A Novel Transcriptional Factor Important for Pathogenesis and Ascosporogenesis in *Fusarium graminearum*

Yang Wang,1,2 Wende Liu,2 Zhanming Hou,2 Chenfang Wang,1 Xiaoying Zhou,2 Wilfried Jonkers,3 Shengli Ding,2 H. Corby Kistler,3 and Jin-Rong Xu1,2

1College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; 2Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, U.S.A.; 3United States Department of Agriculture–Agricultural Research Service Cereal Disease Laboratory, University of Minnesota, St. Paul 55108, U.S.A.

Submitted 4 June 2010. Accepted 22 August 2010.

Fusarium head blight or scab caused by *Fusarium graminearum* is an important disease of wheat and barley. The pathogen not only causes severe yield losses but also contaminates infested grains with mycotoxins. In a previous study, we identified several pathogenicity mutants by random insertional mutagenesis. One of these mutants was disrupted in the ZIF1 gene, which encodes a b-ZIP transcription factor unique to filamentous ascomycetes. The Δzif1 mutant generated by gene replacement was significantly reduced in deoxynivalenol (DON) production and virulence on flowering wheat heads. It was defective in spreading from inoculated florets to the rachis and other spikelets. Deletion of the ZIF1 ortholog MoZIF1 in the rice blast fungus also caused reductions in virulence and in invasive growth. In addition, the Δzif1 mutant is defective in sexual reproduction. Although it had normal male fertility, when selfed or mated as the female in outcrosses, the Δzif1 mutant produced small, pigmented perithecia that were sterile (lack of asci and ascospores), suggesting a female-specific role for ZIF1 during fertilization or ascus development. Similar female-specific defects in sexual reproduction were observed in the Δmozif1 mutant. When mated as the female, the Δmozif1 perithecia failed to develop long necks and asci or ascospores. The ZIFI gene is well conserved in filamentous ascomycetes, particularly in the b-ZIP domain, which is essential for its function. Expression of ZIF1 in *Magnaporthe oryzae* complemented the defects of the Δmozif1 mutant. These results indicate that this b-ZIP transcription factor is functionally conserved in these two fungal pathogens for plant infection and sexual reproduction.
that encodes a putative b-ZIP transcription factor unique to filamentous ascomycetes. In this study, we generated and characterized the Δzf1 mutant. Like REMI mutant M7, the Δzf1 mutant was significantly reduced in DON production and virulence on flowering wheat heads. It also displayed female-specific defects in sexual reproduction. Similar defects in plant infection and female fertility were observed in the Magnaporthe oryzae mutant deleted from the ZIF1 ortholog. Zif1 is well conserved in the class Sordariomycetes but none of its orthologs have been characterized in other fungi. Results from this study indicate that ZIF1 may be conserved in fungal pathogens for female fertility and invasive growth after penetration or initial colonization.

RESULTS

The ZIF1 gene is disrupted in REMI mutant M7.

REMI mutant M7 was generated in a previous study by transforming the EcoRI-digested plasmid vector pKY37 into the wild-type strain PH-1 (Seong et al. 2005). It had reduced virulence on flowering wheat heads. The conventional plasmid rescue approach was used to identify the flanking sequence of the integrated pKY37. Plasmid pMS7 containing a 3.8-kb genomic fragment (Fig. 1A) was isolated and sequenced. Sequencing analysis revealed that the transforming vector pKY37 was inserted in the EcoRI site located in the predicted gene FGSG_01555.3 (Fig. 1A). This gene, named ZIF1 (for bZIP transcription factor 1) in this study, encodes a 568-amino acid protein with a basic-leucine zipper (bZIP) domain. It has no distinct homolog in the budding or fission yeast but is conserved in filamentous ascomycetes (Supplementary Fig. 1). However, none of the ZIF1 orthologs have been functionally characterized in other fungi. Except for the bZIP domain, there is no other known domain or motif in the Zif1 protein. Nevertheless, the glutamine-rich regions adjacent to the bZIP domain are conserved in different fungi and may function in mediating protein–protein interactions and transcriptional activation (Escher et al. 2000).

Deletion of the ZIF1 gene has no effect on conidiation or conidium morphology.

Because the disrupted ZIF1 in mutant M7 may be not a null allele, we generated the ZIF1 gene replacement construct (Fig. 1A) by the split-marker approach (Catlett et al. 2003). After transforming protoplasts of PH-1, putative Δzf1 mutants were identified by polymerase chain reaction (PCR) and confirmed by Southern blot hybridization (Fig. 1B). When hybridized with a ZIF1 fragment amplified with primers BTN-1F and BTN-2R, the wild-type and ectopic transformants had the 6.3-kb PstI band. The Δzf1 mutant ZP10 had no hybridization signals (Fig. 1B). Similar to REMI mutant M7, ZP10 had a slight reduction in the growth rate (Table 1) but it had no defects in conidiation, conidium morphology, and germination.

The Δzf1 mutant has reduced virulence.

In infection assays with flowering wheat heads, the Δzf1 mutant usually only caused typical scab symptoms on the inoculated florets 14 days postinoculation (dpi). Symptoms rarely spread to nearby spikelets on the same wheat heads (Fig. 2A). The average disease index of the Δzf1 mutant was approximately 1 (Table 1). Under the same conditions, the wild type and the ectopic transformant spread from the inoculated florets to nearby spikelets. The disease index for the wild-type and ectopic transformant was <6 (Table 1), indicating that the Δzf1 mutant was significantly reduced in virulence on wheat.

Because F. graminearum also is a corn pathogen, we assayed the virulence of mutants M7 and ZP10 on corn stalks and silks. In plants inoculated with the wild type and an ectopic transformant, areas of stalk rot often extended from the inoculation site to or close to the nodes above and below 14 dpi (Fig. 2B). In contrast, Δzf1 mutants caused only limited stalk rot in inoculated corn piths (Fig. 2B). Lack of extensive spreading in corn pith tissues indicates that ZIF1 is a virulence factor for stalk rot. Mutants M7 and ZP10 also were significantly reduced in virulence in corn silk infection assays (data not shown).

Similar defects of mutants M7 and ZP10 in growth and plant infection suggested that disruption or deletion of the ZIF1 gene was responsible for the observed phenotypes. To further confirm this observation, we reintroduced the full-length ZIF1 gene into protoplasts of ZP10. Bcom9 (Table 2) was one of the resulting genetic-resistant transformants that contained a single copy of the transforming complementation construct (data not shown). Bcom9 had the wild-type growth rate and virulence (Table 1; Fig. 2A), indicating that the reintroduced ZIF1 allele complemented the Δzf1 mutant. We also generated the ZIF1bZIP allele deleted from the entire b-ZIP domain (amino acids 276 to 339) and transformed it into ZP10. Several transformants, including YP6 and YP8, were confirmed by Southern analysis to contain the transforming ZIF1bZIP construct. However, these ZIF1bZIP transformants had phenotypes similar to that of the original Δzf1 mutant, indicating that the b-ZIP domain is essential for ZIF1 function.

Ascus and ascospore formation are blocked in the Δzf1 mutant.

We assayed mating and ascospore production in the Δzf1 mutant because ascospores are the primary inoculum in F. graminearum. At 7 days after fertilization, the Δzf1 mutant formed smaller and fewer perithecia than the wild type on carrot agar plates (Fig. 3A). When examined under a microscope, abundant asci and ascospores were visible in perithecia formed by the wild type but not in Δzf1 mutant perithecia (Fig. 3A).

![Fig. 1. ZIF1 gene and generation of the Δzf1 mutant.](image-url)
When matured, the wild-type perithecia oozed out ascospores and formed cirrhi at the ostiole (Fig. 3B). Perithecia produced by the Δzif1 mutant failed to enlarge and form cirrhi even after incubation for 21 days or longer (Fig. 3B).

When examined by transmission electronic microscopy, ascospores and asci were visible in the perithecia formed by PH-1 7 days after fertilization. In contrast, no ascospores were observed in perithecia of the Δzif1 mutant (Fig. 3C). These data indicate that, although it is dispensable for protoperithecium or perithecium formation, ZIF1 must play a critical role in the late events of ascocarp development and formation of asci and ascospores in selfing crosses (Δzif1 × Δzif1).

ZIF1 is dispensable for male fertility in outcrosses.

Although it is a homothallic fungus, *F. graminearum* also can outcross. When the zif1 mutant ZP10 (hygR) was crossed with a nit1 mutant 11622 that is resistant to potassium chlorate (Hou et al. 2002), mature perithecia with cirrhi were formed on the 11622 side of the confrontation zone 2 to 3 weeks after fertilization. By screening through cirrhi from 50 perithecia, we identified 2 perithecia that produced recombinant nit1 hygR progeny resistant to both potassium chloride and hygromycin at 150 μg/ml. From these two outcrossing perithecia, we isolated 35 hygromycin-resistant progeny. All of them displayed characteristic phenotypes of the Δzif1 mutant, including reduced virulence and defects in sexual reproduction (data not shown). When grown on potassium chlorate-amended complete medium (CM), 18 progeny failed to grow and, therefore, were determined to be NIT1, whereas 17 progeny grew on the medium and, therefore, were determined to be nit1. These data indicated a 1:1 segregation at the NIT1 locus. Therefore, we conclude that the observed defects of the Δzif1 mutant but not nit1 cosegregated with the hph marker. Because the Δzif1 mutant was sterile in selfing crosses, the fertility of the ZIF1 ♀×Δzif1 ♂ cross indicates that ZIF1 is dispensable for male fertility but plays a critical role in female fertility.

DON production is reduced in the Δzif1 mutant.

Because of its importance in *F. graminearum* pathogenesis, DON production was measured in diseased wheat kernels from inoculated wheat florets 14 dpi. On average, kernels from wild-type-inoculated heads contained DON at 500 ppm, whereas progeny resistant to both potassium chloride and hygromycin at 150 μg/ml. From these two outcrossing perithecia, we isolated 35 hygromycin-resistant progeny. All of them displayed characteristic phenotypes of the Δzif1 mutant, including reduced virulence and defects in sexual reproduction (data not shown). When grown on potassium chlorate-amended complete medium (CM), 18 progeny failed to grow and, therefore, were determined to be NIT1, whereas 17 progeny grew on the medium and, therefore, were determined to be nit1. These data indicated a 1:1 segregation at the NIT1 locus. Therefore, we conclude that the observed defects of the Δzif1 mutant but not nit1 cosegregated with the hph marker. Because the Δzif1 mutant was sterile in selfing crosses, the fertility of the ZIF1 ♀×Δzif1 ♂ cross indicates that ZIF1 is dispensable for male fertility but plays a critical role in female fertility.

DON production is reduced in the Δzif1 mutant.

Because of its importance in *F. graminearum* pathogenesis, DON production was measured in diseased wheat kernels from inoculated wheat florets 14 dpi. On average, kernels from wild-type-inoculated heads contained DON at 500 ppm, whereas progeny resistant to both potassium chloride and hygromycin at 150 μg/ml. From these two outcrossing perithecia, we isolated 35 hygromycin-resistant progeny. All of them displayed characteristic phenotypes of the Δzif1 mutant, including reduced virulence and defects in sexual reproduction (data not shown). When grown on potassium chlorate-amended complete medium (CM), 18 progeny failed to grow and, therefore, were determined to be NIT1, whereas 17 progeny grew on the medium and, therefore, were determined to be nit1. These data indicated a 1:1 segregation at the NIT1 locus. Therefore, we conclude that the observed defects of the Δzif1 mutant but not nit1 cosegregated with the hph marker. Because the Δzif1 mutant was sterile in selfing crosses, the fertility of the ZIF1 ♀×Δzif1 ♂ cross indicates that ZIF1 is dispensable for male fertility but plays a critical role in female fertility.
kernels from Δzif1 mutant-inoculated heads contained fourfold less DON (Table 1). The complemented transformant Bcom9 produced similar amount of DON in infested wheat kernels (Table 1).

We then assayed DON production in axenic cultures as described (Gardiner et al. 2009a). In agmatine cultures, the Δzif1 mutant was reduced more than 15-fold in DON production compared with the wild type (Table 1). DON production was increased in the complemented strain Bcom9 (Table 1), suggesting the involvement of ZIF1 in regulating trichothecene synthesis. To further confirm this observation, we assayed the expression of several TRI genes (Kimura et al. 2007) in agmatine cultures. In the Δzif1 mutant, the expression level of TRI5 and TRI6 was reduced more than sixfold (Fig. 4A). TRI5 encodes the key enzyme for DON synthesis and TRI6 encodes a major transcriptional regulator of DON synthesis (Seong et al. 2009). For the other TRI genes assayed, TRI4 and TRI12 had no obvious changes but TRI8 and TRI14 also had reduced expression levels in the Δzif1 mutant (Fig. 4A). Interestingly, TRI3 expression was increased approximately twofold in the Δzif1 mutant. These data confirmed that deletion of ZIF1 reduced the expression of the key structural and regulatory genes of DON synthesis. However, unlike the TRI-cluster-specific transcription factor Tr6 (Seong et al. 2009), Zif1 appears to have different regulatory effects on various TRI genes.

Expression of the ZIF1 gene.
The ZIF1-eGFP (enhanced green fluorescent protein) fusion construct under its native promoter control was transformed into the Δzif1 mutant ZP10. The resulting transformant NP18 was normal in growth, sexual reproduction, and virulence (data not shown), indicating that the PZIF1-ZIF1-eGFP construct complemented the defects of the Δzif1 mutant. However, we failed to observe GFP signals in vegetative hyphae, conidia, and young perithecia. Zif1-eGFP fusion proteins may be relatively unstable and only transiently localized to the nucleus.

We then assayed ZIF1 expression by quantitative reverse-transcription (qRT)-PCR assays with RNA isolated from different culture conditions or plant infection stages. The expression level of ZIF1 was relatively low in freshly harvested conidia and young germlings (10 h) but increased in mature vegetative hyphae (Fig. 4B). The highest expression level was in developing perithecia (5 days postfertilization). These results were consistent with the defects of Δzif1 mutant in ascospore production. According to microarray data deposited in the PLEXdb database, ZIF1 is also upregulated during barley infection (Boddu et al. 2006), indicating that it may be involved in plant infection.

ZIF1 is important for spreading to the rachis.
To visualize fungal growth in infected plant tissues, we transformed the RP27-GFP construct pRM7 (Mehrabi et al. 2008) into protoplasts of PH-1 and ZP10. The resulting transformants, RM7PH1 and RM7zp10 (Table 1), had strong GFP signals in the cytoplasm of conidia and vegetative hyphae. In wheat heads inoculated with RM7PH1, extensive fungal growth was visible in the rachis tissues next to the inoculated site 5 dpi (Fig. 5). Under the same conditions, hyphal growth of the Δzif1 mutant failed to spread from the inoculated floret to the rachis. GFP signals were only observed at the site (likely the scission zone) where the inoculated floret was removed (Fig. 5). These data indicate that the Δzif1 mutant colonized the inoculated floret but its spread to the rachis and other spikelets was restricted, which may explain the reduced virulence of the Δzif1 mutant (Table 1).

The Δzif1 mutant was hypersensitive to reactive oxygen species.
When assayed for growth on CM, the Δzif1 mutant had no obvious changes in sensitivities to 1 M sorbitol, 0.7% NaCl,

<table>
<thead>
<tr>
<th>ZIF1 is important for spreading to the rachis.</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Δzif1 mutant was hypersensitive to reactive oxygen species.</td>
</tr>
<tr>
<td>When assayed for growth on CM, the Δzif1 mutant had no obvious changes in sensitivities to 1 M sorbitol, 0.7% NaCl,</td>
</tr>
</tbody>
</table>

Table 1. Growth, conidiation, deoxynivalenol (DON) production, and virulence of *Fusarium graminearum* strains

<table>
<thead>
<tr>
<th>Strain</th>
<th>Growth rate (mm/day)*</th>
<th>Conidiation (×10⁶ spores/ml)</th>
<th>Infected kernelsb</th>
<th>Axenic culturesc</th>
<th>Disease indexd</th>
</tr>
</thead>
<tbody>
<tr>
<td>PH-1</td>
<td>11.5 ± 0.5</td>
<td>42.1 ± 0.9</td>
<td>505.0 ± 249.3</td>
<td>2,410 ± 100.0</td>
<td>6.8 ± 1.2</td>
</tr>
<tr>
<td>ZP10</td>
<td>10.5 ± 0.5</td>
<td>39.5 ± 3.9</td>
<td>117.0 ± 68.4</td>
<td>137.7 ± 61.4</td>
<td>0.6 ± 0.2</td>
</tr>
<tr>
<td>Bcom9</td>
<td>12.0 ± 0.5</td>
<td>26.3 ± 3.2</td>
<td>530.0 ± 86.1</td>
<td>1,026.8 ± 233.3</td>
<td>5.9 ± 1.9</td>
</tr>
<tr>
<td>M7</td>
<td>9.5 ± 0.5</td>
<td>62.2 ± 4.6</td>
<td>205.3 ± 46.1</td>
<td>483.3 ± 123.8</td>
<td>1.6 ± 1.4</td>
</tr>
</tbody>
</table>

| *a* Average and standard deviation of daily extension in colony radius during 5 days of growth on V8 agar in a 15-cm petri plates at 25°C. |
| *b* DON production in infected wheat kernels harvested from inoculated wheat heads 14 days postinoculation. Mean and standard deviation were calculated from four independent infection assays. |
| *c* DON production in the defined medium with 0.2% agmatine. |
| *d* Mean and standard deviation of diseased spikelets per wheat head. |

Table 2. *Fusarium graminearum* and *Magnaporthe oryzae* strains used in this study

<table>
<thead>
<tr>
<th>Strain</th>
<th>Brief description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>PH-1</td>
<td>Wild-type</td>
<td>Trail et al. 2003</td>
</tr>
<tr>
<td>11622</td>
<td>nit1 mutant of PH-1</td>
<td>Hou et al. 2002</td>
</tr>
<tr>
<td>M7</td>
<td>REMI mutant disrupted in the ZIF1 gene</td>
<td>Seong et al. 2005</td>
</tr>
<tr>
<td>ZP10</td>
<td>Δzif1 gene replacement mutant</td>
<td>This study</td>
</tr>
<tr>
<td>ZP4</td>
<td>An ectopic knockout mutant</td>
<td>This study</td>
</tr>
<tr>
<td>Bcom9</td>
<td>Complemented transformant of ZP10 (Δzif1/ΔZIF1)</td>
<td>This study</td>
</tr>
<tr>
<td>NP18</td>
<td>Transformant of ZP10 expressing PZIF1-ZIF1-eGFP</td>
<td>This study</td>
</tr>
<tr>
<td>YP6</td>
<td>Transformant of ZP10 expressing the ZIF1bZIP allele</td>
<td>This study</td>
</tr>
<tr>
<td>YP8</td>
<td>Transformant of ZP10 expressing the ZIF1bZIP allele</td>
<td>This study</td>
</tr>
<tr>
<td>RM7PH1</td>
<td>Transformant of PH-1 expressing the bZIP-eGFP (pRM7)</td>
<td>This study</td>
</tr>
<tr>
<td>RM7zp10</td>
<td>Transformant of ZP10 expressing PZIF1-ZIF1-EFP (pRM7)</td>
<td>This study</td>
</tr>
<tr>
<td>M. oryzae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guy11</td>
<td>Wild-type (MAT1-2, avr-Pita)</td>
<td>Cho and Ellingboe 1991</td>
</tr>
<tr>
<td>70-15</td>
<td>Wild-type (MAT1-1, AVR-Pita)</td>
<td>Cho and Ellingboe 1991</td>
</tr>
<tr>
<td>bzip24</td>
<td>ΔMozif1 mutant of 70-15 (MAT1-1)</td>
<td>This study</td>
</tr>
<tr>
<td>MFC1</td>
<td>Transformant of bzip24 expressing PZIF1-ZIF1-eGFP</td>
<td>This study</td>
</tr>
</tbody>
</table>

Vol. 24, No. 1, 2011 / 121
Congo red at 200 μg/ml, or 0.01% sodium dodecyl sulfate (SDS), indicating that ZIF1 is not involved in response to hyperosmotic and cell wall stresses. However, deletion of ZIF1 resulted in increased sensitivity to H2O2. In the presence of 0.08% H2O2, the Δzif1 mutant had no visible growth but the wild type and complemented transformants still formed colonies (Supplementary Fig. 2).

The ZIF1 ortholog is important for virulence in M. oryzae.
To determine whether the function of ZIF1 in plant infection is conserved in other fungi, we generated the gene replacement mutant of MGG_03288.6, which was orthologous to ZIF1 (named MoZIF1 in this study). The Δ Mozif1 mutant (Supplementary Fig. 3) was normal in vegetative growth, conidiation, and appressorium formation (data not shown). However, its virulence was reduced in infection assays with rice seedlings (Fig. 6A). When assayed for appressorial penetration with onion epidermal cells, the Δ Mozif1 mutant had reduced growth of infectious hyphae compared with the wild type (Fig. 6B). These results indicate that MoZIF1 is important for invasive growth and lesion development in M. oryzae.

MoZIF1 also is essential for female fertility.
In M. oryzae, perithecia are normally embedded within the substrate but develop long beaks that protrude from the surface of the substrate and through which ascospores are released.
When the ΔMozif1 mutant (MAT1-1) was crossed with the wild-type strain Guy11 (MAT1-2), mature perithecia with long beaks protruding from the surface were formed on the Guy11 side of the confrontation zone after incubation for 3 to 4 weeks (Fig. 7A). Ascospore progeny were isolated from these perithecia (Guy11 as the female), suggesting that Mozif1 is dispensable for male fertility. However, no perithecia with long necks were observed on the mutant side of the confrontation zone (Fig. 7A). After removing aerial hyphae, immature perithecia were observed in these areas in which the ΔMozif1 mutant was mated as the female. These perithecia were pigmented but failed to produce long necks (Fig. 7A). Perithecia of the ΔMozif1 mutant also were smaller than those of the wild type (Fig. 7B), and sterile (Fig. 7C). Therefore, Mozif1 is required for late stages of peritheciun development and the production of ascii and ascospores (Fig. 7B).

Complementation of the ΔMozif1 mutant with ZIF1.

To further test whether ZIF1 and Mozif1 share similar biological functions, we transformed the P_{zif1}-ZIF1-eGFP fusion into the ΔMozif1 mutant. Transformant MFC1 (Table 2) was identified by PCR with primers RGF and NGR to contain the ZIF1-eGFP construct. In infection assays with rice seedlings, it had increased virulence compared with the ΔMozif1 mutant (Fig. 7A). The number of blast lesions formed by MFC1 was similar to that of the wild type (Fig. 6), indicating that the F. graminearum ZIF1 gene functionally complemented the defects of the M. oryzae ΔMozif1 mutant in plant infection. However, transformant MFC1, like F. graminearum NP18 (Δzif1/ZIF1-eGFP), lacked detectable GFP signals in conidia, vegetative hyphae, appressoria, and infectious hyphae (data not shown).

Genes regulated by ZIF1 in liquid cultures.

The F. graminearum whole-genome GeneChip (Guldener et al. 2006) was used for microarray analysis. In comparison with the wild type, 214 and 328 genes were down- and upregulated, respectively, more than fivefold in the Δzif1 mutant (Supplementary Tables 1 and 2). Among the downregulated genes, more than 60% encode hypothetical proteins with unknown biological functions (Supplementary Fig. 4). The second largest Munich Information Center for Protein Sequences (MIPS) category (Mewes et al. 2002) is related to metabolism (20.5%). Of these genes, 20 (9.56%) are involved in secondary metabolism (MIPS subcategory 01.20). Many genes belonging to MIPS category 20 (cellular transport, 12.4%) and 32 (defense and virulence, 7.65%) also were downregulated in the Δzif1 mutant. Some of them may be involved in plant infection. Among the upregulated genes, approximately 57 and 24% encode hypothetical proteins and proteins involved in metabolism, respectively. In all, 39 genes involved in ribosome biogenesis (subcategory 12.01) have increased expression levels in the Δzif1 mutant. Only one gene belonging to this subcategory was downregulated.

The gene with the most significantly reduced expression level in mutant ZP10 was FGSG_01767, which is predicted to encode a cytochrome P450 monooxygenase similar to pisatin demethylase of Nectria haematococca (George et al. 1998). Its expression also was increased during plant infection (Guldener et al. 2006). If this gene plays a role in detoxifying plant defensive compounds in F. graminearum, its downregulation of 230-fold may be related to the reduced virulence of the Δzif1 mutant. Along with the same line, two other putative cytochrome P450 monooxygenase genes, FGSG_03260 and FGSG_03264, also were downregulated more than fivefold in the mutant. Other significantly downregulated genes with possible functions in plant infection include FGSG_06554 and FGSG_09352, which encode a putative catalase and a membrane protein similar to Pth11 in M. oryzae (DeZwaan et al. 1999), respectively.

Interestingly, four of the top six downregulated genes (more than 30-fold reduction) in mutant ZP10 were FGSG_03932 to FGSG_03936. Unfortunately, most of the genes belonging to this putative cluster encode conserved hypothetical proteins, which is not helpful to predict its biological function. Several additional gene clusters were identified among these genes with more than fivefold downregulation in the Δzif1 mutant (Supplementary Table 3). One of them is the aurofusarin synthesis cluster (Frandsen et al. 2006; Kim et al. 2008), suggesting that ZIF1 positively regulates aurofusarin biosynthesis in F. graminearum. One cluster consists of genes from FGSG_7820 to FGSG_7825. Most of them encode conserved hypothetical proteins unique to filamentous fungi. Some of them may be important for plant infection or sexual reproduction in F. graminearum. Interestingly, three downregulated genes, FGSG_01298, FGSG_04894, and FGSG_12978, are homologous to fungal genes involved in self-recognition or vegetative incompatibility.

To verify the microarray data, we selected the following genes for qRT-PCR analysis: FGSG_02087.3 (putative TfdA family oxidoreductase), FGSG_03935 (short-chain alcohol dehydrogenase), FGSG_03936 (succinate semialdehyde dehydrogenase), FGSG_07822 (major facilitator MirA), FGSG_13098 (putative fungal specific transcription factor), FGSG_0393 (Pth11-like receptor), FGSG_01767 (pisatin demethylase), FGSG_03120 (diacylglycerol pyrophosphate phosphatase), FGSG_03710 (NADH-oxidase), FGSG_04587 (WD40-repeat protein), and FGSG_06554 (catalase). All except for FGSG_03710 were confirmed by qRT-PCR to be significantly downregulated in the Δzif1 mutant (Fig. 8).

FIG. 6. Infection and penetration assays with the ΔMozif1 mutant. A, Rice leaves sprayed with conidia (1 × 10⁷ conidia/ml) from the wild type (WT) 70-15, ΔMozif1 mutant, and ΔMozif1/ZIF1 complemented transformant MFC1. Typical leaves were photographed 7 days postinoculation. B, Penetration assays with onion epidermal cells. In comparison with the WT strain, the ΔMozif1 mutant had reduced growth of infectious hyphae in penetrated plant cells 48 h postinoculation. Bar = 10 µm.
searches indicate that ZIF1 is specific to filamentous ascomycetes. Its orthologs are well conserved over the entire protein in the class Sordariomycetes. Surprisingly, one of the maize full-length cDNA clone (GenBank number ACR36092) is highly similar to ZIF1 (38% identity; e value = 7e–79). Because some fungi, such as F. verticillioides, could grow endophytically in corn plants, we used the nucleotide sequence of ACR36092 to search different databases. It has no perfect match with any predicted genes in sequenced fungal genomes but shares the highest similarity (79% identity) with one expressed sequence tag from Penicillium marneffei (GenBank number XM_002146056). Therefore, if ACR36092 is from an endophyte present in tissues used for constructing maize cDNA libraries, this fungus is likely a Eurotiomycete that has not been sequenced.

In F. graminearum, the disease index of the Δzif1 mutant was less than 1, which is consistent with its defects in spreading from inoculated floret to the rachis 5 dpi (Fig. 5). ZIF1 may play a critical role in invading through the scission zone to the rachis and other spikelets. Because DON is an important virulence factor in F. graminearum (Bai et al. 2002), reduced production of DON in the Δzif1 mutant may be related to its defects in plant infection. In the foliar pathogen M. oryzae, the ΔMozif1 mutant penetrated plant cells but had reduced invasive growth, which may be directly responsible for fewer and generally smaller lesions formed by the mutant. Although F. graminearum and M. oryzae differ in infection mechanisms, the ZIF1 orthologs are conserved in these two fungi for plant infection processes after the initial colonization. It is possible

Fig. 7. Defects of the ΔMozif1 mutant in sexual reproduction when crossed with the wild-type (WT) strain Guy11. A, Close-up view of 4-week-old mating cultures on the Guy11 (WT, left) or ΔMozif1 mutant (right) side of the confrontation zone where each strain was mated as the female. Long beaks produced by WT perithecia protruded from the colony surface. For the mutant culture, aerial hyphae were removed to observe smaller perithecia that were pigmented but blocked in the beak formation inside the medium. B, Typical perithecia from mating zones where Guy11 or the ΔMozif1 mutant was mated as the female. AscI and ascospores were only visible in WT perithecia. Bar = 50 μm.

Fig. 8. Quantitative reverse-transcription polymerase chain reaction assays for the expression of selected genes in the Δzif1 mutant. After normalizing with FgACT1, the relative expression level of each gene in the Δzif1 mutant was presented as fold changes in comparison with that of the wild type (normalized to the value 1). Mean and standard deviation were calculated with data from three biological replicates.
that the Zif1 transcription factor regulates subsets of genes that are important for fungus–plant interactions during invasive growth or overcoming plant defensive compounds, such as reactive oxygen species (ROS) and phytoalexins. The ∆zif1 mutant had increased sensitivity to H2O2 and a reduced expression level of one putative catalase gene. In yeast, Yap1 is a b-ZIP transcription factor regulating responses to oxidative stress (Delaunay et al. 2000). The Yap1 ortholog FGSG_08800 has not been characterized in F. graminearum. In Ustilago maydis and Alternaria alternata, Yap1 orthologs are important for plant infection (Lin et al. 2009; Molina and Kahmann 2007). However, other transcription factors may be responsible for regulating genes important for detoxifying ROS in plants because the Yap1 ortholog is dispensable for virulence in Cochliobolus heterostrophus (Lev et al. 2005).

In infection assays with both wheat heads and corn stalks, the REMI mutant M7 appeared to be more virulent than zif1 mutant ZIP1 (Fig. 2). DON production also was higher in mutant M7 than in ZIP1 (Table 1). Because the insertion site of pYK37 was close to the C terminus, the b-ZIP domain and 90% of the amino acid sequence of the Zif1 protein are not affected. It is likely that the disrupted ZIF1 allele has some residual activities (not a null allele). In the complemented transformant Bcom9, conidiation, virulence, and DON production were decreased significantly in comparison with the ∆zif1 mutant but were not recovered to the wild-type level (Table 1), indicating that a positional effect may affect the expression and function of the ectopically integrated ZIF1 gene.

In the ∆zif1 mutant, DON production and the expression of many TRI genes were reduced. Microarray analysis revealed that a number of other gene clusters that involved secondary metabolism were downregulated in the ∆zif1 mutant, including the aurofusarin biosynthetic gene cluster. Therefore, ZIF1 may be involved in the global regulation of secondary metabolism in F. graminearum. One cluster consists of genes from FGSG_7820 to FGSG_7825. Most of them encode conserved hypothetical proteins unique to filamentous fungi. Approximately half of the genes downregulated in the ∆zif1 mutant have unknown functions. It is possible that some of them are important pathogenicity factors in F. graminearum.

ZIF1 also plays a critical role in sexual reproduction. In F. graminearum, a homothallic fungus, the ∆zif1 mutant was sterile on selfing cross plates (∆zif1 × ∆zif1). However, unlike other female sterile mutants in F. graminearum, such as the gpmk1, mgv1, FBP1, and Gzyn2 mutants (Han et al. 2007; Hong et al. 2010; Hou et al. 2002; Jenczminonka et al. 2003), the ∆zif1 mutant still formed small, dark-pigmented perithecia. In ZIF1 (♀) × ∆zif1 (♂) outcrosses, fertile perithecia were produced and ∆zif1 progeny were identified, indicating that ZIF1 is dispensable for ascospore viability and male fertility. Similar phenomenon was observed in M. oryzae, a heterothallic fungus that has weak female fertility or the tendency to lose female fertility under laboratory conditions (Xu et al. 2007; Zeigler 1998). The ΔMoZif1 mutant was fertile when mated as the male. When mated as the female, the ΔMoZif1 mutant produced small, sterile perithecia without long necks (Fig. 7). Therefore, unlike other genes known to be related to female fertility in M. oryzae, such as MPS1 and MGB1 (Nishimura et al. 2003; Xu et al. 1998), MoZIF1 is dispensable for protoperithecia formation and initial perithecium development but essential for ascosporegenesis and perithecia maturation.

Our results indicate that the ZIF1 orthologs play a female-specific role in ascus and ascospore formation in a homothallic and a heterothallic member of order Sordariomycetes. To our knowledge, no other genes with similar functions in sexual reproduction have been reported in filamentous ascomycetes. For the transvection phenomenon in Neurospora crassa, the asm-1 mutant is defective in ascospore development as either the male or female (Aramayo and Metzenberg 1996). It is most likely that MoZIF1 functions before or during fertilization. Protoperithecia of the ΔMoZif1 mutant may be defective in fertilization. However, it is also possible that small, pigmented perithecia were developed from mutant protoperithecia after fertilization. MoZIF1 may be essential for postfertilization events in developing perithecia, such as dikaryotic hyphal growth and crozier formation. Because the mating defects of the ΔMoZif1 mutant were only observed when it was mated as the female, if MoZIF1 indeed functions postfertilization then M. oryzae must be able to distinguish whether the ΔMoZif1 mutant was mated as the male or female in the ΔMoZif1 + MoZIF1 dikaryotic ascogenous hyphae or ΔMoZif1 MoZIF1 diploid croissors. In the dikaryon or diploid stage, the function of the MoZIF1 allele from the female cannot be replaced by the MoZIF1 allele from the male. In plants and animals, only the maternal or paternal allele of imprinted genes is expressed and functional (Reik and Walter 2001). The female-specific function of MoZIF1 suggests that it may be regulated by a mechanism similar to genetic imprinting in higher eukaryotes. Therefore, it will be important to determine the regulation and biological function of ZIF1 and its orthologs in postfertilization events during sexual reproduction in filamentous ascomycetes.

Table 3. Polymerase chain reaction primers used in this study

<table>
<thead>
<tr>
<th>Primer</th>
<th>Sequence (5′-3′)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BTF1F</td>
<td>TAAAGGCCTGTCATCTCAG</td>
</tr>
<tr>
<td>BT2R</td>
<td>GACCTCCACTAGCTCCAGCC</td>
</tr>
<tr>
<td>BT3F</td>
<td>GAATAGAGATAGTCCCCAGA</td>
</tr>
<tr>
<td>BT4R</td>
<td>TGGCCAACAATATGCTATC</td>
</tr>
<tr>
<td>BTN-1F</td>
<td>TTATCGACGCTGTCCTTC-</td>
</tr>
<tr>
<td>BTN-2R</td>
<td>ACAAGTTCATGTAAGCAAC</td>
</tr>
<tr>
<td>B2P1F</td>
<td>ACTAGTGATTACACATCCGA</td>
</tr>
<tr>
<td>B2P2F</td>
<td>TAGTATGATCTGAGATGTGT</td>
</tr>
<tr>
<td>GPNAT1F</td>
<td>GGGCAGTTTTGGAATCTCA</td>
</tr>
<tr>
<td>GPNAT1R</td>
<td>GACACGTCCCTGCCCCTTG</td>
</tr>
<tr>
<td>GPP27F</td>
<td>GTAGGAGGACCAATCTCCT</td>
</tr>
<tr>
<td>GPP27R</td>
<td>GAACAGCTCTCGCCCTTG</td>
</tr>
<tr>
<td>ZIF1NG</td>
<td>CAGCTCACTATGGCGAATTGGT</td>
</tr>
<tr>
<td>ZIF1GR</td>
<td>CACCCACAGTTGAGACAGCT</td>
</tr>
<tr>
<td>ZIF1GF</td>
<td>CAGACGGTATGAGAGACAGG</td>
</tr>
<tr>
<td>B2P1A</td>
<td>GAGAATTTGGAAGGAGCAAC</td>
</tr>
<tr>
<td>B2P1B</td>
<td>TAGCAGAGGAGGAACAGCTC</td>
</tr>
<tr>
<td>B2P2</td>
<td>GAAAGCTCTTGCCCTGGCTT</td>
</tr>
</tbody>
</table>

* Restriction enzyme sites introduced into the primers are in italic and nucleotide sequences from the *hph* gene are underlined.
MATERIALS AND METHODS

Fungal strains and culture conditions.

The *F. graminearum* wild-type strain PH-1 (NRRL 31084) and transformants generated in this study (Table 2) were routinely maintained on V8 juice agar plates, cultured on carrot agar plates for sexual reproduction, and grown in liquid CMC medium for conidiation (Cappellini and Peterson 1965; Hou et al. 2002; Trail et al. 2003). Protoplast preparation and fungal transformation were performed as described (Hou et al. 2002). CM with hygromycin B at 250 μg/ml or geneticin at 250 μg/ml (Sigma-Aldrich, St. Louis) was used for selection of transformants. The *niiT* mutant 11622 was used to cross with the Δzf1 mutant as described (Hou et al. 2002). Ascospore progeny were assayed for growth on CM agar plates with hygromycin B at 250 μg/ml, CM with 1% KClO₃, and minimal medium with 1% NaNO₃ as the sole nitrogen source (Ding et al. 2009; Seong et al. 2006). For testing sensitivities to various stresses, fungal growth was assayed after incubation at 25°C for 3 days on CM plates with 1 M sorbitol, 0.7% NaCl (wt/vol), Congo red at 200 μg/ml, 0.01% SDS (wt/vol), Calcofluor white at 200 μg/ml, or 0.08% H₂O₂.

The *M. oryzae* wild-type and mutant strains were cultured on oatmeal agar plates as described (Park et al. 2006). Transformants were selected on TB3 with hygromycin B at 250 μg/ml, or 0.08% H₂O₂.

Generation of the Δzf1 mutant.

To generate the *ZF1* gene replacement constructs using the split-marker approach (Catlett et al. 2003), 0.83-kb upstream and 0.85-kb downstream fragments were amplified with primer pairs BTF1F/BTF2R and BTF3F/BTF4R (Table 3), respectively. The *hy* and *yg* fragments of the hygromycin phosphotransferase (*hph*) gene were amplified with primers HYGF, HYR, YGF, and HYGR as described (Mehrabii et al. 2008; Zhou et al. 2010). After transformation, hygromycin-resistant transformants were screened by PCR with primers BUN-1F and BNT-2R (Table 3) and further characterized by Southern blot analysis. For complementation assays, a 3.9-kb fragment containing the *ZF1* gene was amplified with primers bZP1F and bZP2R (Table 3) and cloned into pHZ100 (Bluhm et al. 2007). The resulting construct pJY01 (Fig. 1A) was transformed into protoplasts of the Δzf1 mutant ZP10.

Generation of GFP fusion constructs.

Primers *ZIF1NGF* and *ZIF1NGR* (Table 3) were used to amplify the *ZF1* ORF plus 1.5-kb upstream promoter region. The resulting PCR products were cotransformed into *Saccharomyces cerevisiae* XX1-25 with *XhoI*-digested pFL2 vector, which was generated by replacing the *hph* gene on the vector backbone of pDL2 with the geneticin-resistance marker (Bourett et al. 2002; Bruno et al. 2004). The PΔzf1-ZF1-eGFP fusion construct was identified by PCR with primers ZIP1NF/R and confirmed by sequencing analysis. The same yeast in vivo recombination approach was used to generate the PΔzf1-ZF1-eGFP construct. Both fusion constructs were transformed into protoplasts of the Δzf1 mutant.

Construction of the *ZF1*Δ* zf1* allele.

To generate the ZIF1Δzf1 allele (deleted from amino acid residues 276 to 339), the *ZF1* fragments upstream and downstream from the *zif1* domain were amplified with primer pairs GFPNATF/BZP1BR and BZP1BF/BZP1BR (Table 3), respectively. The resulting PCR products were co-transformed with *XhoI*-digested pKBO4 into yeast strain XX1-25 (Bruno et al. 2004). The ZIF1Δzf1 construct recovered from Trp⁺ yeast transformants was confirmed by sequencing analysis and transformed into mutant ZP10.

The Δzf1 deletion mutant in *M. oryzae*.

The upstream and downstream flanking sequences of *MgZF1* were amplified and ligated with the *hph* cassette released from pCX63 (Zhao et al. 2004). With the ligation product as the template, the *MgZF1* gene replacement construct was amplified with primers bBm and bEI and transformed into the wild-type strain 70-15 as described (Xu and Hamer 1996). Putative *MgZF1* gene-replacement mutants were screened by PCR and further confirmed by Southern blot analyses. To complement the *M. oryzae* mutant with the *F. graminearum* *ZF1* gene, the PΔzf1-ZF1-eGFP fusion construct was transformed into the Δzf1 mutant. The resulting zeocin-resistant transformants were confirmed by PCR to contain the ZIF1-eGFP fusion construct.

Plant infection assays.

Conidia harvested from 5-day-old CMC cultures of *F. graminearum* strains were resuspended to 10⁶ conidia/ml in 0.01% (vol/vol) Tween 20. Six-week-old wheat plants of cv. Norm were drop inoculated with conidium suspensions as described (Gale et al. 2002; Kang and Buchenauer 1999). Diseased spikelets in each wheat head were counted 14 dpi to estimate disease indices as described (Gale et al. 2002; Seong et al. 2006). Infection assays with corn silks were performed as described (Seong et al. 2005). For corn stalk infection assays, sterile wooden toothpicks were briefly soaked in conidium suspensions and used to inoculate mature plants of corn cv. Pioneer 2375 as described (Zhou et al. 2010). Stalk rot symptoms were examined 14 dpi.

For *M. oryzae*, conidia harvested from 10-day-old oatmeal cultures were used for appressorium formation, penetration of onion epidermal cells, and rice infection assays as described (Park et al. 2006; Xue et al. 2002; Zhao and Xu 2007). Two-week-old seedlings of rice cv. Nipponbare were used for spray and injection inoculation.

Assay for DON production.

Diseased wheat kernels were harvested from inoculated spikelets 14 dpi and assayed for DON as described (Bluhm et al. 2007). DON production also was assayed with cultures grown in the defined medium with 0.2% agmatine as described (Gardner et al. 2009a; Zhou et al. 2010).

Microarray analysis.

Conidia harvested from 5-day-old CMC cultures were resuspended in 100 mL of CM to 10⁶ conidia/ml. After incubation at 25°C for 16 h, germlings were collected by filtration and used for RNA isolation with the TRIZol reagent (Invitrogen). For both the wild type and the Δzf1 mutant, RNA was isolated from three biological replicates. For each sample, 5 μg of total RNA was labeled with the Affymetrix eukaryotic RNA labeling kit (Affymetrix, Santa Clara, CA, U.S.A.). Hybridization and washing of the Fusarium GeneChip (Guldener et al. 2006) were performed at the Purdue Core Genomics Facility with standard Affymetrix procedures. Hybridization signals were scanned with a GeneChip GCS 3000 scanner (Affymetrix). The resulting CEL files were processed with software MAS5.0 (Affymetrix) and further analyzed with GeneSpring GX V7.2 (Agilent Technologies, Santa Clara, CA, U.S.A.).

qRT-PCR analyses.

RNA was isolated with the Trizol reagent (Invitrogen) and used for cDNA synthesis with the StrataScript QPCR cDNA...
synthesis kit (Stratagene, La Jolla, CA, U.S.A.) following the instructions provided by the manufacturer. Primers TubQF and TubQR (Bluhm et al. 2007) were used to amplify the β-tubulin gene TUB2 of Fusarium graminearum. PCR was performed with a Stratagene MX3000 system as described (Zhou et al. 2010). After normalizing the expression of tested genes with TUB2, relative changes in gene expression levels were calculated by the comparative cycle threshold method (Applied Biosystems, Foster City, CA, U.S.A.). For each gene, qRT-PCR data from three biological replicates were used to calculate the mean and standard deviation.

ACKNOWLEDGMENTS

We thank K. Seong and J. Yao for assistance in generating the mutants and microarray analysis, Y. Dong for DON detection, and L. Dunkle and S. Goodwin for critical reading of this manuscript. This work was supported by grants to J.-R. Xu and H. C. Kistler from the U.S. Wheat and Barley Scab Initiative and the National Research Initiative of the United States Department of Agriculture Cooperative State Research, Education, and Extension Service (numbers 2007-35319-102681 and 2008-35604-18800).

LITERATURE CITED

Foster City, CA, U.S.A.). For each gene, qRT-PCR data from three biological replicates were used to calculate the mean and standard deviation.
Molecular Plant-Microbe Interactions

