Insect Pests of Corn in North Dakota

Janet Knodel
Extension Entomologist
NDSU, Fargo
Insect Pests

- **Corn**
 - Wireworms
 - White grubs
 - Cutworms
 - European corn borer
 - Corn rootworm
Wireworm in corn

larva

Damage in untreated areas

Adult Click Beetle

Thresholds

- Soil Samples - 1 wireworm / sample
- Bait Stations - 1 or more wireworm / station
Insecticides Options for Wireworm Control

- **Insecticide-coated Seed Treatment**
 - Commercially applied
 - Cruiser 5FS & Poncho 1250

- **Liquid Soil Insecticide**
 - T-band or In-furrow application
 - Capture LFR (Liquid Fertilizer Ready)
 - Lorsban 4E, Capture 2EC, Proaxis

- **Granular Soil Insecticide**
 - T-band or In-furrow application

- http://www.ag.ndsu.edu/pubs/plantsci/pests/e1143w1.htm
Life stages of Phyllophaga spp.

Eggs

June beetle

Phyllophaga implicita

First Instar Second Instar Third Instar
June beetles fly to trees and feed. After mating, females return to fields to lay eggs. Eggs hatch in 30 days and grubs begin feeding on organic material, then roots.

Sample in September to determine the need to treat in spring.

Year 2 is the time when most grub injury occurs and control needed.
Insecticides Options for White Grub Control

- **Insecticide-coated Seed Treatment**
 - Commercially applied
 - Suppression only
 - Cruiser 5FS & Poncho 1250

- **Liquid Soil Insecticide**
 - T-band or In-furrow application
 - Capture LFR (Liquid Fertilizer Ready)
 - Lorsban 4E, Capture 2EC

- **Granular Soil Insecticide**
 - T-band or In-furrow application
 - Fortress 2.5G, Lorsban 15G, Aztec2.1.G, Counter 15G

- http://www.ag.ndsu.edu/pubs/plantsci/pests/e1143w1.htm
Cutworm Adult Description

- Adult (Family Noctuidae)
 - Very robust
 - Brown or black moths showing various spots or stripes in shades of gray, brown, black or white.
Cutworm Larval Description

- **Larvae**
 - stout, smooth, soft-bodied, plump caterpillars
 - Brown to tan to pink, green or gray and black
Life Cycle of Cutworm
One generation per year

Spring

Overwinter as partial mature larvae or eggs

Late summer / Fall

May-June

July - August
Crop Injury

- Larvae = Chewing mouthparts
- Destroy more of plant than eat
- Injury plants in 4 major ways:
 - Solitary surface cutworms
 - Black, Bronzed, Clay-backed, Dingy cutworms
 - Climbing species
 - Variegated, spotted, W-marked cutworms
 - Subterranean species
 - Pale western and glassy cutworms
 - “Marching” in great numbers
 - Army cutworms
Typical plant cutting by older cutworm larvae

Cutworm eating into corn stalk from below ground
Insecticides Options for Cutworm Control

- Scout when corn is up to mid-June
- Economic Threshold = 3-6% of the plants are cut and small larvae < ¾ inch are present.
- Foliar applied Insecticide
 - Application rates of 15 to 20 gallons of water per acre by ground application is suggested
 - Capture LFR (Liquid Fertilizer Ready)
 - Lorsban 4E, Capture 2EC, Asana, Baythroid XL, Delta Gold, Mustang Max, Warrior, ...
- Insecticide-coated Seed Treatment
 - Commercially applied
 - Suppression only
 - Cruiser 5FS & Poncho 1250
- http://www.ag.ndsu.edu/pubs/plantsci/pests/e1143w1.htm
European Corn Borer

Female moth

Newly laid egg mass

Egg mass at "black-head" stage
Typical Occurrence of European Corn Borer Moth Flights in ND

bivoltine

univoltine

Univoltine flight is most common in ND!
“Shot-hole” feeding injury of corn borer larvae
European Corn Borer

Entry hole in stalk

Tunneling ECB larva

ECB pupa in stalk
Economic Threshold (Corn borer/plant) when factoring Crop Value and Control Costs

<table>
<thead>
<tr>
<th>Control Costs² ($/acre)</th>
<th>200</th>
<th>250</th>
<th>300</th>
<th>350</th>
<th>400</th>
<th>450</th>
<th>500</th>
<th>550</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>0.88</td>
<td>0.70</td>
<td>0.58</td>
<td>0.50</td>
<td>0.44</td>
<td>0.39</td>
<td>0.35</td>
<td>0.32</td>
</tr>
<tr>
<td>8</td>
<td>1.00</td>
<td>0.80</td>
<td>0.67</td>
<td>0.57</td>
<td>0.50</td>
<td>0.45</td>
<td>0.40</td>
<td>0.37</td>
</tr>
<tr>
<td>9</td>
<td>1.12</td>
<td>0.90</td>
<td>0.75</td>
<td>0.64</td>
<td>0.56</td>
<td>0.50</td>
<td>0.45</td>
<td>0.41</td>
</tr>
<tr>
<td>10</td>
<td>1.25</td>
<td>1.00</td>
<td>0.83</td>
<td>0.71</td>
<td>0.63</td>
<td>0.56</td>
<td>0.50</td>
<td>0.46</td>
</tr>
<tr>
<td>11</td>
<td>1.38</td>
<td>1.10</td>
<td>0.92</td>
<td>0.79</td>
<td>0.69</td>
<td>0.61</td>
<td>0.55</td>
<td>0.50</td>
</tr>
<tr>
<td>12</td>
<td>1.50</td>
<td>1.20</td>
<td>1.00</td>
<td>0.86</td>
<td>0.75</td>
<td>0.67</td>
<td>0.60</td>
<td>0.55</td>
</tr>
<tr>
<td>13</td>
<td>1.63</td>
<td>1.30</td>
<td>1.08</td>
<td>0.93</td>
<td>0.81</td>
<td>0.72</td>
<td>0.65</td>
<td>0.59</td>
</tr>
<tr>
<td>14</td>
<td>1.75</td>
<td>1.40</td>
<td>1.17</td>
<td>1.00</td>
<td>0.88</td>
<td>0.78</td>
<td>0.70</td>
<td>0.64</td>
</tr>
<tr>
<td>15</td>
<td>1.88</td>
<td>1.50</td>
<td>1.25</td>
<td>1.07</td>
<td>0.94</td>
<td>0.84</td>
<td>0.75</td>
<td>0.68</td>
</tr>
</tbody>
</table>

1. Crop value = expected yield (bu/acre) \times \text{projected price (}/bu)\text{)
2. Control costs = insecticide price (}/acre\text{) + application costs (}/acre\text{)
Insecticides Options for ECB Control

- Economic Threshold = will vary, depending on expected yield and cost of control. In North Dakota, the treatment threshold can range from 0.75 to 1.5 corn borers per stalk.
- Use worksheets to establish treatment guidelines in ND Field Crops Insect Guide.
- Foliar applied Insecticide
 - Application rates of 15 to 20 gallons of water per acre by ground application is suggested
 - Capture LFR (Liquid Fertilizer Ready)
 - Lorsban 4E, Capture 2EC, Asana, Baythroid XL, Delta Gold, Mustang Max, Proaxis, Warrior, Carbaryl, ...

- http://www.ag.ndsu.edu/pubs/plantsci/pests/e1143w1.htm
Focus on the Bt corns

• Provides effective, consistent control that is better than insecticides;
• Control may cost less and have fewer concerns regarding health, environment, and management planning;
• HOWEVER . . . Season long expression of control is expected to produce selection pressure for Bt resistance corn borers
The Refuge Plan . . .

20% of the corn on a farm planted to non-Bt corn.

- within 1/4 mile of Bt
- no Bt treatment to site
Bt Corn Registrations for “Leps” as of November 2006

<table>
<thead>
<tr>
<th>Company</th>
<th>Insects</th>
<th>Transformation/Event</th>
<th>Crystalline Protein</th>
<th>Trade Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monsanto</td>
<td>ECB, SWCB</td>
<td>Mon 810</td>
<td>Cry1A(b)<sup>2,3</sup></td>
<td>YieldGard Corn Borer (YGCB)</td>
</tr>
<tr>
<td>Dow AgroSciences & Pioneer Hi-Bred</td>
<td>ECB, SWCB, BCW, FAW, WBC</td>
<td>TC 1507</td>
<td>Cry1F<sup>2,3</sup></td>
<td>Herculex<sup>1</sup> (HX1)</td>
</tr>
<tr>
<td>Syngenta</td>
<td>ECB, SWCB</td>
<td>Bt11</td>
<td>Cry1A(b)<sup>2,3</sup></td>
<td>YieldGard Corn Borer (YGCB)</td>
</tr>
</tbody>
</table>

1 ECB = *Ostrinia nubilalis*; SWCB = *Diatraea grandiosella*; BCW = *Agrotis ipsilon*; FAW = *Spodoptera frugiperda*; WBC = *Richia albicosta*; 2 Protoxin - processed in insect into toxic protein. 3 Cry1A(b) = Bt subspecies *kurstaki*; Cry1F = Bt subspecies *aizawai*.
Selecting Corn Hybrids . . .

• Choose a hybrid adapted to the region which has demonstrated good performance
• . . . Then consider if the Bt trait is available
• The presence of the Bt gene in a hybrid does not guarantee higher yields . . . The trait protects yield in the presence of borers
Three Species of Corn Rootworm

Western Corn Rootworm
Diabrotica virgifera virgifera LeConte

Northern Corn Rootworm
Diabrotica barberi Smith

Southern Corn Rootworm
Diabrotica undecimpunctat howardi Barber
2006 IPM CRW Trap Survey in ND

- 100 traps in 37 corn-producing counties
- Pherocon AM Yellow sticky traps
- Kairomone traps
- Mid-July to mid-August
Corn Rootworm Life Cycle

- Eggs overwinter in soil
- Eggs hatch (late May to early July)
- Larvae Feed for 30 d
- Pupae - earthen cells in soil
- Adults lay eggs from late summer to early fall
- Adult emerge mid-July to late September
- One generation per year
Adult corn rootworms feeding on corn silk

Rootworm larvae feeding on corn plant

Root damage due to feeding
Corn Rootworm Damage

- Cause over $1 billion in annual losses in U.S.
 - Caused by larval feeding on roots
 - Injured plant roots are attacked by disease organisms.
 - Reduces ability of plant to transport water and nutrients into plant
 - Reduces plant growth
 - Lodging of corn plant making harvest difficult
 - Yield reduction
 - Light to total loss of crop
 - Cost of control practices
 - Single largest used of conventional insecticides, many are restricted
Corn Rootworm Larvae

- 3 instars
- ⅛–⅟₂ inch long
- Cream colored with brown head and brown marking on last abdominal segment
Corn Rootworm - Damage

Goose-necked Corn
Pest Management

- Crop rotation

- Corn
- Soybean
- Wheat
Problems with Crop Rotation

- **Variant Strains**
 - Extended or prolonged diapause
 - Northern corn rootworm
 - Selecting for rootworms that were able to remain dormant as viable eggs for more than one winter season
 - Adapted behaviors – ‘soybean’ variant
 - Western corn rootworm
 - Lay eggs in soybean fields resulting in risk of economic injury to corn planted in the same field the next year
Confirmed infestations of Variant CRW

- NCRW variant
- WCRW variant

Map showing states with confirmed infestations and states with a question mark indicating uncertainty.
High Risk Fields

- **Corn Rootworm**
 - Continuous corn
 - Late-planted year before
 - Average yield loss of 9%
 - Range of 2 to 23% yield loss
 - First-Year Corn
 - Volunteer corn
 - Weedy soybean (e.g. giant ragweed)
 - WCRW variant area (not ND)
Monitoring Adult CRW for Predicting Risk in Corn the Following Year

- **Adult Beetle Counts**
 - Count both NCRW and WCRW
 - August through mid-September (after pollination)
 - 2 plants at 27 sites in field
 - 3 separate counts
 - Decision to rotate from corn or use insecticide
 - >1 beetle per plant in continuous corn
 - >0.5 beetle per plant in first-year corn
 - 2 or more beetles per yellow sticky trap
Insecticides

- Not kill every last rootworm
 - 60-80% control
- Goal is to protect the primary root system from injury
- Understand the positive and negative aspects of each type of product and determine the best fit for your farm
- Know the CRW pressure in your area
 - Don’t buy protection you don’t need!
Node Injury Rating Scale (0-3)

0 No feeding damage

1 One node (circle of roots), or the equivalent of an entire node, pruned back to within 1.5 inch of the stalk.

2 Two complete nodes pruned

3 Three complete nodes pruned
Insecticides Options for Corn Rootworm Larval Control

- **Insecticide-coated Seed Treatment**
 - Commercially applied
 - Suppression only
 - Cruiser 5FS & Poncho 1250
 - More beneficial in low-moderate pressures

- **Liquid Soil Insecticide**
 - T-band or In-furrow application
 - Capture LFR (Liquid Fertilizer Ready)
 - Lorsban 4E, Capture 2EC, Regent, Proaxis, ...
 - Increasing water volume of carrier improves performance

- **Granular Soil Insecticide**
 - T-band or In-furrow application
 - Force 1.5G, Fortress 2.5G, Lorsban 15G, Aztec2.1.G, Counter 15G, ...
 - SmartBox® Technology improve placement of insecticide granulars

- **http://www.ag.ndsu.edu/pubs/plantsci/pests/e1143w1.htm**
Bt Corn Rootworm

- Most consistent in protecting corn
- Monsanto – Yieldgard RW in 2004
- Dow/Pioneer - Herculex in 2006
- Syngenta – Agrisure RW in 2007
- Stacked with ECB / herbicides
- Packed with Cruiser or Poncho (low rate)
- Refuge Guidelines
 - 20% non-Bt refuge
Bt Corn Registrations for CRW\(^1\) as of November 2006

<table>
<thead>
<tr>
<th>Company</th>
<th>Transformation/Event</th>
<th>Crystalline Protein</th>
<th>Trade Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monsanto</td>
<td>Mon 863</td>
<td>Cry3Bb1(^2,3)</td>
<td>YieldGard Rootworm (YGRW)</td>
</tr>
<tr>
<td>Dow AgroSciences & Pioneer Hi-Bred</td>
<td>DAS-59122-7</td>
<td>Cry34Ab1(^2,3) /Cry35Ab1(^2,3)</td>
<td>Herculex RW</td>
</tr>
<tr>
<td>Syngenta</td>
<td>MIR604</td>
<td>mCry3A(^2,3)</td>
<td>Agrisure RW</td>
</tr>
</tbody>
</table>

\(^1\) CRW = *Diabrotica* spp.

\(^2\) Toxin - produced in the plant as toxin.

\(^3\) Cry3Bb1 = Bt subspecies *kumamotoensis*; Cry34Ab1 = Bt subspecies *wuhanensis* (serovar designation, but cannot be categorized since it is a non-motile form- no flagellae) and Cry35Ab1 = Bt subspecies *wuhanensis* (serovar designation, but cannot be categorized since it is a non-motile form- no flagellae); mCry3A = Bt subspecies *tenebrionis*.
Root Rating Performance, 2006

Moderate Pressure

Columbia City & Farmland, IN

- Aztec
- Force
- Fortress
- Lorsban
- Capture
- Regent
- Lorsban
- Poncho
- YGRW*
- HRW*
- Untreated

Granular soil insecticides
Liquid soil insecticides
Insecticide seed treatment
Bt corn

*separate tests

Source: Purdue Cooperative Extension Service, J. Obermeyer and C. Krupke