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State and transition models provide a simple and versatile way of describing vegetation dynamics in
rangelands. However, state and transition models are traditionally descriptive, which has limited their
practical application to rangeland management decision support. This paper demonstrates an approach
to rangeland management decision support that combines a state and transition model with a Bayesian
belief network to provide a relatively simple and updatable rangeland dynamics model that can accom-
modate uncertainty and be used for scenario, diagnostic, and sensitivity analysis. A state and transition
model, developed by the authors for subtropical grassland in south-east Queensland, Australia, is used
as an example. From the state and transition model, an influence diagram was built to show the pos-
sible transitions among states and the factors influencing each transition. The influence diagram was
populated with probabilities to produce a predictive model in the form of a Bayesian belief network.
The behaviour of the model was tested using scenario and sensitivity analysis, revealing that selective
grazing, grazing pressure, and soil nutrition were believed to influence most transitions, while fire fre-
quency and the frequency of good wet seasons were also important in some transitions. Overall, the
integration of a state and transition model with a Bayesian belief network provided a useful way to uti-
lise the knowledge embedded in a state and transition model for predictive purposes. Using a Bayesian
belief network in the modelling approach allowed uncertainty and variability to be explicitly accommo-
dated in the modelling process, and expert knowledge to be utilised in model development. The meth-
ods used also supported learning from monitoring data, thereby supporting adaptive rangeland
management.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction decision support tools), and using participatory methods to build
Many decision support tools have been developed by research-
ers for the purpose of predicting the outcomes of rangeland man-
agement decisions (see National Land and Water Resources Audit
(2004) for those developed in Australia). However, many of these
tools failed to be adopted by rangeland managers. There may be
several reasons for this, such as a lack of credibility in, or a per-
ceived lack of usefulness of, decision support tools; a resistance
among managers to replace their own decision-making processes,
knowledge, and experience with decision support tools; the high
cost of developing and maintaining decision support tools (particu-
larly those that are data hungry and computationally intensive);
and the need for decision support tools to compete with consultants
and advisors who are trusted and socially integrated with managers
(Matthews et al., 2005). Efforts to overcome these barriers to adop-
tion have included the testing of models, improving the cost effec-
tiveness of decision support tools (developing low cost, low-data
ll rights reserved.
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decision support tools (building decision support tools with manag-
ers rather than for them) (Lynam, 2001; Smith et al., 2007a).

State and transition models (STMs) have traditionally provided
a simple, versatile, and low cost means for developing rangeland
dynamics models. They have been used by researchers in many
rangeland ecosystems to integrate knowledge about vegetation
dynamics and the possible responses of vegetation to management
actions and environmental events (Friedel, 1991; Laycock, 1991;
Hall et al., 1994; Allen-Diaz and Bartolome, 1998; Phelps and
Bosch, 2002). STMs generally describe vegetation dynamics using
diagrams that position vegetation states along several axes repre-
senting environmental or management gradients (such as grazing
pressure). Possible transitions between these vegetation states
are represented using arrows, and a table, called a catalogue of
transitions, is used to describe the environmental or management
conditions under which each transition can occur.

Because of their graphical and descriptive nature, STMs are
excellent tools for communicating knowledge about rangeland
dynamics between scientists, managers, and policy makers
(Ludwig et al., 1996), and for allowing managers to identify
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opportunities (environmental conditions and management op-
tions) that may lead to favourable transitions (such as an improve-
ment in pasture composition) or avoid circumstances likely to
trigger unfavourable or irreversible transitions (such as pasture
degradation, soil erosion, or the invasion of weeds). However, be-
cause they are essentially descriptive diagrams, one shortcoming
of STMs is their limited predictive capability, which has restricted
their practical application in scenario analysis. Another shortcom-
ing of STMs is related to their coarse handling of uncertainty,
which in the past has been accommodated using qualitative
descriptions of transition probability such as ‘‘high”, ‘‘moderate”,
and ‘‘low” (Orr et al., 1994).

Both predictive ability and the ability to accommodate uncer-
tainty are highly desirable features of any rangeland management
decision support tool (Prato, 2005; Pilke, 2001, 2003). While sev-
eral sophisticated tools have been developed for predictive pur-
poses (National Land and Water Resources Audit, 2004), they
have been costly to develop and maintain, data hungry, and diffi-
cult to modify or update by non-technical people. An approach to
decision support tool development that maintains the advantages
of STM models (diagrammatic, low cost, flexible, and suited to par-
ticipatory development with rangeland managers), while provid-
ing predictive capability and accommodating uncertainty, would
be attractive to rangeland managers and researchers alike. This
could be a step forward in improving the adoption and use of deci-
sion support tools in rangeland management generally.

Bayesian belief networks (BBNs) (also knows as belief networks,
causal nets, causal probabilistic networks, probabilistic cause effect
models, and graphical probability networks) are graphical models
consisting of nodes (boxes) and links (arrows) that represent sys-
tem variables and their cause-and-effect relationships (Jensen,
1996, 2001). BBNs consist of qualitative and associated quantita-
tive parts. The qualitative part is a directed acyclic graph (cause-
and-effect diagram made up of nodes and links) while the
quantitative part is a set of conditional probabilities that quantify
the strength of the dependencies between variables represented
in the directed acyclic graph.

BBNs are becoming an increasingly popular modelling tool, par-
ticularly in ecology and environmental management, because they
are diagrammatic models that have predictive capability and, be-
cause they use probabilities to quantify relationships between
model variables, they explicitly allow uncertainty and variability
to be accommodated in model predictions (McCann et al., 2006;
Uusitalo, 2007). Like STMs, they also facilitate the integration of
qualitative and quantitative knowledge about system dynamics,
and are low cost, flexible, and suited to participatory development
with managers (Cain et al., 2003; Smith et al., 2007a, 2005). An
added benefit of BBNs is that they are well suited for use in the
adaptive management of natural resources (Smith et al., 2007a;
Nyberg et al., 2006; Henriksen and Barlebo, 2008) principally be-
cause BBNs can learn from monitoring data. This is an advantage
in rangeland management because predicting the outcomes of
management decisions may be very uncertain due to complex sys-
tem dynamics, and learning from the outcomes of previously
implemented management decisions can, over time, lead to better
predictions.

The premise of this paper is that by combining STMs and BBNs,
rangeland management decision support tools can be developed
that retain the benefits of STMs (such as diagrammatic, low cost,
flexible, and suited to participatory development with rangeland
managers) whilst providing scenario analysis capabilities, adaptive
management capabilities, and the ability to accommodate uncer-
tainty. Decision support tools with these characteristics are likely
to be attractive to developing countries in particular, where the
data, expertise, and money required to develop and maintain
sophisticated process-based simulation models are generally
limited.

In this paper, we demonstrate how an STM can be transformed
into a predictive decision support tool using a BBN. The STM was
developed for subtropical grassland in south-east Queensland,
Australia, located 90 km west of Brisbane. The area has a subtrop-
ical climate with an average annual rainfall of 800 mm, which is
summer dominant (October–March). The native vegetation is Spot-
ted Gum (Corymbia citriodora), Narrow-leaf Ironbark (Eucalyptus
crebra) and Bull Oak (Casuarina leuhmannii) with black spear grass
(Heteropogon contortus) communities (Tothill and Gillies, 1992).
The vegetation has been modified by extensive clearing, grazing,
and the introduction of exotic pasture species.

2. Methods and results

The development of the decision support tool involved several
steps. First, an STM for Ironbark-spotted gum woodland was devel-
oped using previously published STMs and statistical analysis of
vegetation survey data. Following this, an influence diagram (di-
rected acyclic graph) was built to show the possible transitions
and the factors influencing each transition. Next, the influence dia-
gram was converted into a BBN by populating it with probabilities
elicited from rangeland scientists to produce a predictive model.
The behaviour of the model was tested using scenario and sensitiv-
ity analysis. The details of each step are explained further below.

2.1. State and transition modelling

Multivariate analysis (principle component analysis, multidi-
mensional scaling and cluster analysis) of pasture survey data
was used to identify indicator species of pasture condition (along
an increasing grazing pressure gradient) in cleared Ironbark-spot-
ted gum woodland (Allen-Diaz and Bartolome, 1998). The vegeta-
tion survey data were collected from 69 sample plots across the
study area with varying grazing pressure history. These data in-
cluded pasture species composition obtained using the step-point
method (Raymond and Love, 1957), landscape function analysis
(Tongway and Hindley, 2004) and soil properties (such as texture,
colour, pH, electrical conductivity, and organic matter content).
The indicator species were used to define pasture states for inclu-
sion in an STM of the rangeland ecosystem.

To identify possible transitions between pasture states and their
possible causes, published STMs for similar rangeland ecosystems
were reviewed (Orr et al., 1994; McIvor et al., 2005). Two work-
shops, one with livestock owners and the other with rangeland sci-
entists, were conducted to elicit experiential knowledge of pasture
dynamics within the study area. In both workshops, participants
were asked to review the vegetation state definitions developed
from the multivariate analysis results, as well as possible transi-
tions and causes for transitions identified from previously pub-
lished STMs. In reviewing transitions and their causes, a simple
table was used to record the main factors believed to influence a
transition and the sub-factors believed to influence each main fac-
tor (Table 1). In this table, the relative order of importance of each
main factor to the transition was also recorded (this was used later
when testing the behaviour of the model – see Section 2.3), along
with the classes of each factor (for example, the classes none, low,
moderate, and high for grazing pressure). Finally, the expected
time frame over which the transition could occur was recorded.

Fig. 1 contains the completed STM for Ironbark-spotted gum
woodland. The model consists of five vegetation states (Table 2)
and 17 transitions (Table 3). The vegetation states within the mod-
el sit along three axes: palatability, grazing intensity, and soil-
nutrient status. For example, palatable tall grasses (PTGs) have



Table 1
Example of a table used in the workshops to record knowledge relating to transitions

Transition: palatable tall grasses to lawn Time frame: 2–5 years

Main factors influencing transition Sub factors influencing main factors Relative importance of main factors to transition
Grazing pressure (none, low, moderate, high) Stocking rate (low, moderate, high) 1

Drought (no, yes)
Supplements in dry seasons (no, yes)

Soil nutrition (average, above average) Accumulation of faeces and urine (none, low, high) 2
Fertilizer application (none, low, moderate, high)

Fig. 1. State and transition model for cleared Ironbark-spotted gum woodland in
south-east Queensland, Australia; UPTG, unpalatable tall grasses, PTG, palatable tall
grasses. The possible threshold is the point at which the rangeland is unlikely to
return to a better state without extreme management intervention.

Table 2
Catalogue of vegetation states for cleared Ironbark-spotted gum woodland in south-
east Queensland, Australia

State
number

State description Dominant species
composition

I Palatable tall tussock grasses Heteropogon contortus
Cymbopogon refractus
Chloris gayana
Panicum maximum
Themeda triandra

II Unpalatable tall tussock grasses Aristida sp.
Bothriochloa decipiens
Melinis repens
Sporobolus creber

III Short sward and sparse tall
grasses

Eragrostis sororia
Eremochloa bimaculata
Tall tussock grasses

IV Short sward Eragrostis sororia
Fimbristylis dichotoma
Eremochloa bimaculata

V Lawn Cynodon dactylon
Digitaria sp.
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high palatability and occur when grazing intensity is low and when
soil-nutrient status is average.

2.2. Transforming the STM into a BBN

2.2.1. Converting the STM into an influence diagram
As noted above, BBNs consist of nodes (boxes) that represent

system variables (each node has two or more classes), links (ar-
rows) that represent causal relationships, and probabilities that
quantify the relationship between nodes.

The graphical component of a BBN is called an influence dia-
gram: this is a directed acyclic graph consisting of nodes and links.
Because the graph is acyclic, it cannot contain two-way arrows, cy-
cles, or feedback loops. STMs, on the other hand, generally contain
Table 3
Catalogue of vegetation transitions for cleared ironbark-spotted gum woodland in the sou

Transition name Main causes

I, II Selective grazing (high), grazing pressure (low)
I, III Selective grazing (high), grazing pressure (moderate)
I, IV Grazing pressure (high)
I, V Grazing pressure (high), soil nutrient content (above aver
II, I Grazing pressure(none), selective grazing (none), fire in ti
II, III Grazing pressure(high), selective grazing (low), fire in tim
II, IV Grazing pressure (high), fire in time period (frequent)
II, V Grazing pressure (high), soil nutrient content (above aver
III, I Grazing pressure (none), selective grazing (none), good se
III, II Selective grazing (moderate), grazing pressure (moderate)
III, IV Grazing pressure (high), selective grazing (none), good se
IV, I Grazing pressure (none), good seasons (frequent)
IV, II Grazing pressure (low), good seasons (frequent)
IV, III Good season (frequent), grazing pressure (none)
IV, V Soil nutrient content (above average), grazing pressure (h
V, I Grazing pressure (none), soil nutrition (average), good sea
V, II Grazing pressure (none), soil nutrition (average), good sea
cycles and two-way arrows to show possible transitions between
vegetation states. To overcome the incompatibility between STMs
and BBN influence diagrams, the framework shown in Fig. 2 was
used to construct a directed acyclic influence diagram from the
STM. The framework contains a node representing possible initial
vegetation states (see possible states node in the first (left-hand)
column of Fig. 2), nodes representing possible transitions from each
of these states to other states (see second column in Fig. 2), and
nodes representing the main factors influencing each of these tran-
sitions and their sub-factors (see third and fourth columns in Fig. 2).

Next, classes were defined for each node in the influence dia-
gram. For the transition nodes, their classes were the vegetation
states in the STM. For the main factor and sub-factor nodes, classes
th-east Queensland, Australia

Probability Time frame (years)

High 2–5
High 2–5
High 2–5

age) High 2–5
me period (frequent) High 2–10
e period (infrequent) High 2–5

High 2–5
age) High 2–5
ason (frequent) High 2–5
, good seasons (frequent) High 2–5

ason (infrequent) High 2–5
Low 1–10
Low 1–10
Moderate >5

igh) High 2–5
son (frequent) Low >5
son (frequent) Low >5



Fig. 2. Framework used to construct an directed acyclic graph from a state and
transition model.
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were defined in consultation with the rangeland scientists who
participated in the STM building workshops. Appendix 1 lists the
classes and their definitions for each node in the final model
(Fig. 3).

2.2.2. Eliciting probabilities for cause-and-effect relationships
Relationships between nodes within a BBN are defined using

conditional probability tables (CPTs). These CPTs store the proba-
bilities of outcomes under particular scenarios and these probabil-
ities allow uncertainty and variability to be accommodated in
model predictions. Measured probabilities for vegetation transi-
tions can only be obtained from long-term studies and were not
Fig. 3. State and transition model for cleared Ironbark-spotted gum woodland in the form
particular classes for the nodes shaded grey. The scenario shown here is where the curre
tall grasses are possible), the time frame is ‘‘5–10-years”, spell post-fire is ‘‘no”, type
supplements in dry season is ‘‘yes”, stocking rate is ‘‘high”, distance from camp site is ‘‘n
Under this scenario the model is predicting that the most likely transition is to ‘‘short s
available for the rangeland system examined here. In the absence
of measured probabilities, subjective probability estimates were
obtained from rangeland scientists. A method similar to the CPT
calculator developed by Cain (2001) was used in the probability
elicitation process to maintain logical consistency in the estimated
probabilities and reduce the number of probabilities that had to be
elicited. The method works by reducing a CPT to the minimum
number of scenarios for which probabilities need to be estimated.
Probabilities for these scenarios are then elicited and used to deter-
mine the relative influence of inputs on the probability of out-
comes. Probabilities for all scenarios in the CPT are then
interpolated.

To illustrate, the shaded lines in Table 4 represent the reduced
CPT for the node ‘‘from short sward to”, which has three input
nodes; good seasons in time period, grazing pressure, and soil
nutrition (the inputs current state and time frame are not been in-
cluded in Table 4 in order to simplify the illustration). In the re-
duced CPT, the first line represents the best-case scenario where
all of the input nodes of ‘‘from short sward to” are in the best class,
meaning that they are most likely to lead to favourable transitions
(for example grazing pressure is ‘‘none”, soil nutrition is ‘‘average”,
and good seasons in time period is ‘‘frequent”: note that in this
rangeland ecosystem, ‘‘average” soil nutrition favours transitions
to the best vegetation state (palatable tall grasses). Therefore, it
is the best class for soil nutrition. ‘‘Above average” soil nutrition fa-
vours transitions to poorer vegetation states.). The last line in Table
4 represents the worst-case scenario where all of the input nodes
of ‘‘from short sward to” are in the worst class and most likely to
lead to unfavourable transitions. The remaining shaded lines in Ta-
ble 4 represent scenarios where only one input node is not in the
best class. Probabilities for the shaded lines are elicited from ex-
perts. Probabilities for the unshaded lines in Table 4 are interpo-
lated from the probabilities elicited for the shaded lines (see Cain
of a Bayesian belief network. In this figure a scenario has been inserted by selecting
nt state of pasture is ‘‘palatable tall grasses” (hence only transitions from palatable
of grazer is ‘‘cattle”, summer spelling in time period is ‘‘none”, drought is ‘‘no”,

ear”, good seasons in time period is ‘‘infrequent” and fertiliser application is ‘‘none”.
ward” (39.6% chance).



Table 4
Conditional probability table for the node ‘‘from short sward to”

Factors influencing transitions from the 

state “Short Sward” to another state Probability of transition to another state (%)

Grazing 

pressure

Soil nutrition Good season in 

time period

Palatable tall 

grasses

Unpalatable tall 

grasses

Short sward

sparse tall grasses

No 

change

Lawn

None Average Frequent 25 25 50 0 0

None Above average Frequent 10 10 10 60 10

None Average Infrequent 10 10 30 50 0

None Above average Infrequent 0 0 15 70 15

None Average None 0 0 20 80 0

None Above average None 0 0 0 80 20

Low Average Frequent 25 25 50 0 0

Low Above average Frequent 10 10 10 55 15

Low Average Infrequent 5 5 10 80 0

Low Above average Infrequent 0 0 0 80 20

Low Average None 0 0 0 100 0

Low Above average None 0 0 0 80 20

Moderate Average Frequent 0 25 50 25 0

Moderate Above average Frequent 0 0 30 50 20

Moderate Average Infrequent 0 20 40 40 0

Moderate Above average Infrequent 0 0 35 40 25

Moderate Average None 0 0 20 80 0

Moderate Above average None 0 0 0 70 30

High Average Frequent 0 0 0 100 0

High Above average Frequent 0 0 0 70 30

High Average Infrequent 0 0 0 100 0

High Above average Infrequent 0 0 0 65 35

High Average None 0 0 0 100 0

High Above average None 0 0 0 50 50

The shaded lines represent scenarios for which probabilities estimates were elicited from rangeland scientists. Probabilities for unshaded lines were interpolated.
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(2001) for a detailed explanation of the algorithm used in the inter-
polation process).

2.3. Testing model behaviour

To test the behaviour of the completed BBN and identify any
inconsistencies, a sensitivity analysis was performed and the re-
sults presented back for review to the rangeland scientists who
had participated previously in the STM building and the probabil-
ity elicitation process. The sensitivity analysis was performed on
each transition node in the BBN by systematically selecting differ-
ent classes of their input nodes and recording the effect that this
had on the probability of transitions. For example, the different
classes of ‘‘grazing pressure” were selected to test the influence
that this had on the transition probabilities in the node ‘‘from short
sward to” other vegetation states. When grazing pressure was set
to ‘‘none”, the most likely transition was no change from the cur-
rent short sward state (46.7% probability) and the second most
likely transition was to short sward with sparse tall grasses
(20.4% probability). Setting grazing pressure to ‘‘high” increased
the probability of no change to 75%, with a 25% chance that a tran-
sition to lawn would occur. This behaviour indicates that changing



Table 5
Sensitivity analysis for transition ‘‘from short sward to lawn”

Rank Input node Probability (%) of
transition to lawn

Difference
(% Probability)

1 Soil nutrition
Average 0 28.5
Above average 28.5

2 Grazing pressure
None 7.08 17.92
Low 10.8
Moderate 14.2
High 25

3 Good seasons in time period
Frequent 11.6 7.5
Infrequent 12.2
None 19.1

Input nodes are ranked from most (1) to least (3) influential on the transition.
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grazing pressure causes major changes in transition probabilities
away from a short sward state.
Table 6
Summary of sensitivity analysis performed on the transition nodes in the cleared Ironbark

Transition

Palatable tall grasses to:  Unpalatable tall grasses 

Short sward & sparse tall grass 

Short sward 

Lawn 

Unpalatable tall grasses to:  Palatable tall grasses 

Short sward & sparse tall grass 

Short sward 

Lawn 

Short sward & sparse tall grass to:  Palatable tall grasses 

Unpalatable tall grasses 

Short sward 

Short sward to:  Palatable tall grasses 

Unpalatable tall grasses 

Short sward & sparse tall grass 

Lawn 

Lawn to: Palatable tall grasses 

Unpalatable tall grasses 

The shading indicates the relative influence of factors on each transition, from most influ
influence on the transition.
The results of sensitivity analysis on each transition were sum-
marized into tables similar to Table 5. These tables highlight the
relative influence of input nodes on transitions by showing the
overall difference in the probability of a transition caused by
changing the classes of input nodes (this difference is shown in
the difference column in Table 5). Where the results of the sensi-
tivity analysis did not match the expectations of the rangeland
scientists (these expectations had been recorded during the
development of the STM where the expected relative influence of
each main factor on each transition was recorded, see Table 1),
the appropriate CPT was adjusted and the sensitivity analysis
was performed again.

Table 6 summarizes the results of the final sensitivity analysis
for all transitions in the Ironbark-spotted gum woodland BBN
(Fig. 3). The sensitivity analysis revealed that selective grazing,
grazing pressure, and soil nutrition were believed to influence
most transitions, while the fire frequency and the frequency of
good wet seasons were also important in some transitions. Graz-
ing pressure was the main driver of 12 transitions, and selective
-spotted gum woodland BBN

Selective

Grazing

Grazing

Pressure

Soil

Nutrition

Fire in 

Time

Period

Good

seasons

in Time 

Period

× × 

× × 

× × 

× × 

× 

× 

× 

× 

× × 

× × 

× × 

× × 

× × 

× × 

× ×

× × 

× × 

ential (black) to least influential (white). A cross (�) means that this factor had no
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grazing was the main driver of three transitions. Grazing pressure
was either the most or the second most important driver of all
transitions. Selective grazing was a relatively important driver of
transitions to or from unpalatable tall grasses but had no influ-
ence on transitions from short sward and lawns to tall grass
states.

Soil nutrition was relatively important for transitions to or from
lawns but had little to no influence on other transitions. Fire fre-
quency had an affect on some transitions but only through its af-
fect on selective grazing. Low fire frequency increased the
likelihood of selective grazing, making transitions to unpalatable
tall grasses more likely. This is because, frequent fires tend to
homogenise the palatability of pastures, and so low fire frequency
leads to a diversity of palatability in pasture, leading to selective
grazing. Frequent good seasons were important for transitions
from short sward and lawn states to tall grass states.
A
A

Grazing Pressure

None
Low
Moderate
High

   0
   0

20.0
80.0

A

N
L
H

Selective Grazing

None
Low
Moderate
High

54.1
32.5
13.3
   0

Dest
Low
Mode
High

Drought

No
Yes

   0
 100

Supplements In Dry Seasons

No
Yes

 100
   0

From Palatable Tall Grasses t

No Change
Unpalatable Tall Grasses
Short Sward Sparse tall Gr...
Short Sward
Lawn

9.67
8.19
8.19
10.2
63.7

Fig. 4. Using the Bayesian belief network for predictio

From Unpalatable Tall Grasse

Palatable Tall Grasses
No Changes
Short Sward Sparse tall gr...
Short Sward
Lawn

 100
   0
   0
   0
   0

C
H

Spell Post Fire

Yes
No

50.7
49.3

Summer Spelling in T ime Period

Frequent
Infrequent
None

36.5
33.5
30.0

Selective Grazing

None
Low
Moderate
High

71.2
14.0
10.4
4.48

Fire s in T ime Period

Frequent
Infrequent
None

57.2
25.3
17.5

Good S easons in T ime Period

Frequent
Infrequent
None

52.1
28.6
19.3

Fig. 5. Using the Bayesian belief network for diagnosi
2.4. Using a combined STM and BBN model for rangeland management
decision support

A combined STM and BBN model has the ability to provide
rangeland managers with decision support through its analytic
capabilities. The three main types of analysis that can be per-
formed are prediction, diagnosis, and sensitivity analysis. Sensitiv-
ity analysis was described in Section 2.3 so examples of predictive
and diagnostic analysis are given here.

Predictive analysis can be used to answer ‘what if’ questions by
selecting classes for inputs and using the model to predict the
probability of transitions, as shown in Fig. 4. In the example, the se-
lected classes of input nodes represent a ‘what if’ scenario for a site
and the model predicts that the chance of transition away from
palatable tall grass to lawn is relatively high (64%) within a
5–10-year timeframe (note that the class ‘5–10-years’ is selected
Soil Nutrition

verage
bove Avarage

5.00
95.0

ccumulation Faeces & Urine

one
ow
igh

   0
   0

 100

Fertilizer application

None
Low
Moderate
High

 100
   0
   0
   0

Distance from Camp Site

Far away
Near

   0
 100

Stocking Rate

ocked

rate

   0
   0
   0

 100

o

Time Frame

Two to five years
Five to Ten years

   0
 100

n (shaded nodes represent the selected scenario).

s to

Time Frame

Two to five years
Five to Ten years

   0
 100

Type Of Grazer

attle
orse

50.3
49.7

Grazing Pressure

None
Low
Moderate
High

71.2
11.5
17.4
   0

Stocking Rate

Destocked
Low
Moderate
High

71.2
17.6
9.78
1.47

Supple ments In Dry  Seasons

No
Yes

51.5
48.5

Drought

No
Yes

54.2
45.8

s (shaded nodes represent the selected scenario).
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in the time frame node). The model also indicates the probable
causes for this transition:high grazing pressure (80% chance) and
above-average soil nutrition (95% chance).

Diagnostic analysis can be used to answer ‘how’ questions by
selecting a desired outcome and using the model to identify the
scenario that is most likely to lead to that outcome, as shown in
Fig. 5. In this example, the model is used to identify how a land
manager might shift pasture from an unpalatable tall grass state
to a palatable tall grass state within a 5–10-year time frame (note
that the class ‘5–10-years’ is selected in the time frame node). The
model shows that this transition is most likely if grazing pressure
and selective grazing are absent (see the selective grazing and
grazing pressure nodes), and this is most likely where destocking
is applied (see the stocking rate node). The model also shows that
frequent fires are important for achieving low to no selective graz-
ing (see the fires in time period node), and in turn, good seasons
are important for achieving frequent fires (see the good seasons
in time period node).
3. Discussion

3.1. Pasture dynamics in cleared Ironbark-spotted gum woodland

The combined STM and BBN model developed in this paper re-
vealed that grazing pressure is the main factor driving almost all
pasture transitions in the cleared Ironbark-spotted gum woodland
ecosystem studied. Stocking rate had the greatest influence on
grazing pressure, but drought and the use of dry-season supple-
ments magnified the influence of stocking rate. This finding is sup-
ported by Walker (1995), who also suggested that stocking rate is
the most important variable in grazing management. If the stocking
rate is not in balance with available forage, regardless of other graz-
ing management practices (timing, distribution, and type of live-
stock), grazing management objectives will probably not be met.

Selective grazing was highlighted by the model as an important
factor in transitions from or to unpalatable tall grasses. It is one of
the key factors influencing the vegetation composition in grasslands
(Ksiksi et al., 2005) and covers items such as diet selection, land-
scape selection, and bite selection (Senft et al., 1987). Selective graz-
ing has a significant effect on the competitive interactions of plants
and the structure and function of ecosystems (Archer and Smeins,
1991; Belsky, 1992) as it creates gaps in the pasture, allowing unpal-
atable tall grasses such as Aristida sp. and Bothriochloa deciepiens to
establish. Drought can accelerate this gap creation because it re-
duces the seed set of favourable grasses such as H. contortus, which
can also accelerate the establishment of exotic pasture species (Ash
and Ksiksi, 1999). Selective grazing can be reduced using frequent
fire to homogenise the palatability of pasture and spelling post-fire
to allow palatable species such as H. contortus to establish. The
importance of selective grazing, as highlighted by the model, sug-
gests that more research is needed to clarify the exact effect of selec-
tive grazing on rangeland vegetation dynamics and its condition.

Occurrence of good seasons and bad seasons (drought) were
two unmanageable factors that had an influence on vegetation
state via their direct impact on grazing pressure and fire frequency.
This indicates that drought and climate change are likely to have a
big impact on the state of rangelands, particularly where stocking
rates and spelling regimes are not managed appropriately.

Soil nutrition was another environmental variable that could be
affected by grazing management. It is considered by McIvor et al.
(2005) to be an important factor in transitions from any state to
lawns. Land managers can adjust soil nutrition by changing the
stocking rate and by locating watering points to minimize the
accumulation of faeces and urine at any one site. The implementa-
tion of some form of grazing system such as rotational grazing can
help to distribute evenly the impact of animals through all parts of
a paddock (Johnston et al., 2005).

3.2. Use of the combined STM and BBN model for adaptive
management in rangelands

Adaptive management refers to the process of using manage-
ment outcomes to continuously modify or adapt management
practice (Janssen et al., 2000; Sabine et al., 2004; Morghan et al.,
2006). It is a process of ‘‘learning by doing” whereby management
objectives are set and management plans developed using current
knowledge of the management system (which can be in the form
of a model). Actions are implemented and monitored. Monitoring
results are then used to evaluate management success and modify
management objectives or plans where necessary.

Adaptive management is particularly important for rangeland
management because rangelands are complex systems in which
the outcomes of management decisions are often difficult to pre-
dict. While the importance of adaptive management in rangeland
management has been stated frequently in the literature, very
few tools to support it have been provided. Hence, rangeland
management tools are needed that not only capture the uncer-
tainty associated with rangeland dynamics, but also support
adaptive management by being updatable using monitoring data
(Ringold et al., 1996). A combined STM and BBN model has poten-
tial to provide such a tool because BBNs can learn from monitor-
ing data. Put simply, the probability tables within BBNs can be
updated iteratively by importing monitoring results. This is called
incorporating ‘case data’ (or data from previous cases) into the
model.

A demonstration of this model-updating process is not possi-
ble here because empirical data for transitions in the rangeland
ecosystem studies are not available. Hypothetically, however,
the process would work by monitoring the vegetation state of a
rangeland at many sites, and simultaneously monitoring the main
factors and sub-factors stated in the model as influencing vegeta-
tion state transitions (such as grazing pressure, fire frequency,
etc.). The result of monitoring would be a record describing prior
vegetation state, management actions implemented, and the
occurrence of environmental events, and any vegetation state
transitions that occurred. The model could then learn from these
data by adjusting conditional probabilities to reflect real-word
observations. Hence, a combined STM and BBN model could pro-
vide a tool for evaluating the likely influence of previous manage-
ment actions and environmental scenarios on vegetation state, as
well as a predictive tool for planning future rangeland manage-
ment actions.

3.3. The modelling approach

This paper has shown how rangeland dynamics can be mod-
elled by combining STMs and BBNs. It captures the advantages of
both STMs and BBNs to provide decision support tools that (a)
are simple graphical models describing rangeland vegetation
change in relation to management actions and environmental
events (e.g. drought), (b) can be used for scenario and diagnostic
analysis to answer ‘‘what if” and ‘‘how” questions, (c) can be ap-
plied in areas where empirical data are scarce by utilizing experi-
ential knowledge, (d) can utilise empirical data where available,
(e) can accommodate uncertainty, and (f) show promise in being
able to support adaptive management.

There are significant criticisms in the literature of both the STM
and the BBN modelling approaches. STMs have been criticised for
being ‘‘event-driven” models of vegetation dynamics (Watson
et al., 1996) in which transitions are a result of infrequent and
unpredictable events such as drought, fire, favourable climatic
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periods, or sustained management (Stafford-Smith and Pickup,
1993). In rangelands, vegetation change is often gradual and there
is a separation in time between management actions and outcomes
(Stafford-Smith, 1996). STMs cannot model this gradual change in
the way that temporal simulation models can.

As is the case with STMs, BBNs also have limitations when it
comes to temporal modelling. This is because they are acyclic mod-
els (Coupe and Van der Gaag, 2002) that predict the aggregate out-
comes of management or events for a specified time period, such as
one year or 10 years. Changes within this time period are not mod-
elled. Other limitations of BBNs relate to the size of the probability
tables and the influence of model structure on model behaviour.
Nodes in a BBN with several input nodes have large conditional
probability tables containing many scenarios. Often there are insuf-
ficient data available to populate such large probability tables and
gaps have to be filled in using expert opinion.

The difficulties in populating large probability tables meant that
when constructing the cleared Ironbark-spotted gum woodland
BBN, it was necessary to summarize the many factors that influ-
enced transitions into a few nodes with as few classes as possible.
Hence, the BBN modelling approach has similar limitations to other
modelling approaches, in that all possible factors that may contrib-
ute to outcomes cannot be accommodated.

Although databases, scientific literature, and other models (see
Koivusalo et al. (2005) for an example) can be used to determine
the probabilities of transitions in a combined STM and BBN model,
this study indicates that the knowledge and practical experience of
experts are often the only available sources of data. There are many
knowledge gaps in the science of vegetation dynamics and some-
times the available knowledge is not rich enough to allow for
reliable assessments of transition probabilities. An additional diffi-
culty is that published experimental results rarely match the condi-
tional probabilities required for a BBN (Druzdzel and Van der Gaag,
1995).

When the probabilities within a model are based mainly on ex-
pert opinion, the limits of human judgment become important and
the reliability of the probabilities comes into question. The elicita-
tion of probabilities still remains a difficult task, and in some cases
is a major obstacle to model building (Druzdzel and Van der Gaag,
1995; Jensen, 1995; Renooij, 2001). Research in experimental psy-
chology has shown that probability elicitation is subject to bias if
experts are simply asked to provide a numerical probability (Kahn-
eman et al., 1982) because there are numerous possible scenarios
and these need to be compared to estimate probabilities. A well-
structured elicitation process is required (Fenton, 1998) that will
include selecting the right group of experts and implementing a
sound method for probability elicitation. In this study, a method
similar to the CPT calculator developed by Cain (2001) was used
to provide a structured probability elicitation process. In addition,
the results of model behaviour (obtained through sensitivity anal-
ysis) were returned to the experts for review. This approach has
been recommended by other researchers as ‘‘an antecedent condi-
tions check” that significantly increases the reliability of model
behaviour (Edwards, 1998). BBNs can quite easily accommodate
multiple opinions about conditional probabilities, which can assist
in testing the sensitivity of a model to variation in probability esti-
mates. Areas of the model where variation in probability estimates
has a relatively large influence on model predictions are those that
warrant further investigation and refinement, until the cost of
obtaining more accurate probabilities outweighs their benefit
(Coupe et al., 2000).

The biophysical, economic, and social aspects of rangelands
in which land managers work are complex and it is impossible
to account for all this complexity in a decision support tool.
Hence, experience and human judgement will remain impor-
tant. In the current paradigm of using decision support tools,
the focus is less on ‘‘recommendations” and more on ‘‘facilita-
tion of decision-making” (McCown, 2002). In addition, decision
support tools are not needed in all situations, nor do they need
to be directly accessed by decision-makers. They are most ben-
eficial in situations where managers need to integrate a variety
of data and information in order to evaluate alternatives. In
many situations, land managers do not have the facility to di-
rectly access or use decision support tools. The key issue is
not whether they use decision support tools directly; it is the
coordination of people, data, models, and tools to provide
rangeland management answers in a convenient, timely, and
cost-effective manner.

Integrating STMs and BBNs can provide a cost-effective way of
bringing together people, knowledge, and data for rangeland man-
agement decision-making. First, both STMs and BBNs are well sui-
ted for use in participatory modelling in which scientist and land
managers can communicate and collaborate in decision support
tool development (see Smith et al. (2005, 2007a, b) for examples
of the application of BBNs in participatory modelling). Second,
no specialist programming expertise is required to develop, main-
tain, or update models, as easy-to-use BBN software already exists
and is widely available (some free of charge). Third, because BBNs
can utilise a range of information sources in model development
(such as expert opinion, empirical data, and output from other
models), they offer a predictive modelling framework that is flex-
ible enough to integrate a range of available information, both
quantitative and qualitative. This is particularly useful in situa-
tions where empirical data are scarce or patchy and where expert
opinion must be relied upon to fill data gaps. Fourth, because the
probability tables within BBNs can be updated from observations
or monitoring records, the modelling approach is well suited to
adaptive management.
4. Conclusion

This paper demonstrates how STMs and BBNs can be com-
bined to develop rangeland management decision support tools
that capture the advantages of STMs (graphical, low cost, suited
to participatory development with land managers) and BBNs
(ability to accommodate uncertainty, utilise a range of informa-
tion sources, and provide for scenario, diagnostic, and sensitivity
analysis). Although, the approach seems to be a promising way
to provide rangeland managers with decision support, one key
drawback is that it is reliant on subjective expert knowledge
and is therefore subject to bias. The lack of empirical data on
vegetation transitions makes the use of human judgment neces-
sary. However, because BBNs are able to incorporate updated
probabilities from monitoring data, subjective probability esti-
mates can be modified over time as empirical data becomes
available. This also makes the approach well suited to adaptive
management.
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Appendix 1

Definitions for nodes and their classes in the cleared Ironbark-spotted gum woodland Bayesian belief network (Fig. 3)

Node Definition and classes

Current state This node represents possible vegetation states that can occur at the site of interest
Palatable tall grasses: perennial palatable tall tussock grasses such as Heteropogon contortus, high soil stability
Unpalatable tall grasses: perennial unpalatable tussock grasses such as Aristida sp. and Bothriochloa decipiens,
erosion moderate to high
Short sward and sparse tall grass: short grasses such as Eragrostis sororia interspersed with tall tussock grasses,
erosion moderate to high
Short sward: short grasses such as Eragrostis sororia, erosion moderate to low
Lawn: very stable and resistant to disturbances such as grazing and trampling, includes species such as Cynadon
dactylon

Timeframe This node represent periods of time over which transitions may occur at the site of interest
2–5-years
5–10-years

From palatable tall
grasses to

This node represents transitions away from palatable tall grasses to another vegetation state at the site of interest
No change: vegetation remains in the palatable tall grass state
Unpalatable tall grasses: vegetations moves to the unpalatable tall grass state
Short sward and sparse tall grass: vegetations moves to the short sward and sparse tall grass state
Short sward: vegetations moves to the short sward state
Lawn: vegetations moves to the lawn state

From unpalatable tall
grasses to

This node represents transitions away from unpalatable tall grasses to another vegetation state at the site of
interest
Palatable tall grasses: vegetations moves to the palatable tall grass state
No change: vegetation remains in the unpalatable tall grass state
Short sward and sparse tall grass: vegetations moves to the short sward and sparse tall grass state
Short sward: vegetations moves to the short sward state
Lawn: vegetations moves to the lawn state

From short sward and
sparse tall grasses
to

This node represents transitions away from short sward and sparse tall grasses to another vegetation state at the
site of interest
Palatable tall grasses: vegetations moves to the palatable tall grass state
Unpalatable tall grasses: vegetations moves to the unpalatable tall grass state
No change: vegetation remains in the short sward and sparse tall grass state
Short Sward: vegetations moves to the short sward state

From short sward to This node represents transitions away from short sward to another vegetation state at the site of interest
Palatable tall grasses: vegetations moves to the palatable tall grass state
Unpalatable tall grasses: vegetations moves to the unpalatable tall grass state
Short sward and sparse tall grass: vegetations moves to the short sward and sparse tall grass state
No change: vegetation remains in the short sward state
Lawn: vegetations moves to the lawn state

From lawn to This node represents transitions away from lawn to another vegetation state at the site of interest
Palatable tall grasses: vegetations moves to the palatable tall grass state
Unpalatable tall grasses: moves to the unpalatable tall grass state
No change: vegetation remains in the lawn state

Selective grazing This node represents the selectivity of grazing at the site of interest. Selective grazing mostly occurs in large
continuously grazed pastures where stock preferentially eat the most palatable species
None: plant composition is consistent and uniform and contains palatable species (this situation is rare)
Low: there are many uniform palatable species available in the pasture but some unpalatable ones are present
Moderate: palatable species are patchy in the pasture
High: palatable species are rare and hidden among unpalatable species in the pasture

Grazing pressure This node represents the balance between how much grazing animals eat and how fast the pasture grows at the
site of interest (grazing pressure = rate of removal of pasture/rate of supply of pasture)
None: grazing pressure of 0
Low: supply of pasture is much more than the rate of removal of pasture (grazing pressure �1)
Moderate: supply of pasture is more than the rate of removal of pasture (grazing pressure <1)
High: supply of pasture is equal to or less than the rate of removal of pasture (grazing pressure P1)

Soil nutrition This node represents the soil nutritional status at the site of interest. In the case study area, above average soil
nutrition had an effect on transitions to lawn state so there are two states for soil nutrition, average and above
average. Below average soil nutrition was not considered to be an important factor in any transitions in the case
study area. Therefore this class of soil nutrition was not included in the model
Average: 50–200 kg N per ha per annum
Above average: more than 200 kg N per ha per annum

(continued on next page)

32 H. Bashari et al. / Agricultural Systems 99 (2009) 23–34



Appendix 1 (continued)

Node Definition and classes

Fertiliser application This node represents the level of fertiliser application at the site of interest (fertiliser = 10% nitrogen, 3.4%
phosphorus, 6.4% potassium)
None: no fertiliser
Low: less than 50 kg N per annum plus other nutrients
Moderate: 50–150 kg N per ha per annum plus other nutrients
High: more than 150 kg N per ha per annum plus other nutrients

Accumulation faeces
and urine

This node represents the level of faeces and urine accumulation caused by cattle at the site of interest
None: there is no faeces and urine from stock in the pasture
Low: the accumulation of faeces and urine exists in the pasture but it is not considerable (<3% of the soil cover)
High: there is a considerable amount of faeces and urine in the pasture (>3% of the soil cover)

Distance from
campsite

This node represents the distance of the site of interest from a campsite, which is a site where cattle congregate.
Campsites are usually watering points
Far away: more than 500 m from a campsite
Near: less than 500 m from a campsite

Stocking rate This node represents the number of hectares per beast
Destocked: no stock present
Low: 1 beast per 6–8 ha
Moderate: 1 beast per 4–6 ha
High: more than 1 beast per 4 ha

Supplement in dry
season

This node classes whether or not cattle are fed supplements in the dry season. Supplementary feeding tends to
allow land managers to maintain cattle numbers in dry timesNo: no feed supplements fed in the dry seasonYes:
feed supplements fed in the dry season

Drought This node classes whether or not drought is present at the site of interest. Drought occurs when rainfall lies above
the lowest five per cent of recorded rainfall but below the lowest 10 percent for the period in question
No: drought is absent
Yes: drought is present

Good seasons in time
period

This node represents the frequency of good seasons at the site of interest within the time period of interest. A
good season is defined as a wet season with more that average rainfall.
Frequent: 3 of 5 years or 7 of 10 years with more than average rainfall
Infrequent: 1–2 of 5 years or 1–6 of 10 years with more than average rainfall
None: no years with more than average rainfall in the time period

Fires in time period This node represents the frequency of fires at the site of interest within the time period of interest
Frequent: fire occurs in 3 of 5 years or 7 of 10 years
Infrequent: fire occurs 1–2 of 5 years or 1–6 of 10 years
None: fire occurs 0 of 5 years or 0 of 10 years

Type of grazer This node represents the type of animal grazing at the site of interest
Cattle
Horse

Post-fire spelling This node classes whether or not the pasture at the site of interest is spelt for at least 10 days after burning or until
the grass is 10 cm high:
Yes: post-fire spelling occurs
No: post-fire spelling does not occur

Summer spelling in
time period

This node represents the frequency of summer spelling of pasture at the site of interest within the time period of
interest
Frequent: pasture spelled in 3 of 5 years or 7 of 10 years
Infrequent: pasture spelled 1–2 of 5 years or 1–6 of 10 years
None: pasture spelled 0 of 5 years or 0 of 10 years
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