GH-196 is a high yielding line made in 1991. BelNeb RR2 is a medium size, white pinto line with resistance to fusarium root rot [caused by *Fusarium oxysporum* f. sp. *pisi* (Lib.)], curly top virus, and bean common mosaic virus. `Aculco C96' (640 kg m⁻³) TCL-2000 had significantly lower test weight. In Obregon, the test weight of Supremo TCL-2000 (770 kg m⁻³) was significantly higher and equal to that of Jilotepec (740 kg m⁻³) under ME1 and ME4 conditions, respectively. In Mexico State, Supremo TCL-2000 was taller than Jilotepec and Huamantla, but shorter than Secano. In Obregon, Supremo TCL-2000 was taller than Jilotepec. In Mexico State, Supremo TCL-2000 matured 4, 2, and 7 d later than Jilotepec, Huamantla and Secano, respectively. In Obregon, Supremo TCL-2000, matured later than Jilotepec by 8 and 3 d under ME1 and ME4 conditions, respectively. Supremo TCL-2000 has long, white, awned, and lax type of spikes and large, dark color grains with good attributes for animal feeding, making unleavened breads (tortilla, chapatti, etc.), and in mixtures with bread wheat flour.

Breeder seed of Supremo TCL-2000 is maintained by ICAMEX. Certified seed, may be obtained from ICAMEX, Conjunto SEDAGRO, Metepec, Edo. Mexico, C.P. 52140, Apdo. Postal 28.

A. Hernandez Sierra, M. Mergoum,* W.H. Pfeiffer, S. Rajaram, and A. Zuloaga Albarran (4)

References and Notes

as an F₁, headrow and designated as experimental number N95L158 in 1995.

Wesley is a semidwarf cultivar with straw strength superior to ‘Arapahoe’. Plant height (81 cm) of Wesley has averaged 3 cm less than ‘2137’, 10 cm less than Arapahoe, and similar to ‘TAM 107.’ It has a medium length coleoptile (82 mm; 70% of ‘Scout 66’ and 90% of TAM 107). Winterhardiness of Wesley is acceptable for Nebraska growing conditions, superior to that of Scout 66 and TAM 107. Wesley is a medium maturing cultivar, similar in heading date to Scout 66 (134 d) and 5 d later than TAM 107 based on regional nursery trials, and 1 to 2 d earlier than Arapahoe in Nebraska and South Dakota trials.

Juvenile growth habit of Wesley is semi-erect. Plant color at boot stage is dark green. Auricle anthocyanin and auricle hairs are absent. Flag leaf at boot stage is recurved and not twisted. Waxy bloom is present on the head, stem and leaf sheath. Leaves are glabrous. The spike is awned, medium dense and tapering to elliptical in shape with light brown (tan) glumes and awns. The glumes are glabrous, midlong, and mid-wide to wide, with glume shoulders square to elevated. The beak is moderately long and acuminate. The spike is nodding to inclined at maturity. Kernels are red colored, hard textured, and elliptical to ovate in shape. The kernel has no collar, a medium sized brush with short hairs, rounded cheeks, midsize to large germ, and a shallow and narrow crease.

Wesley has exhibited adult-plant and seedling resistance to stem rust (caused by *Puccinia graminis* Pers.:Pers.). It has been postulated to carry Sr6, Sr17, and other unidentified genes based on tests conducted by the USDA Cereal Disease Laboratory. St. Paul, MN. Wesley is resistant to southborne mosaic virus, moderately resistant to wheat spindle streak virus, and has exhibited tolerance to acid soils. It is susceptible to leaf rust (caused by *Puccinia triticina* Eriks.). wheat streak mosaic virus, the Great Plains biotype of Hessian fly [Mayetiola destructor (Say)], and the Russian wheat aphid [Diuraphia noxia (Mordvilko)].

Wesley has been tested in Nebraska nurseries since 1995 and in the Southern Regional Performance Nursery in 1997 and 1998. It was tested in the Nebraska Fall Sown Cereal Variety Trials statewide in 1999 and 1998, and at select sites in 1997. In 39 site-years of testing, Wesley averaged 4620 kg ha⁻¹, similar to 2137, and 370 kg ha⁻¹ greater than Arapahoe. It has slightly lower test weight, averaging 766 kg m⁻³ compared with 779 kg m⁻³ for 2137 and 773 kg m⁻³ for Arapahoe. Wesley appears to be best suited for dryland production areas of Mexico. BAT 304, XAN 112, and AB 136 are upright indeterminate (Type II), developed at the Nebraska Wheat Quality Laboratory and that of the International Center for Tropical Agriculture (CIAT) and the Russian wheat aphid [Mayetiola destructor (Say)], and the Russian wheat aphid [Diuraphia noxia (Mordvilko)].

References and Notes

1. C.J. Peterson, Dep. of Crop and Soil Science, Oregon State Univ., Corvallis, OR 97331; D.R. Shelton, Wheat Marketing Center, Inc., 1200 Naito Parkway, Suite 230, Portland, OR 97209-2800; P.S. Baenziger, and L.A. Nelson, Dep. Of Agronomy, Univ. of Nebraska, Lincoln, NE 68583; D.D. Baltensperger, Univ. of Nebraska, Panhandle Research and Extension Center, Scottsbluff, NE 69361; R.A. Graybosch, USDA-ARS, 344 Keim Hall, Univ. of Nebraska, Lincoln, NE 68583; W.D. Worrall, Agripro Wheat, P.O. Box 1739, Vernon, TX 76385; D.V. McVey, USDA-ARS, Cereal Disease Laboratory, 1551 Lindig Ave, St. Paul, MN 55108; J.E. Watkins, Dep. of Plant Pathology, Univ. of Nebraska, Lincoln, NE 68583; and J. Krall, Univ. of Wyoming, Torrington Exp. Stat., Torrington, WY 82240. Joint contribution from the USDA-ARS, Univ. of Nebraska Agric. Exp. Stat., and Oregon State Univ. Agric. Exp. Stat. Contribution no. 12956 from the Nebraska Agric. Res. Div., Univ. of Nebraska. Technical paper no. 11622 of the Agric. Exp. Stn., Oregon State Univ. Wesley was developed with partial financial support from the Nebraska Wheat Development, Utilization, and Marketing Board. Registration by CSSA. Accepted 30 Jun. 2000. *Corresponding author (cjp@orst.edu).


Registration of ‘Negro Otomí’ Shiny Black Bean

‘Negro Otomí’ shiny black bean (*Phaseolus vulgaris* L.) (Reg. no. CV-179, PI 607834) was developed and released by the ‘Valle de México’ Experiment Station of the National Research Institute for Agriculture, Forestry and Livestock (INIFAP) of Mexico as a high-yielding, disease-resistant, shiny black seeded cultivar for rainfed conditions in the highlands of Mexico.

‘Negro Otomí’, tested as NG 94060, was derived from the multiple intervarial cross; ‘Michoaacán’ 91-A/3/BAT304/G811//XAN122/AB136, made in 1989. The cross was the product of a collaborative project between the bean program of INIFAP and that of the International Center for Tropical Agriculture (CIAT), and was designed to incorporate disease resistance into the Mexican landrace used as the last maternal parent in the cross. Michoaacán 91-A is a mid-season cultivar with indeterminate growth habit (Type III) and adapted to the highlands of Mexico. BAT 304, XAN 112, and AB 136 are germplasm sources with resistance to rust [caused by *Uromyces appendiculatus* (Pers.: Pers.) Unger], common bacterial blight [caused by *Xanthomonas campestris pv. phaseoli* (Smith) Dye], and anthracnose [caused by *Colletotrichum lindemuthianum* (Sacc. & Magnus) Lamb.-Scrib.]. BAT 304 and XAN 112 are upright indeterminate (Type II), developed at CIAT and AB 136 is an indeterminate climbing growth habit (Type IV) developed in France. G811 or ‘Higuerrillo’ is a landrace from the subhumid highlands of Mexico of indeterminate climbing growth habit (Type IV). The F₁ plants were advanced in the greenhouse and the F₂ and F₃ were bulk