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The genomic organization of plant pathogenicity in
Fusarium species
Martijn Rep1 and H Corby Kistler2
Comparative genomics is a powerful tool to infer the molecular

basis of fungal pathogenicity and its evolution by identifying

differences in gene content and genomic organization between

fungi with different hosts or modes of infection. Through

comparative analysis, pathogenicity-related chromosomes

have been identified in Fusarium oxysporum and Fusarium

solani that contain genes for host-specific virulence. Lateral

transfer of pathogenicity chromosomes, inferred from genomic

data, now has been experimentally confirmed. Likewise,

comparative genomics reveals the evolutionary relationships

among toxin gene clusters whereby the loss and gain of genes

from the cluster may be understood in an evolutionary context

of toxin diversification. The genomic milieu of effector genes,

encoding small secreted proteins, also suggests mechanisms

that promote genetic diversification for the benefit of the

pathogen.
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Introduction
Genomic sequencing of fungal phytopathogens has revo-

lutionized the study of plant pathogenesis. Whole gen-

ome sequence (WGS) data for individual fungal genomes

accelerated classical forward and reverse genetic

approaches for identifying pathogenicity genes. More

recently, the availability of several WGS assemblies for

comparative genomic analysis has enabled unprece-

dented opportunities for tracing the evolutionary origin

(and demise) of genes and molecules that influence the

outcome of fungal–plant interactions. Moreover, the over-

all genomic organization of fungal pathogenicity-related

genes has suggested novel modes of molecular diversifi-
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cation and genetic transmission. We here highlight recent

insights into the evolution of disease-causing ability

among plant pathogenic fungi, focusing on the compara-

tive genomic analysis of Fusarium species with additional

reference to other fungi.

Comparative genomics
In 2007 the Broad Institute released its first Fusarium
comparative genomics website (http://www.broadinstitute.

org/annotation/genome/fusarium_group/MultiHome.

html), which brought together high quality sequence

assemblies of the plant pathogenic fungus Fusarium grami-
nearum, sequenced previously [1�] and two new WGS for

the species Fusarium verticillioides and Fusarium oxysporum.

At the sametime, theJoint Genome Institute (JGI) released

a WGS for Fusarium solani (Nectria haematococca) (http://

genome.jgi-psf.org/Necha2/Necha2.home.html). The four

genomes share considerable sequence similarity as well as

extensive synteny (Figure 1) [2�,3��].

The Fusarium genomes consist of a core region with

approximately 9000 genes considered to be orthologous

due to high sequence similarity and conserved gene order

[3��]. Each species also contains thousands of genes that

are unique to each genome, many of which are found near

the ends of chromosomes. In F. graminearum, these tel-

omere proximal regions are rich in gene diversity as

measured by SNP density [1�] and are regions of elevated

recombination [4]. Distinctively, F. graminearum also

contains interstitial chromosomal regions of high diversity

and recombination that appear to have been created by an

ancestral telomeric fusion of chromosomes [1�,3��]. How

these interstitial regions of F. graminearum chromosomes

have maintained high genetic diversity, normally associ-

ated with telomeres, remains a mystery.

Comparative genomics with closely related Aspergillus
species also has revealed large species-specific gene sets,

which are concentrated in subgenomic regions called

chromosomal islands [5��]. Interestingly, these regions

have a subtelomeric bias too. This could be due to the

inherent recombinogenic nature of chromosome ends but

seems to have functional implications as well; subtelo-

meric gene expression is associated with invasive growth

of Aspergillus fumigatus in mammals and ex vivo neutrophil

exposure [6].

Instead of genomic islands, both F. oxysporum and F.
solani contain supernumerary chromosomes that largely

consist of lineage-specific sequences and make up a
www.sciencedirect.com
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Figure 1

Comparison of Fusarium Genomes. Synteny of the F. oxysporum, F. verticillioides, F. graminearum, and F. solani genomes determined by BLASTN

alignment (cutoff 1e-10). Chromosomes (Chr) of F. oxysporum are used as a reference and the scale (bottom) measures chromosome size in

megabases (Mb). Grey boxes indicate chromosome size determined by optical mapping, upon which are superimposed corresponding WGS

assembly scaffolds displayed as numbered black bars. Unassembled scaffolds (Un) are concatenated for ease of display. Regions of shared gene

order with chromosomes of F. verticillioides, F. graminearum and F. solani, are shown beneath each F. oxysporum chromosome. Sequences from

individual chromosomes in each species are color-coded so that blocks of solid color represent regions of synteny with the F. oxysporum genome.

Little homology or synteny is apparent for the lineage specific regions of F. oxysporum chromosomes 3, 6, 14 and 15 and for telomere-proximal

portions of chromosomes 1 and 2. Figure modified from supplemental material of [3��].
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substantial fraction of the entire genome [2�,3��]. Lin-

eage-specific portions of F. oxysporum and F. solani are

highly enriched in transposable elements. Regions of high

genome diversity in Fusarium, whether at chromosome

ends, special interstitial sites or on supernumerary

chromosomes, also have been shown to be rich in genes

predicted to be involved in fungal–host interactions. High

diversity regions are enriched for predicted secreted

proteins, carbohydrate-active enzymes and genes specifi-

cally expressed during plant infection [1�,3��,7].

Effector genes, pathogenicity chromosomes
and horizontal transfer
Effectors are proteins secreted by pathogens that promote

virulence, commonly by interacting with plant host

proteins [8]. Because of these interactions, effector genes

are frequently involved in molecular arms races between

pathogen and plant and subject to accelerated evolution

[9]. The location of effector genes in a genome may affect

the rate at which they evolve through mutation or recom-

bination. In Leptosphaeria maculans, for instance, the

effector (Avr) genes that have been identified through

positional cloning all reside in AT-rich genomic subre-

gions of up to several hundred kb consisting mostly of

remnants of retrotransposons [10,11�,12]. These long

chromosomal segments of uniform AT/GC content are

similar to isochores found in other eukaryotes.

Although these highly particular, isochore-like genomic

subregions presently have been found only in L. maculans,
the genomic location of effector genes is also non-random

in several other fungi. In the corn pathogen Ustilago
maydis, a significant fraction (18%) of the genes for

secreted proteins are organized in 12 clusters (3–26 genes

per cluster) dispersed in the genome [13]. Most clusters

contain tandem arrays of 2–5 related genes. This is

remarkable since overall, the genome of U. maydis is

largely devoid of repetitive DNA. Expression of most

genes in the U. maydis effector gene clusters is co-

regulated and induced during plant infection [13].

In the rice blast fungus, Magnaporthe oryzae, effector genes

are not clustered but are frequently found near telomeres,

where gene duplication and gene conversion may be more

frequent [14,15,16��]. One example of an apparent recent

telomeric duplication in Fusarium is the effector gene

SIX8 in F. oxysporum, which is present in identical copies

close to at least eight telomeres in the genome of the

tomato-specific pathogenic strain (M Rep, LJ Ma, unpub-

lished observations).

Interestingly, all other known effector genes in the

tomato-pathogenic strain of F. oxysporum are localized

on a single, transposon-rich ‘pathogenicity chromosome’

of �2 Mb [3��]. This chromosome and another smaller

strain-specific chromosome can undergo transfer be-

tween pathogenic and non-pathogenic strains during
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co-cultivation, resulting in a new pathogenic lineage.

Lateral chromosome transfer, first observed in Colleto-
trichum gloeosporioides [17�], likely explains the existence

of host-specific groups of strains ( formae speciales) of F.
oxysporum composed of several independent lineages.

This is supported by the observation that the sequences

of the effector genes on the pathogenicity chromosome

are, with few exceptions, identical between disparate

lineages and highly specific to lineages which are patho-

genic to tomato [18].

In the pea-pathogenic form of F. solani, supernumerary

chromosomes also harbor genes for host-specific viru-

lence, including detoxification mechanisms and host

nutrient utilization [19,20]. Three supernumerary

chromosomes with sizes between 0.5 and 1.6 Mb have

characteristics that distinguish them from the rest of the

genome including higher levels of repeat sequences

(mostly transposons), more duplicated and unique genes,

smaller average gene size and a lower G+C content. Like

in F. oxysporum, sequences of the genes on these chromo-

somes suggest activities consistent with habitat special-

ization but no involvement in essential cellular functions

[2�]. For Alternaria alternata, too, host plant-specific

pathogenicity can be attributed to supernumerary

chromosomes, of 1.0–1.7 Mb [21�]. Genes for synthesis

of host-selective toxins that are crucial for host-specificity

are located on these chromosomes [22].

Transposons
Could the proximity of effector genes to repeats or

transposons accelerate their evolution? While Lepto-
sphaeria represents an extreme case of repetitive genomic

context of effector genes, the context of effector genes in

other fungi is also often transposon rich [16��,23]. In

Leptosphaeria, both transposons and effector genes appear

to undergo mutation through Repeat Induced Point

Mutation (RIP) in the AT-rich genomic subregions

[24]. In F. solani, 72% of the repetitive sequences but

only 4% of the unique sequences have been subjected to

RIP [2�]. It will be interesting to determine whether a

repetitive genomic environment promotes mutation of

non-repetitive effector genes residing within it. Acceler-

ated DNA sequence divergence coupled with positive

selection for effector diversification might link transpo-

sons to the evolution of nearby effector genes. A repeat-

rich genomic environment might also promote homolo-

gous recombination among different repeats leading to

duplication, chimeric gene formation or gene loss. In line

with this, transposons are associated with gene gain/loss

events in M. oryzae [16��]. Also, transposons are known to

mediate chromosomal rearrangements [25] and to affect

chromatin structure [26], which may influence effector

gene expression and possibly also mutation rates.

The pathogenicity-related and other supernumerary

chromosomes that have been analyzed are all enriched
www.sciencedirect.com
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for transposable elements. Interestingly, in a clear case of

horizontal gene transfer between fungi, a single gene

encoding a host-selective toxin was transferred together

with an hAT-family DNA transposon [27]. It remains to

be determined whether association of transposons with

mobile virulence-related genes or whole chromosomes is

coincidental, resulting from ‘tolerance’ of non-essential

genomic regions to transposon insertion, or whether

transposons are selected for function in the transfer

process. For now this remains mostly speculative; mech-

anisms through which transposons may promote horizon-

tal transfer of genes or chromosomes are currently

unknown.

Evolution of toxin diversity at biosynthetic
gene clusters
Fungal genes for biosynthesis of secondary metabolites,

including toxic compounds produced in plants, often are

clustered at a single locus and are co-expressed [28]. Two

major themes in toxin cluster evolution have been

revealed by comparative genomics: trans-species poly-

morphism and linkage disequilibrium within blocks of

genes, each correlated to ‘chemotype’ [29–31]. Chemo-

types are distinct spectra of metabolites/toxins produced

by related strains or species. Examples of toxin chemo-

types are the nivalenol (NIV)- versus deoxynivalenol

(DON)-producing strains of Fusarium. Polymorphisms

in multiple genes in the toxin pathway lead to separate

chemotypes. As selection is likely occurring on the toxic

pathway end-product(s), recombination between genes

that define different chemotypes might result in combi-

nations that produce no toxins or a level or spectrum of

toxin with reduced biological activity. Negative selection

against recombination of genes defining different che-

motypes might, therefore, underlie the observed pat-

terns of linkage disequilibrium across the gene cluster

[29,30].

Trans-species polymorphisms correlated with chemotype

suggest that cluster diversification arose prior to species

divergence. This interpretation is supported by coalesc-

ence analysis of toxin cluster and non-cluster genes in

Aspergillus whereby cluster genes display a twofold greater

difference in the estimated time to the most common

recent ancestor [31]. Trans-species polymorphism may be

due to balancing selection, and so it is tempting to

speculate how balancing selection may explain the per-

sistence of toxin chemotypes. One possibility is that

chemotypes may confer differential fitness in different

hosts. Trichothecenes produced by F. graminearum are

known to alter the pathogenicity of the fungus in complex

and host-specific ways. For example, the trichothecene

NIV, but not DON, is required for maximum aggressive-

ness on maize but not on wheat [32]. If differences in

disease level reflect fitness differences, then chemotype

diversity may be maintained due to differential fitness of

chemotypes in the various hosts of Fusarium.
www.sciencedirect.com
Recent comparative genomics of the trichothecene gene

cluster among Fusarium species has captured the process

of how genetic elements are added and subtracted from

clusters resulting in different chemotypes (Figure 2). In

F. graminearum the trichothecene gene cluster consists of

10–12 contiguous genes as well as two other genes, Tri1
and Tri101, which are at separate loci outside the main

cluster [33]. While the intact gene cluster in F. grami-
nearum results in strains that produce the toxic compound

NIV, naturally occurring alternative forms of the gene

cluster exist for different chemotypes [29,34] that have

pseudogenes or deletions for Tri7 and Tri13. Tri13 is a

cytochrome P-450 monooxygenase responsible for the 4-

position hydroxyl that distinguishes NIV and DON che-

motypes. Targeted mutation of the Tri13 gene in the NIV

cluster therefore results in strains that produce DON [35].

Further diversification occurs for trichothecene chemo-

types in species distant to F. graminearum. F. sporotri-
chioides and related species produce A-type

trichothecenes, such as T-2 toxin, which differs from

NIV and DON by having an isovalerate ester at the 8

position oxygen, rather than a carbonyl. These differ-

ences result from catalytic divergence of the cytochrome

P-450 enzymes encoded by Tri1. In F. graminearum Tri1p

oxygenates both C-7 and C-8 (which results in a hydroxyl

at C-7 and a carbonyl at C-8) whereas in F. sporotrichioides,
only C-8 is hydroxylated by Tri1p [36,37]. In F. grami-
nearum, Tri1 is separate from the main trichothecene gene

cluster at a telomere-proximal, high diversity region of the

genome, whereas the main cluster is at a low diversity

genomic position. We speculate that the diversification

for chemotype made possible by the divergence of Tri1
was facilitated by its position near the telomere. Like the

cluster itself, Tri1 also exhibits trans-species polymorph-

ism that appears to track with chemotype [33]. However,

in Fusarium equiseti and related species, Tri1 has relocated

to the main trichothecene cluster along with Tri101 and a

gene for a predicted transcription factor [33]. The vari-

ation generated at a high diversity genomic locus may be

‘locked in’ by migration to the cluster where diversifica-

tion and recombination may be limited.

The sporadic phylogenetic distribution of secondary

metabolite gene clusters among fungal species initially

led to the hypothesis that many gene clusters could have

been horizontally transferred among species as they have

been in bacteria (reviewed in [38]). The phylogeny of

genes within clusters, however, often is congruent with

the phylogeny inferred from housekeeping genes. Most

cluster evolution therefore seems to occur by way of

vertical transmission, with cluster duplication and diver-

sification combined with frequent cluster loss resulting in

a pattern resembling horizontal transfer [39]. Dis-

tinguishing between vertical and horizontal transmission

has been facilitated by DNA sequence information from

a wide range of filamentous fungi, which has enabled
Current Opinion in Plant Biology 2010, 13:420–426
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Figure 2

Comparison of trichothecene biosynthetic gene clusters from different Fusarium species and chemotypes. Clusters are shown for F. equiseti, and

(top to bottom) F. graminearum NIV, 15 ADON and 3 ADON chemotypes. Arrows in orange represent trichothecene biosynthetic (Tri) genes with

gene numbers given below. Arrows in green are Tri genes that have moved to the Tri cluster in F. equiseti. T is a predicted transcription factor.

Arrows with an ‘X’ indicate pseudogenes. Arrows with the same color adjacent to Tri genes are homologous genes based on between-species

comparisons. Comparisons are derived from figures presented in Lee et al. [35] and Proctor et al. [33].
identification of ancestral duplications and the ability to

distinguish orthologous sequences from paralogous

sequences.

Using this approach, a few fungal gene clusters respon-

sible for the synthesis of plant-associated, bioactive com-

pounds have been shown to have likely evolved by way of

horizontal transfer. The sirodesmin/gliotoxin gene clus-

ters that encode cyclic peptide derived toxins in several

fungal species [40] and the ACE1 and ACE1-like gene

clusters that encode enzymes apparently capable of

synthesizing small molecules that can act as plant effec-

tors [39,41] each show evidence for horiziontal transfer.

Additionally, as mentioned above, toxin gene clusters in

A. alternata may have been horizontally transferred by

virtue of their position on mobile supernumerary chromo-

somes [21�].

Conclusions
Comparative genomics greatly enhances the rate of

discovery of genes that form the basis of fungal
Current Opinion in Plant Biology 2010, 13:420–426
pathogenicity. An important finding is that the most

highly diverse genes found among strains of the same

genus or even the same species, appear to be enriched for

those involved in niche adaptation, including the coloni-

zation of living plant tissue. These genes or clusters often

are not randomly dispersed in the genome, but rather

tend to concentrate in genomic islands, telomere-prox-

imal regions or even entire lineage-specific chromosomes.

This organization and their association with mobile

genetic elements make them functionally analogous to

genomic islands and plasmids in bacteria.

What evolutionary processes organize genes involved in

pathogenicity and habitat adaptation into clusters and

subgenomic regions? Answering this question will require

explanations for both mechanism and function. Do rates

of mutation, recombination and duplication differ be-

tween conserved genomic regions and those associated

with plant interactions? Does chromatin modification play

a role in differences in the regulation of gene expression

between these regions? Is an increased level of organiz-
www.sciencedirect.com
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ation, from pathogenicity gene cluster to pathogenicity

chromosome, advantageous for the fungus? Are patho-

genicity-related subgenomic regions more prone to repo-

sitioning within a genome or to mobility between

genomes? Exactly what role do transposons play in gene

expression, mutation, recombination and mobility? The

answers to these questions, raised by comparative geno-

mic analysis, will bring us closer to a unified understand-

ing of how fungal genomes adapt to a pathogenic

existence.
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