Vegetative Treatment Systems: Integrating Extension and Research

Chris Henry, Ph.D., P.E.
Extension Engineer
University of Nebraska–Lincoln Extension
My research and Extension interests

- Ambient odor measurement, odor, odor dispersion modeling, emissions, odor footprint tool, and odor policy.
- Development and demonstration of alternative systems, Vegetative Treatment Systems for small animal feeding operations
- Design, permitting, and performance of VTS for large CAFO feedlots.
- Livestock Environmental Regulation
- Land application training for producers and custom applicators
LIVESTOCK PRODUCERS ENVIRONMENTAL ASSISTANCE PROJECT

Nebraska Environmental Trust Fund
NDEQ 319 Non-Point Pollution Program Grant

• Develop and demonstrate new alternative practices for un-regulated livestock producers through a small cost share program
• Design and build projects on small and medium livestock operations under real world conditions.
• Educate Producers and Consultants about using VTS
The convention for open lot runoff management

- Apply stored runoff when crops are not growing (spring and fall)
Vegetative Treatment System components

- Sediment Basin
- Outlet Structure
- Conveyance (pipe and/or pump)
- Distribution System
 - Concrete spreaders
 - Gated pipe
 - Sprinklers
- Vegetative Treatment Area
Many flavors of VTS

Sloped VTA

Level VTA/VIB

Sloped & Level VTA

Sprinkler VTA

Pump-Sloped VTA

VIB-Sloped VTA
Sprinkler VTA Concept

• Feeding area is down gradient of the possible VTA location
• Soil intake rate is too high for a flood application system (sandy / loess soils) or too low (very tight clay soils)
• Topography challenges (rolling hills or short slopes)
• No prone to rill and gulley erosion, sheet flow issues
• Sensitive water table, low AWC of the soil, and many other reasons
Sprinkler VTS History

• 2005
 – System 1: 80 head, solid set, underground electric pump station ($209/hd)

• 2007
 – System 2: 450 head, K-line, above ground diesel pump station ($78/hd)

• 2009
 – Systems 3, 4, and 5. 210-800 head, K-line, above ground diesel pumps ($57, $58, $99 per hd)

• 2010
 – Systems 6, 7, and 8. 300-800 hd, K-Line, perched water design considerations, VT, EMD, VFD’s and Industrial Controls: “The Talking VTS”
 – First large CAFO Sprinkler VTS permitted, 100 acre VTA. Feedlot destroyed in flood.
Sprinkler VTS (largest built to date)

- 800 head 6.5 ac feedlot (350 sq ft. per calf) plus 1 ac contributing
- VTA is 8.6 ac (ratio VTA:FLOT, 1.35:1)
- Additional cropland as land application area 4.3 ac (2:1)
- Excavation $12,000
- K-Lines $9,450 8 lines with 9 pods
- Engine (30 HP) and Pump $5,526
- Pipeline, fittings, filters $18,752
- Fence removal, seeding, rebuild fencing $13,177
- Total $58,919 ($57/hd VTS only, $73/head inc fence, $9,206/feedlot ac)
- Grass is seeded to: orchard grass, intermediate wheatgrass, meadow brome, and creeping foxtail
Pump Inlet System

Unfinished, picket dam and strainer not installed
I can scan your VTA with this yellow tube thing and you will be blessed by by the EMI Gods.
Has USDA gone too far tracking the whereabouts of their ARS scientists?
Large CAFO VTS Research

• In 2003, EPA rule allowed for “Alternative Performance Standards”
• VTS’s on “probation” from EPA
• NE built 2 large CAFO VTS sites, NPDES permitted. Less than 12 in US.
• 3 yr multi-state project (IA, SD, NE) just completed for monitoring performance of large CAFO VTS
• Already collaborating with Dr’s Durso, Miller, & Snow.
Large CAFO Performance in 2009

<table>
<thead>
<tr>
<th>Site</th>
<th>Cattle</th>
<th>Feedlot Area</th>
<th>VTS Area</th>
<th>2009 Rainfall</th>
<th>Animal Basis †</th>
<th>Area Basis‡</th>
<th>Percent Runoff</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central NE 1±</td>
<td>1200</td>
<td>4.8</td>
<td>4.45</td>
<td>79.0</td>
<td>9.9</td>
<td>24.8</td>
<td>94/100</td>
</tr>
<tr>
<td>Central IA 1</td>
<td>1000</td>
<td>3.09</td>
<td>1.53</td>
<td>63.2</td>
<td>10.8</td>
<td>34.8</td>
<td>100</td>
</tr>
<tr>
<td>Southwest IA 2</td>
<td>1200</td>
<td>3.72</td>
<td>3.46</td>
<td>70.0</td>
<td>11.5</td>
<td>37.0</td>
<td>100</td>
</tr>
<tr>
<td>Western MN 1</td>
<td>1750</td>
<td>3.56</td>
<td>3.52</td>
<td>56.7</td>
<td>2.7</td>
<td>13.1</td>
<td>100</td>
</tr>
<tr>
<td>Northwest IA 1</td>
<td>1400</td>
<td>2.91</td>
<td>1.68</td>
<td>68.1</td>
<td>9.8</td>
<td>46.9</td>
<td>88</td>
</tr>
<tr>
<td>Northwest IA 2±</td>
<td>4000</td>
<td>2.96</td>
<td>1.91</td>
<td>70.3</td>
<td>2.7</td>
<td>36.9</td>
<td>81</td>
</tr>
<tr>
<td>Southwest IA 1</td>
<td>2300</td>
<td>7.49</td>
<td>4.0</td>
<td>79.8</td>
<td>10.9</td>
<td>33.4</td>
<td>68</td>
</tr>
<tr>
<td>Central IA 2</td>
<td>650</td>
<td>1.07</td>
<td>0.56</td>
<td>82.4</td>
<td>3.9</td>
<td>23.8</td>
<td>-6</td>
</tr>
<tr>
<td>Central NE 2*</td>
<td>1700</td>
<td>4.8</td>
<td>3.8</td>
<td>57.7</td>
<td>---</td>
<td>9.4</td>
<td>---</td>
</tr>
</tbody>
</table>

* SSB concentration data from this site is unavailable due to monitoring difficulties
± Site utilizes an effluent recycle pipe
Opportunities for VTS Demonstrations

- 36 small AFO demonstration projects in Nebraska
- Large CAFO flow instrumented site
- Most diversity of VTS system types in NE than anywhere in US
- Research Questions:
 - Longevity of systems and fate of nutrients in VTA (N loss in sprinklers vs gravity)
 - Nutrient loads from VTA’s compared to application of manure from land application

(Agricultural Storm Water Exemption is going to be revisited)
Livestock Producer Regulatory Opportunities for Research Impact

- **P-Index**
- **Nitrogen-transport risk tool**
 - The outcome of the field-specific assessment of the potential for nitrogen and phosphorus transport from each field;
- **Buffers and setbacks**
 - For large concentrated animal feeding operations, manure, litter, and process wastewater may not be stockpiled or applied closer than 100 feet to any down-gradient surface waters, open tile line intake structures, well heads, or other conduits to surface or ground water...
- **Runoff risk from Manure Stockpiles**
 - Stockpiles of livestock waste shall be located to prevent a discharge to waters of the state. If a discharge is possible, the stockpile shall be managed by use of cover material, diking, or other means to prevent discharge until the stockpile material is utilized. Stockpiles placed on land application sites shall be removed during the succeeding cropping season.
- **Voluntary Alternative Performance Standards for large CAFO’s.**
 - Much to learn about VTS technology and performance
Buffers or Setbacks?

Tillable Acres
119 acres

35’ Vegetative Buffer
101 acres

100’ Setbacks
71 acres

“Alternative practice which demonstrates pollutant reductions equivalent to 100 ft setback can be substituted.”
NRCS: Conservation Stewardship Program

- Producers who enroll in CSP have the option to take advantage of this enhancement by working directly with research institutions and committing to this option in their CSP contract.
- CSP contracts are five years in length and producers who select this enhancement increase their conservation performance ranking and conservation payment points.
- Eligible projects must fit within broad national technology focus areas contained in the bulletin i.e. soil quality, soil erosion, water quality, water quantity, air quality, plants, wildlife, energy conservation, etc.
- On-farm research and demonstrations consist of the implementation of applied research projects on working farms to gather information and demonstrate the efficacy of an activity.
- Research projects must be conducted by an entity that is seeking to determine the value of a conservation practice, component, treatment, or process.
- On-farm pilot projects consist of the installation, monitoring, and publicizing of projects that showcase practices, components, or management techniques that have shown environmental benefits through research but are not widely used by farmers in the project area.
- No research funding is available, just an incentive for the producer.
Best opportunities to partner with Extension

Write some FAQ’s

Develop or ADD TO content pages describing your research results

Join a content team

Give/propose a webinar for the LPELC

Contact Rick Koelsch or Jill Heemstra for more information

My Challenge to you: Write one content page and one FAQ for every Journal Article you publish.
North American Manure Expo will be in Norfolk, Nebraska July 20, 2011

Manure application equipment demonstrations
Land application training
Ride-and-Drive equipment
Latest research in Manure Handling Technology
In-field demonstrations of accident response
Sprinkler Application of Manure
Take home message

• Partner with an Extension Professional to channel research to end users
• Conduct Research on a Demonstration Site as a path to direct application of research to the end user
• Convey the lessons learned from your research through an Extension resource (extension.org)