in Table 1) by plotting predicted C:N
against measured C:N for these dates. The best predictor
of field-plot C:N ratic was then evaluated intraseasonally
using multispectral satellite data for pastures at the
NGPRL. Plot-scale data variability was evaluated for
homoscedasticity using this index equation by convolving
hyperspectral data to multispectral bands for observations
recorded 2 August.

{10] For the multispectral, landscape-scale phase of our
study, we acquired four cloud-free Landsat 5 scenes and one
cloud-free ASTER scene during the 2004 growing season.
We used ERDAS Imagine 8.7 (Leica Geosystems GIS &
Mapping LLC.) to geo-reference and calibrate each image
to UTM, Zone 14 projection and WGS 84 Datum with
ground-control points. Ten geo-locations were mapped
using a Trimble Geo XT Geographic Position System
{GPS) Beacon receiver with an external antenna to achieve
submeter locational accuracy. We converted the Landsat 5
pixel digital numbers to ground reflectance by using MOD-
TRAN-4 radiative transfer code inside the ATCOR 2
package [Geosystems, 2002} and the specific calibration
files for cach band [Chandler and Markham, 20031, The
ASTER digital numbers were converted to ground reflec-
tance using the empirical line method [Clark et al., 2002;
Geosystems, 2002; Moran et al., 20011,

[1:] Model validation was performed with field observa-
tions for all pasture treatments five times during the gtowm%
season in conjunction with satellite flyovers. Four 0,25-m
plots were clipped to ground level within each pasture and
standing-live, standing-dead, and litter material separated,
weighed and analyzed for C and N as described above within
four (Landsat 5) or six (ASTER) days of satellite overpass.

PHILLIPS ET AL.: LANDSCAPE ESTIMATION OF CANOPY C:N

Go2015

Landsat 5 imagery was acquired 26 April, 5 May, 24 July,
and 17 September, while ASTER was acquired 20 May.
Canopy C:N was estimated using satellite image data and
the C:N model for 12 pixels inside cach image. Root mean
square crror {(RMSE) and relative error (RE) were caleu-
lated for cach pixel (estimated) against measurements
inside each pixel (actual) and the absoluie values summed
and divided by the total number of pixels for each sensor
separately.

RMSE = " (Actual — Estimated)* | /n (2
>

RE = {Z'; {{(Actual - Ewimmed)//fcma!}} n, (3)

where “Actual” represent the ground measurements and
estimated represent the satellite estimates.

[12] We analyzed Landsat 5-estimated C:N, ASTER-
estimated C:N, and measured canopy C:N separately from
cach other owing to differences in sampling and pixel
spatial scales. The fixed cffcctq of grazing treatment and
time ol plot-scale (0.25 m*) and on Landsat 5 pixel-scale
(900 m*) C:N ratio were tested using a repeated measures,
mixed model (SAS Ine., Cary, North Carolina) with random
effects of plot nested inside treatment for each of the
satellite flyover dates [Littell et al., 1996]. Since the time
X treat interaction was not significant, it was excluded
from both models. The fixed effects of grazing treatment
on plot-scale and on ASTER pixcl-scale (225 m*) C:N
ratios were tested separately using a mixed model with
random effects of plot nested inside treatment. For
analyzing cffects of grazing treatment and time on plant
canopy moisture content, standing-dead mass, standing-
live mass, and litter mass we used data for all eight field
observations (26 April, 5 May, 24 June, 24 July, 2 August,
23 August, and 17 September).

3. Results

[13] Withholding water from Poa secunda in the green-
house experiment resulted in greater water stress than for
Bouteloua gracilis. Initial water content for P, secunda was
80% and fell to 30%, while the 77% initial water content for
B, gracilis fell to 40%. C:N values for P secunda ranged
trom 10 to 36, while B. gracifis C:N ranged from 19 to 61.
Aboveground biomass for both species was similar. Averaged
across all sample dates, bmmass was cstimated at 101 gm™
for P secunda and 120 g m™ for B. gracilis. Fach candidate
index was quantitatively evaluated for effects of water content
on spectra, which was significant for 12 of the 19 index
equations tested (Table [}. A significant portion of statistical
variance was also attributed to differences between P secunda
and B. gracilis species, likely due to morphological
differences (color, architecture, structure) between the
two grasses, Six multispectral productivity indices, two
multispectral vegetation stress indices, three multispectral
simple ratio indices, and one hyperspectral index were
included in the list of 12 indices significantly affected by
C:N ratio and species but not affecied by water content
(boldface in Table 1).
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Table 2. Mean and Standard Deviation for 0.25 m* Clipped Field Plots by Date and by Grazing Treatment®

Standing-Live, Standing-Dead, Fraction
kg ha! kg ha™! Standing-Dead Litter, kg ha™'
Date Treal Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev
26 April A 452 243 729 305 0.62 013 819 416
H 165 59 584 125 0.78 G.06 24] 136
M 252 87 2474 442 0.91 0.03 1729 509
10 May A 618 169 963 193 (.61 0.09 349 323
I 540 116 1180 480 0.68 0.05 180 116
M 407 152 3256 239 0.89 0.04 927 381
26 May A 667 225 1181 360 0.63 0.1} 871 411
H 633 208 703 3 0.50 0.18 142 128
M 614 187 2610 827 0.80 0.09 2241 933
21 June A 610 202 875 150 0.60 0.05 751 30t
H 602 141 514 327 0.44 0.19 323 54
M 735 100 1657 544 0.68 0.07 1900 279
20 July A 566 153 437 154 0.43 0.14 949 273
H 702 60 554 287 0.42 G.14 235 97
M 816 212 2865 440 0.78 .06 2360 038
2 Aug A 464 54 591 211 0.55 0.10 1300 438
I 644 207 734 604 049 0.21 790 346
M 978 203 1259 389 0,56 0.04 3141 1150
23 Aug A 356 30 772 328 0.67 0.11 390 517
H 365 98 548 177 0.60 0.08 285 172
M 745 157 2792 HIRH 0.78 0.05 1705 115
20 Sep A 347 167 625 266 0.53 0.08 706 478
H 281 209 526 249 0.65 0.19 370 377
M 751 194 1390 263 0.65 0.05 1867 480

*Plots clipped to ground level were separated into standing-live and standing-dead pools, Remaining material on the ground was collected as Titer,
Treatment A is heavily grazed A. desertorum, weatment 1 is heavily grazed mixed-grass, and ueatment M is moderately grazed mixed-grass {see text for

details).

[14] The regression formulae derived for each index
based on observations collected in the greenhouse were
then tested on field plots located inside grazing treatments.
Most formulae, when applied to hyperspeetral records
collected from grassland communities, did not agree well
with field measurements (predicted vs. measured regres-
sions were not significant, with R? values < 0.5). This was
particularly apparent for those formula requiring blue and
green regions of the spectra. We suspect this is likely due to
interference from the exceptionally high proportion of litter
and standing-dead material to total canopy mass. Each of
these pools consistently contributed more to total biomass
than live material in these rangelands during 2004. Under
ficld conditions, the best estimate for C:N was achieved
from the ND33 {Table 1), which utilizes 680 and 1675 nm
wavelengths, These bands are similar to Landsat 5 and
ASTER spectral responses for red and midinfrared (IR)
bands. Spectral response for other satellite sensors, such as
SPOT and MODIS, require a shift in wave band values,
specificaily 645 and 1610 nm, and 645 and 1630 nm,
respectively [Beeri et al., 2005]. These SPOT- and
MODIS-specific indices (12, 13 and 15 in Table 1) were
not significantly related to plant C:N, contrary to wave
bands available from Landsat 5 and ASTER sensors. The
specific range required for C:N delineation suggests that
satellite detection of plant C:N may be sensor specific.

[15] Ofthe 24 formulae derived from the greenhouse phase
of our study, linear {equation (4)) and quadratic (equation (5))
equations applying the ND53 index (TFable 1) were the best
predictors of canopy C:N at the field-plot scale.

. 21675 — X680
C:N =262+ 5635 = [1 (WX%&?@)] (4)

N1675 — N680
N - 219 T ATTEE R T man
C:N =63.4~219.7+ [1 (Ms?sﬂéso)]

©1675 — N680Y 17
+305.0 {i - ()\16754—)\680)] : )

where data inputs at specific wavelengths are symbolized by
A We found equation (5) to provide the best fit to ground
data and utilized the quadratic formula for subsequent
procedures and refer to this equation as the Range C:N
Formuta (RCNF). Hyperspeetral data collected at the plot
scale on 2 August were similar among treatments, with
average (+ standard deviation) index values of 0.45 + 0.13
for fertilized range, 0.46 £ (.18 for heavily grazed range,
and 0.47 & 0.17 for moderately grazed range.

[16] The mass of standing-dead material varicd with
grazing treatment (df =2, 9; F = 84.97 p < 0.001) and with
time (df = 1, 83; F = 10.90 p < 0.000), The fraction of
standing-dead for all grazing treatments was greatest in
April and declined until Auwgust, when the proportion of
standing-dead began to rise again (Table 2). Standing-dead
material was greatest for moderately grazed range at all
collection times. Averaged across dates, standing-dead ma-
terial for fertilized and unfertilized heavily grazed range was
772 and 668 kg ha~!, respectively, while the moderately
grazed range was 2288 kg ha™'.

[17] Similar to standing-dead, litter mass was also signif-
tcantly affected by grazing treatment (df = 2, 9; F = 32.42
p < 0.001) and time (df = 1, 83; F = 5.52 p < 0.021), with
consistently greater litter in the moderately grazed plots
throughout the seasorn. Differences among treatments for the
litter pool were greater than for the standing-dead pool, with
fertilized range at 854 kg ha™', unfertilized, heavily grazed
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Figure 2. Mean (#std. dev.) canopy C:N measured from
field plots by date. Plot data were collected with 3 days of
image acquisition at four timesg during the growing scason
2004 next to estimated, Landsat 5 pixel-scale mean (+std
dev) canopy C:N. Letters over error bars denote significant
differences for measured and estimated C:N with time.

range at 321 kg ha™', and unfertilized, moderately grazed

range at 1984 kg ha™'. Unlike standing-dead material,
highest values were recorded during the mid-summer
months.

{18] For standing-live material, the effect of treatment
varied intrageasonally (time x treatment df = 2, 81 F = 9.06
p < 0.001). Live material in the fertilized, heavily grazed A.
desertorum peaked more quickly and to a lesser degree than
the moderately grazed mixed-grass prairvie, where standing-
live material maximum was recorded 2 August at 978 kg
ha~'. Fertilized, heavily grazed range maximum was
recorded 26 May at 667 kg ha™'. Heavily grazed mixed-
grass range was intermediate between these treatments with
maximum recorded 20 July at 702 kg ha™",

[19] Plant canopy moisture content {both standing-live
and standing-dead material) varied with collection date (df =
1,47;F=9.32 p<0.0037)and with grazing treatment (df=2,
9; F = 578 p < 0.0243) between April and September.
Moisture content for heavily grazed and fertilized A. deserto-
rum was consistently higher than moderately grazed and
heavily grazed mixed-grass pastures. Canopy moisture was
greatest in September (66, 54, and 58%, respectively, for A,
M, and H treatments) and lowest in August (49, 42, and 36%,
respectively, for A, M, and H treatments). Overall mean
canopy moisture for all collection five dates was 52%
for A. desertorum, 43% moderately grazed, and 41% for
heavily grazed mixed-grass range.

[20] The effects of grazing treatment and collection time on
measured C:N for sample collection dates were analyzed
scparately from Landsat 5 and ASTER cstimates because
spatial resolution varied among measured C:N (0.25 m?),
Landsat 5 (900 m?), and ASTER (225 m?) pixels. The C:N
formula is commmon to both the ASTER and Landsat S sensors
because important spectral response regions within the red
and mid-Infrared bands, respectively, are similar (Landsat 5,
626—693 nm versus ASTER, 628691 nm; Landsat 3,
15701783 nm versus ASTER, 1609—-1702 nm)., We tested
(1) if plot-scale C:N and Landsat 5 C:N estimates varied with
‘grazing treatment (spatially) and time (temporally) using a
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two-way repeated measures analysis of variance (ANOVA),
and (2} if plot-scale C:N and ASTER C:N estimates for C:N
varied with grazing treatment (spatially) using a one-way
ANOVA. We also used separate Bonferroni’s t-test for a
posteriori means comparisons among Landsat 5 estimates,
ASTER estimates, and plot measurements. Heavily grazed
A. desertorum C:N ratio was consistently lower than moder-
ately grazed and heavily grazed mixed-grass range on each
date, according to plot measurements (treatment Fa g =
19.80 p <0.0005; time F| 35=26.93, p<0.0001) and Landsat
5 estimates (freatment Fa 9 = 25.53, p < 0.0002; time F 35 =
73.16, p < 0.0001). On 20 May, the effect of grazing
treatment was gvident for both plot measurements {treatment
Fao = 6.46, p < 0.182) and ASTER estimates (treatment
Foo = 1229, p < 0.0027). In cach case, satellite estimates
tracked plot measurements with significant effects of time
(Figure 2) and treatment (Figures 2 and 3). Spatial constraints
are cvident when comparing Landsat 5 (Figure 3a) to ASTER
(Figure 3b). Resolution of plot-scale variability is more
limited with Landsat 5 than ASTER, likely owing to pixel
size differences, and underscores consideration of spatial
scale when assessing vegetation quality across a landscape.

[21] Mean Landsat 5-based estimates for canopy C:N
ratios were within &1 C:N unit at each image acquisition
date (Figure 2} despite variable canopy moisture levels.
Averaged over the four dates, estimated C:N varied with
grazing treatments, with lower C:N for fertilized 4. deserto-
rum (25.8 £ 1.4) than for heavily and moderately grazed
mixed-grass prairie (28.8 = 2.5, 30.6 + 4.5, respectively).
Estimates are in agreement with trends for measured C:N,
which were lower for fertilized A, desertorum (23 + 4.4)
than for heavily and moderately grazed pastures (31.3 + 4.4,
31.1 % 5.5, respectively). Similarly, RCNF estimates for
canopy C:N ratios using ASTER were in accordance with
field measurements for the three grazing treatments (Figure 3),
despite differences in canopy moisture content. Field valida-
tion of the multispectral model derived from the hyperspectral,
plant and plot scale data, suggest that satellite delineation of
C:N using the RCNF is not influenced by variable rangeland
canopy moisture.

{22] The quadratic form of the equation utilizing the ND53
index (RCNF) more closely estimated C:N than the linear
form for ASTER data, with lower root mean square error
(RMSE), while error for Landsat 5 linear and quadratic model
estimates were similar. The linear relationship between
RCNF-estimated and measured mean C:N for each treatment
was stronger for ASTER (R? = 0.83, n = 12) than for Landsat
5 (R* = 0.69, n = 48), although only one ASTER scene
{versus four Landsat 5 scencs) was evaluated. Overall,
RMSE for intraseasonal Landsat 3 estimates was 3,1 C:N
units with a mean 13.8% relative error between actual and
predicted values, whereas RMSE for ASTER estimates was
1.6 C:N units, with a mean 2.6% relative error.

[23] Canopy C:N differences on 20 May among moder-
ately grazed (M), heavily grazed (H) and heavily grazed
A. desertorum (A) enclosures, corresponding to mean values
estimated by the RCNF (Figure 3), are mapped on an
ASTER image (Figure 4). The bright yellow areas represent
recently planted experimental plots or bare soil. The cluster
of dark green pixels fo the east of pasture A is cultivated
alfalfa. Figure 4 is a faction of the fufl image (>200 km?)
that may be geospatially analyzed from pasture to regional
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Figure 3. Mean (&std. dev.} canopy C:N measured from field plots for each grazing treatment next to
{a) ASTER-estimated mean {(£std. dev.) on 20 May and (b) Landsat 3 estimated mean (&std dev) on 5
May for cach grazing treatment, Letters over error bars denote significant differences among treatments

for plot-scale and pixel-scale canopy C:N.

scales in a geographic information systems (GIS) frame-
work. For illustrative purposes, differences in C:N ratios
among pastures are evident by shades of green and yellow.
For the area just south of treatment M (hayed the previous
fall), C:N is 25, in contrast with pasture M (moderately
grazed) where C:N is 35, Given a 40% carbon content
typical of these rangelands (data not shown), a C:N ratio of
35 equals 1.14% N or 7.14% crude protein, which is below
the nutrition threshold (~8% crude protein) for most rumi-
nants (S. Kronberg, manuscript in preparation, 2006). In this
case, a 10-point difference in C:N ratio between pasture M
and the pasture south of M signifies a 3% difference in crude
protein, from 7.14 to 10.2%. When nutritional requirements
are not met, moving animals from lower to higher quality
pastures is common. These types of landscape data, espe-
cially when combined with local knowledge, provide prac-
tical management information as well as insight into factors
influencing C:N under vacillating environmental conditions,

4. Discussion

[24] Grazing is known to invoke changes in rangeland
community structure and vegetative quantity and quality,
depending upon factors such as grazing intensity and timing
of defoliation. The net effect of grazing on rangeland health
will vary with phenology and weather, so remote-based
tools that resolve pasture-scale variability and that are
appropriate for the ecoregion are called for by managers
and modeclers. This work reports variable drought and
grazing stress and effects on C:N while validating a new
satellite model. The heavily grazed and fertilized 4, deser-
toruwm treatment was significantly lower in canopy C:N
{greater forage quality), compared with mixed-grass grazing
treatments. The fertilizer “benefit” is given by a four- to
ten-unit decrease in C:N, with differences between treat-
ments narrowing with time between April and September,

This may or may not lead to appreciable benefits in animal
production, depending upon how close the material may be
to minimum ruminant crude protein requirerments.

[2s] Laboratory studies have accurately determined opti-
mum wavelengths for leaf N detection using hyperspectral
sensors on dried plant material (2054 and 2172 nm), and
have determined that this signal is masked by water in living
tissue [Kokaly, 2001]. Hyperspectral research in grasslands
{Mutanga and Skidmore, 2004] report canopy N content
correlated with band combinations in the green (521 and
566 nm), far-red (747 nm), and midinfrared (1523 nm)
spectral regions, but effects of varying moisture conditions
remaing uncertain, Here, we address the plant water issue by
developing a spectral algorithm under variable drought
stress and testing this algorithm in the field. Model accuracy
is consistent infraseasonally under variable moisture status,
which we attributed to separation specira associated with
water from C:N. Further, model evaluation steps at plot and
pasture scales validated satellite application efficacy.

[26] By developing a model using two disparate grass
species and testing the efficacy of the model in a mixed-
grass prairie, some morphological differentiation is built
into the model to better serve large-scale application needs
for mixed rangeland ecosystems. Spectral investigations
using monocultures elicit valuable species-specific response
variables, which vary with respect to plant phenology,
canopy architecture, pigmentation, structural carbohydrates,
etc. In our case, we included both species, so that some of
the species-specific spectral variability might be partitioned
into the model separate from C:N and water content,
However, we did not evaluate mixtures of rangeland species
during the controlled greenhouse experiment. Instead, we
used plot-scale measurements to evaluate mixed communi-
ties. Species effects may have contributed to the fack of fit
between measured and modeled C:N at the plot scale for
some index equations (Table 1).
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Figure 4. Location of the research site and modeled C:N ratio using ASTER data acquired 20 May.
Pastures A, M, and H represent the three grazing treatments, respectively: heavily grazed 4. desertorum,
moderately grazed mixed-grass, and heavily grazed mixed-grass prairie. The surrounding enclosures
represent other experimental crop and range sites grazed by cattle at varying times and intensities.

[27] We tested the RCNF on experimental pastures using
intensive ground surveys of both live and dead plant
material for weighted, canopy C:N delineation. Effects of
grazing treatments on C:N ratios observed in the field were
estimated using the RCNF model and Landsat 5 satellite
imagery with <14% error. Canopy C:N decreased between
April and September, according to both field measurements

and satellite estimates. This may be attributed to shifts in
distribution of standing-dead material between the begin-
ning and end of the season, and/or the timing of precipita-
tion events. Late-summer rainfall may have stimulated new
growth, especially in the moderately grazed range (Table 2).

[28] Standing-dead and litter pools each contributed more
to total biomass than standing-live; consequently senescent
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and detrital material pools were essential to model develop-
ment and testing. We aimed to include senescent material in
our model because both live and sencscent materials con-
tribute carbon and nutrients to rangeland ecosystems. More-
over, estimation of C:N for senescent material is essential for
plant decomposition analyses. Previous rescarch suggests
post-harvest residue mass may be estimated through appli-
cation of the remote-based Cellulose Absorption Index (CAD
for wheat residue [Streck et al., 2002). Remote sensing both
canopy mass and canopy quality at the end of the grazing
season should improve climate-based model estimates of
over-winter decomposition and nutrient turnover. Future
work into spectral separation of live from standing-dead
and litter materials would contribute greatly to monitoring
ecosystem biogeochemistry and should be considered as a
target for the next generation of satellite sensors.

[29] The RCNF was developed for rangeland vegetation
and has not been tested on crop monocultures, such as small
grain production, which is another common land use in this
region. However, prospects for application to cropping sys-
terns is promising, in light of successes achieved with remote
estimation of chlorophyll content for maize and soybean
crops in Nebraska [Gitelson et al., 2003]. Further validation
of remote sensing models using satellite data for vegetation
properties controlling ecosystem processes are needed to
determine spatiotemporal accuracy of the RCNF for other
agricultural ccosystems under various types of stress.

f20] C:N ratios often reflect ecosystem plasticity to envi-
ronmental conditions (e.g., rainfall, herbivory, nutrient
availability), expressed in changing allocation patterns,
community structure, and residence times of detrital organic
matter pools. Remotely derived values for vegetation C:N
ratio and archived time series imagery for the mixed-grass
prairie ecoregion arc data potentially bridging key spatio-
temporal feedback mechanisms, such as temperature,
drought, fire disturbance, and grazing management, with
canopy C:N responses. In conjunction with existing models,
remotely derived values for vegetation C:N ratio using
the RCNF should enhance research efforts aimed toward
understanding multiple-scale processes on rangeland C and
N cyeling.

5. Conclusions

[31] We describe an integrated and innovative approach
with an emphasis on bridging spatial, temporal and spectral
scales for the purpose of building a satellite-based model for
landscape C:N based on plant physiological data from
monocultures, mixed-grass prairie field plots, and working
rangelands. Results of satellite mode validation suggest the
RCNF delineates rangeland canopy C:N independent of
plant water stress and does so reliably in the face of seasonal
variability and management treatment,

[32] For Northern Great Plains ranchers, quantification of
rangeland canopy C:N with synoptic, spectral data repre-
sents a practical application of technology for use in support
of grazing management decisions. Livestock producers and
public land managers are calling for remote rangeland
health assessment as they face increasing pressure to bal-
ance cconomic and conservation goals. The RCNF, which is
built into a geographic information systems framework,
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provides the next step toward integrated management and
monitoring for Northern Great Plains rangeland landscapes.

[33] For ecosystem scientists and modelers, the ability to
estimate spatial and temporal patterns in rangeland C:N
could enhance grassland carbon cycling models that rely on
accurate inputs for NPP and litter quality [Moorhead et al.,
1999; Parton et al., 1995; Pastor et af., 1987], including
BIOME-BGC [White et al., 2000]. Aboveground nutrient
turnover and availability relies heavily on substrate quality
and weather. By specifying canopy quality in units of C:N
values instead of relative reflectance units, an image ac-
quired at the end of the growing scason could be modeled to
estimate, i conjunction with weather data, over-winter
decomposition rates across several kilometers of rangeland.
Moreover, since C:N estimates are independent of canopy
moisture, climate variability within ecoregions is less likely
to interfere with cross-site comparisons of vegetation qual-
ity. These steps to improve remote guantification of bio-
geochemically relevant properties in rangeland landscapes
will scale up our understanding of terrestrial ecosystem
biogeochemistry and make available the real-time data
needed for assessing possible precursors to global change
[Waring et al., 1986], such as perturbations to ecosystem
carbon and nitrogen cycles [Hobbie, 1996, Schimel et al.,
1990; Throop et al., 2004].
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