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Functional genomic approaches for the study of 
fetal/placental development in swine with special 

emphasis on imprinted genes 
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This chapter describes the application of functional genomic approaches 
to the study of imprinted genes in swine. While there are varied definitions 
of "functional genomics", in general they focus on the application of DNA 
microarrays, single nucleotide polymorphism (SNP) arrays, and other high 
coverage genomic analyses, and their combination with downstream 
methods of gene modification such as silencing RNA (siRNA) and viral and 
non-viral transfection. Between the initial data acquisition and the actual 
genetic manipulation of the system lies bioinformatics, where massive 
amounts of data are analyzed to extract meaningful information. This area 
is in constant flux with an increased emphasis on detection of affected 
pathways and processes rather than generation of simple affected gene 
lists. We will expand on each of these points and describe how we have 
used these technologies for the study of imprinted genes in swine. First we 
will introduce the biological question to provide context for the discussion 
of the functional genomic approaches and the types of information they 
generate. 

Part I. The biological question 

While over 99% of genes in mammalian species are transcribed from both maternal and 
paternal alleles (bi-allel ic expression), a small subset are transcribed from on Iy one allele 
(mono-allelic expression). In some cases it is the maternal allele that is transcribed and in 
others the paternal allele. The choice of which allele is transcribed is dependent on markings 
placed in the chromosome during gametogenesis (Hajkova et a/. 2002, Reik & Walter 2001). 
To date less than 100 imprinted genes have been identified, yet they have profound phenotypic 
effects, particularly in placental and fetal development and function (Angiolini et al. 2006). Yet, 
their role is not limited to fetal and placental development but can also affect other aspects of 
reprod uction such as rearing behavior and lactation as wi II be descri bed later. Our interest 
in these genes came about through the reports of abnormal placentation and fetal overgrowth 
of somatic-cell-nuclear-transfer-derived calves (Hill et al. 1999). The combined syndrome has 
been referred to as abnormal offspring syndrome (AOS) as well as large offspring syndrome 
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(LOS) (Farin et al. 2004, Farin et al. 2006). Multiple laboratories working in this area reported 
epigenetic abnormalities in cloned cattle and mice, including disregulation of imprinted genes 
(Dindot et al. 2004). It was through these original observations that we became interested in 
this complex and fascinating group of genes, and at the same time dismayed by the almost 
total lack of information of their function in swine. 

Evolution of imprinted genes 

Imprinted genes, which are defined as genes that display parent-of-origin, mono-allelic, 
expression, have only been found in placental mammals (Hore et al. 2007) and flowering plants 
(Huh et al. 2008) while non imprinted homologues have been found in reptiles, amphibians, 
fishes and the egg-laying monotremes (Edwards et al. 2007a). Yet, even if a small rudimentary 
placenta is present, such as that seen in marsupials, evidence for imprinting can be found. Thus, 
the placenta and imprinted genes appear to have co-evolved. This underlies the relevance of 
these genes to the formation and function of the placenta and in fetal development. 

The parental-conflict hypothesis has emerged to explain the appearance of imprinting as a 
result of different evolutionary pressures influencing each parent in placental mammals. The 
hypothesis states that imprinting evolved to control energy flow between the mother and the 
developing fetus (Moore & Haig 1991) . The conflicting evolutionary outcomes are that the 
mother (and consequently her genome) is more successful by restricting nutrient flow to the 
fetus/offspring so that she does not commit too much of her energy resources to each fetus, 
leaving her more able to reproduce in large numbers. In contrast, the father (and his genome), 
is represented only in the fetus, and improves his success by extracting as much energy as 
possible from the mother to benefit each fetus/offspring. It is here were the "conflict" lies, and a 
careful balance between the two contrasting forces leads to a normal fetus. Unbalancing of these 
forces can lead to either a smaller than normal (small for gestational age or intrauterine growth 
restriction) or a larger fetus (large for gestation age or large offspring syndrome; Fig. 1). 

The characteristics of uniparental conceptuses support components of the parental conflict 
hypothesis. Androgenotes (conceptuses derived from only the male) and gynogenotes 
(conceptuses derived from only the female) can be produced from either two male pronuclei or 
two female pronuclei (McGrath & Solter 1984). Parthenotes, which are a form of gynogenote, 
can be easily generated by activation of oocyte and inhibition of polar body extrusion by 
using cycloheximide (Tsai et al. 2006b), resulting in a diploid embryo carrying only maternally 
derived chromosomes. Although neither androgenotes nor gynogenotes can produce viable 
offspring, their characteristics are suggestive of the role of imprinted genes in energy distribution 
and placental development. Gynogenotes, with a double dose of maternally expressed genes, 
develop into small fetuses with small placentas, as would be expected from a reduction in 
energy delivery to the fetus. In contrast, androgenotes develop a very large placenta also 
supportive of the placental conflict hypothesis. However, they also lack a fetus suggesting that 
maternal impri nts are an absolute requ irement for fetal development. In add ition, as wi II be 
discussed later, there is ample direct experimental evidence supporting both the parental confl ict 
hypothesis and the role imprinted genes play in placental and fetal development, as well as in 
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Fig. 1 Diagrammatic representation of the parental conflict hypothesis. A. A normal 
situation where the control of nutrients from the mother to the fetus is balanced leading to 
normal fetal growth. Notice maternal imprinting shifting the balance towards the mother 
while paternal imprinting shifts the flow towards the fetLis. B. A case where the balance 
between maternal and paternal imprints is shifted towards the mother resulting n less 
nutrients reaching the fetus leading to intrauterine growth restriction/Small for gestational 
age (IUGRlSGA). C. The opposite case whereby nutrient flow is shifter from the mother to 
the fetus resulting in large offspring syndrome/large for gestational age (LOS/LGA). 
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the existence of placental fishes provides a paradox for the requirement of imprinted genes for 
placental development and function. At present, there has only been one report of analysis of 
imprinted genes in viviparous fishes and that single report indicates that the IGF2 gene is not 
imprinted in this species (Lawton et a/. 2005). While that in itself is not sufficient evidence to 
classify these placental animals as a paradox, the recent observation that hammerhead sharks 
can reproduce by parthenogenesis is (Chapman et a/. 2007). As mentioned above, uniparental 
offspring are embryonic lethal in all placental mammals species tested to date (Walsh et a/. 
1994, Hagemann et a/. 1998, Zhu et a/. 2003) and it is widely accepted that this lethality is 
due to the presence of imprinting. The observation of successful parthenogenesis in sharks, thus, 
suggest that imprinting may be absent in this species. If that is proven to be the case, how did 
this species evolve a placenta? Or is it that the fish placenta is functional and morphologically 
distinct from that of placental mammals? 

Fetal nutrition within the fish species ranges from wholly dependent on deposited yolk during 
oogenesis (vitellogenesis), through an intermediate form of nutrition dependent on histotroph 
secretion from the uterus/oviduct, to nutrition dependent on yolk-sac based placentation 
(Hamlett 1989). In the scant literature in this area it is evident that the fish placenta is quite 
distinct from any known mammalian placenta in multiple aspects including the continued 
presence of an egg envelope throughout gestation (Heiden et a/. 2005), the small area of actual 
attachment to the uterus/oviduct in relation to fetal size, and the reliance on the yolk sac as the 
major organ of nutrient exchange (Jones & Hamlett 2004, Reznick et a/. 2007). This suggests 
that some aspects of placental development and function are independent of imprinting while 
others are more dosage sensitive and require the imprinting of one allele. 

This is partially supported by observations in marsupials, with a rudimentary placenta, where 
imprinting has been observed in some genes such as IGF2 and PEG 10 (Agel' et a/. 2007, Agel' 
et a/. 2008b) but not in others such as SNRPN, UBE3A, DI03 (Rapkins et a/. 2006), CDKN 1C 
(Agel' et a/. 2008a) and DLK1 (Edwards & Ferguson-Smith 2007). A detailed analysis of 
marsupial placentation has been presented by Renfree et a/. (2008) and elegantly describes how 
within the marsupial family different forms of placentation exist and that the more complex the 
placenta the greater the number of imprinted genes (Renfree et a/. 2008). In summary, while 
species such as placental sharks suggest that in the absence of imprinting, a rudimentary form 
of placentation can exist, the preponderance of the evidence indicates that the emergence of 
complex placentation is associated with the presence of imprinted genes. 

Experimental approaches to the study of imprinting in mammals. 

The experimental evidence for the role of imprinted genes in placental and fetal development 
is derived from two general appl'Oaches, the analysis of uniparental animals and the direct 
observation of the effects of modification of imprinted genes by transgenesis. The uniparental 
models described above, in particular, have been very useful for broad and comprehensive 
analysis of imprinted genes between different mammalian species, as well as uncovering new 
imprinted genes (Barton et a/. 1984, McGrath & Solter 1984, Surani et a/. 1984, Cattanach 
& Kirk 1985 , Dean et a/. 2001 , Zhu et al. 2003 ). A more focused approach is the analysis 
of the effects of transgenic manipulation of imprinted genes, usually by gene inactivation via 
homologous recombination. A few examples of placental defects resulting from manipulation of 
impri nted genes incl ude larger placentas resulti ng from inactivation of the maternally expressed 
genes Ascl2 (Guillemot et a/. 1995 ), Grb1 0 (Charalambous et a/. 2003 ), IGF2R (Wang et a/. 
1994), PhldA2 (Frank et a/. 2002), and p57 (Kip2) (Takahashi et a/. 2000). In contrast, inactivation 
of paternally expressed genes such as Peg1 0 (Ono et a/. 2006), IGF2 (Sibley et a/. 2004), Peg3 
(Li et a/. 1999), and Mest (Lefebvre et a/. 1998) result in smaller placentas. 
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The effect of Paternally Expressed Gene 3 (Peg3) deficiency is particularly intriguing as 
the phenotype illustrates the many roles imprinted genes can play with respect to energy 
utilization. The work of Curley et al. 2004 indicated that Peg3 deficiency influences the placenta 
(mentioned above), fetus and mother. At the fetal level, pups deficient in Peg3 have abnormal 
thermoregulation and suckling defects. Peg3 deficient mothers, in turn, have impaired maternal 
care, reduced feed intake during pregnancy and reduced milk-letdown. Peg3, therefore, can 
control energy flow at many levels, from food intake by the mother, to how much milk to 
provide the offspring, to how much the pup is able to extract from her during suckling (Curley 
et al. 2004). While the exact mechanism of action of Peg3 is unknown, the protein is expressed 
at high levels in the tr'ophectoderm layer of the mouse placenta and in the hypothalamus. As 
Peg3 is known to be involved in the control of apoptosis, it has been postulated that abnormal 
apoptosis leads to altered hypothalamic function affecting thermoregulation, maternal behavior 
and milk letdown, while defects in the placenta result in reduced fetal gr·owth. 

Combined, these observations indicate how complex the function of imprinted genes can be. 
Yet, in most cases the phenotype supports the parental conflict hypothesis with inactivation of 
maternally expressed genes leading to larger placentas, and inactivation of paternally-expressed 
genes leading to smaller placentas. While these results are important and support the role of 
imprinted genes in placental development they are limited to one species, a small fraction of 
the known imprinted genes, and perhaps with the exception of Igf2, Igf2r, and Mash2/Ascl2 
(Tanaka et al. 1997), the role of these genes in placental development is not known. Thus, it 
is the combination of the fascinating aspects of these genes, the extremely limited information 
of the function of imprinted genes in placenta of mice, and the absolute absence of information 
on their function in swine reproduction that encouraged us to embark in a comprehensive 
study of these genes in swine. To accomplish this goal, we used genomic approaches. In the 
next section we will describe the techniques we used to accomplish this goal and our positive 
and negative experiences with them. 

Part II. Gene expression profiling methods 

Gene expression profiling methods 

The completion of the draft human genome sequence (Lander et al. 2001) demonstrated the 
feasibility of sequencing entire complex mammalian genomes, and marked the beginning of 
whole genome sequencing projects for many mammalian species. Prior to the availability of all 
of this genomic sequence, the classic approach in molecular genetics was the forward genetic 
screen. The goal of this approach was to find the genes responsible for a phenotype of interest, 
and indeed many interesting genes have been mapped in this way. However, the availability 
of whole genome and transcriptome sequences brings us to the unusual position of possessing 
information on the sequence of nearly all the genes in the genome, but understanding the 
function of a far smaller fraction. Simply put, we know where most genes are, but not what 
they do. So, how can we use the wealth of newly available genomic information to better 
understand gene function? 

Microarray technology 

Microarray technology provides a method of rapidly profiling gene expression genome-wide. 
There are two major microarray platforms currently available for gene expression profiling in 
swine: a commercial Affymetrix GeneChip Porcine Genome short oligonucleotide microarray 
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and a U.S. Pig Genome Coordination Program glass spotted long oligonucleotide microarray. 
The primary difference between these two platforms is that the Affymetrix platform is based 
on eleven 25-mer probes synthesized in situ on a solid support with a photolithographic mask, 
whereas the U.S. Pig Genome Coordination Program platform (Zhao et at. 2005) is based on 
traditionally synthesized oligonucleotides subsequently spotted onto a glass slide. In initial 
validation experiments, we directly compared the technical reproducibility and sensitivity of 
the two platforms, comparing the gene expt'ession profiles of biparental and parthenogenetic 
fibroblast cell Iines. From the same starti ng pool of total RNA, we found that the reproducibi Iity 
of hybridiz tion with the Affymetrix short oligonucleotide microarray was much higher than 
the U.S. Pig Genome Coordination Program microarray (Fig. 2). In probes shared across both 
platforms, we detected a greater number of differentially expressed genes using the Affymetrix 
platform. For the time being, the Affymetrix Porcine Genome Array is the most sensitive and 
reproducible platform for conducting gene expression profiling experiments with microarrays in 
swine (Tsai et at. 2006b). While the first generation of U.S. Pig Genome Coordination Program 
arrays suffered from printing defects, lower technical reproducibility, and lower gene coverage; 
the second generation of these arrays significantly improved coverage. However, due to their 
lower technical reproducibility, more than 2-3X the number of arrays are required to achieve 
equivalent statistical power to detect differential expression in contrast to Affymetrix Porcine 
GeneChip Arrays, so a cost/benefit analysis would still favor the Affymetrix platform for swine 
gene expression profiling. 

a Affymetrix Porcine b Glass Oligonucleotide 

average r =0.9949 average r = 0.9254 

Fig. 2 Reproducibi Iity of technical replicates in the Affymetrix and the glass array platforms. 
Pairwise scatterplots of control technical replicates of porcine fibroblast cell lines profi led on 
(a) Affymetrix Porcine and (b) U.S. Pig Genome Coordination Program long oligonucleotide 
glass microarrays. The lower reproducibility of the glass arrays reduces the ability of the 
arrays to detect statistically significant differences between experimental samples. This 
reduced accuracy can only be overcome by increasing the number of replicates in the 
glass array in comparison with the Affymetrix arrays. 
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There have been reports of using cross-species hybridization for the purposes of performing 
gene expression profiling in swine, primarily before the release of porcine specific arrays (Zhao 
et a/. 2005) We compared cross-species hybridization of the same RNA described above onto 
Affymetrix Human U 133 + 2.0 GeneChip Arrays. We found that this approach had the lowest 
power to detect differential expression, because of a high number of non-hybridizing probes. 
On average, 1-3 probes out of 11 in a probe set hybridized efficiently. Even after implementing 
various filtering algorithms, the sensitivity of detection was still significantly lower than using 
porcine specific microarrays. 

Deep sequencing (RNASeq} 

Microarrays provided a powerful tool for asking descriptive questions about gene expression 
genome wide. It is increasingly evident, however, that with rapidly evolving deep sequencing 
technologies microarrays will eventually be supplanted by direct sequencing of mammalian 
transcriptomes. In this approach, the complete transcriptome can be sequenced and matching 
transcri pts cou nted rather than ind irect quantitation based on hybridization intens ities (Wang 
et a/. 2009; (Wang et a/. 2009; Wold & Myers 2008). This has several advantages in that: 1) 

there is a greater dynamic range in comparison to hybridization based technologies, sin Ie 
transcripts can be positively identified, 2) the technology does not rely on a priori knowledge 
of gene sequence, and 3) background from cross-hybridization is eliminated (Wang et a/. 
2009). Multiplex strategies have been developed to uniquely tag RNA samples with an unique 
error-correcting molecular barcode, so that the capacity of each sequencing run can be most 
efficiently utilized (Craig et al. 2008, Hamady et al 2008). These strategies are based on 
the simple addition of 4-6 bp of sequence to the adapters that are used to create the libraries 
for resequencing; these unique identifiers allow the downstream determination of individual 
samples from a pool. The freedom from having to define which sequences to interrogate 
enables the possibility of novel transcript discovery. The sequence information provided 
allows the unambiguous identification of si ngle transcri pts, whereas detection by hybrid ization 
technologies is inevitably limited by background. Finally, the need for the complex nonlinear 
normalization strategies often employed in typical microarray experiments is lifted, as sequenced 
transcripts are simply mapped to a reference genome and counted. This may be useful in cases 
where one of the fundamental assumptions of most microarray normalization procedures, that 
the empirical distribution of transcripts is the same across samples, are on shaky ground, such as 
when comparing gene expression profiles across tissues or species. One limitation of RNAseq 
is that mapping the data produced is requit'ed by the existence of a reference genome; in swine 
ongoing sequencing efforts will increase the utility of RNAseq data in the coming years. 

Annotation of microarrays 

A determination of differential expression for a probe on a microarray or a sequence cluster from 
an RNAseq experiment is of limited uti lity without knowing what genes or transcriptional units 
they represent. Because of the Iimited annotation, with only about 20% of the probe sets present 
in the initial annotation of the Affymetrix Porcine Genome Array, we reannotated the probe 
sets against human cDNA and genomic DNA sequence (Tsai et al. 2006a). The approach we 
took was to extend the target sequence using sequence information available from The Institute 
for Genome Research (TIGR) swine gene index (currently Dana Farber gene index, website), 
and matching the extended sequence against other Ensembl human cDNA and genomic DNA 
sequences. This approach was successful in raising the percentage of annotated genes from 
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20 to 80% because the majority of the probes for this generation of microarrays are designed 
against the 3' untranslated region (UTR). In many cases, our annotation strategy extended the 
sequences beyond the 3' UTR. Our annotation provided a bit score (a measure of the likelihood 
of a correct sequence match) so that individual investigators can set their own threshold for 
acceptable annotation confidence. We have recently updated our annotation of the Affymetrix 
Porcine Genome microarray against bovine, mouse, and human. One additional unique feature 
of the annotation is our matching against the Affymetrix Human pl'obe set IDs. This matching 
allows data generated from Affymetrix Porcine GeneChip arrays to be used with many of the 
pathway analysis sol utions that are avai lable for human gene expression profi ling data. 

Single nucleotide polymorphism (SNP) and single feature polymorphism (SFP) discovery 

Affymetrix short oligonucleotide gene expression data can indicate single feature polymorph isms 
(SFP), as single nucleotide polymorph isms (SNP) that are close to the center of a 25-mer 
oligonucleotide probe can almost completely disrupt hybridization (Winzeler et al. 1998, 
Borevitz et al. 2003). The SFP are identified by disparate hybridizations among individual 
animals to one or more of the 11 targets for each mRNA on the array (Fig. 3) The exact SNP 
can then be identified by sequencing, however, SFP genotypes have also been directly used 
to generate high density haplotype maps for expression quantitative trait loci (eQTL) studies 
(West et al. 2006). Deep sequencing of the transcriptome can also contain not only information 
on the expression level of a transcript, but also allelic variations in the sequences obtained. 
The U.S. Pig Genome Coordination Program glass spotted long oligonucleotide microarrays 
cannot, however, be used for this purpose as a single SNP is insufficient to significantly disrupt 
the hybridization kinetics of a 70-mer probe. 

We have demonstrated the feasibility of detecting SFP using Affymetrix short oligonucleotide 
arrays in swine (Bischoff et al. 2008). The basic idea behind the approach is to look for probes 
which have a substantially gl'eater probe effect than expected, corresponding to the scenario 
where a SNP disrupts probe hybridization. Using this appl'oach we detected 857 SFP between 
Chinese Meishan and European white composite breeds of swine, with a sensitivity of 0.65, 
specificity of 0.94, and a false discovery rate of 0.3. We have streamlined the method we 
used to determine the presence of an SFP into an easy to use downloadable procedure, Click­
'N-SNP, which will generate a list of putative SFP given raw Affymetrix data (.CEL files) and a 
simple experimental design (Bischoff et al. 2008). Similarly, given sufficient oversampling, it 
is possible to detect SNPs and indels in RNASeq data. Care, however, must be taken to use 
the appropriate statistical models to distinguish between true SNPs and sequencing error, given 
that the error rate in short-read sequencing platforms is I'elatively high. 

One motivation behind obtaining genotype information from gene expression data, whether 
from microarrays or RNASeq, has been a method dubbed "genetic genomics" (Jansen & Nap 
2001). The principle is that there is a heritable aspect to gene expression that may ultimately 
contribute to phenotypes of traits of interest. By merging information on allelic differences and 
gene expression, as well as the gene expression contribution to function, it may be possible 
to gain a better picture of the genes involved and their mode of regulation, Extracting this 
information from gene expression data, is a "free" source of this additional genetic information, 
qualified by the fact that SFP obtained from microarrays only localize the polymorphism to a 
25 bp window, and therefore do not fully define the sequence variation. For higher density 
SNP genotyping applications, a 50k porcine SNP chip has been developed. 

Finally, massively parallel targeted resequencing was recently demonstrated by coupl ing 
deep sequencing with solution hybrid selection with long oligonucleotides (Gnirke et al. 2009), 
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Single Feature Polymorphism (SFP) in swine detected between 
Chinese Meishan and European white composite breeds. Notice Probe 7 which exhibits 
hybridization intensities near background, while the remaining probes are 4-fold or more 
higher. This reduced hybridization was due to a SNP within that particular probe. Thus a 
probe-by-probe analysis can rapidly uncover a large number of potential SNPs within the 
population being used for the mieroarrays experiments. 

should also be possible in swine. The pl"inciple of this approach is to synthesize a number of 
tiled probes against genomic region(s) of interest. These probes are around 200 bp in length, 
contain universal primer sequences for amplification, a T7 promoter for in vitro transcription, 
and are synthesized in situ on an Agilent custom microarray. After cleaving these probes off 
the microarray, the pool of probes is subjected to an in vitro transcription reaction containing 
biotinylated nucleotides to create a pond of biotinylated cRNA baits. This pond of biotinylated 
cRNAs hybridizes efficiently to sheared genomic DNA sequence. The captured, complementary 
genom ic DNA sequence is then used as the input for reseq uencing library preparation. With the 
growing availability and near completion of a draft porcine genome sequence, an increasing 
proportion of the data generated via this approach will be mappable. 

Part III. Moving beyond gene lists. Finding functional interactions from microarray data 
to study epigenetic asymmetry in porcine fetal tissues 

In the following section we will enumerate a Iist of tools that faci Iitate analysis of gene expression 
datasets. Building on these descriptions, we draw on datasets generated by our laboratory 

o 2 

Fig. 3 Example of 
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and apply the tools to systematically clarify functional relationships among expressed genes. technical i 
The data are freely available at Gene Expression Omnibus (GEO) under accession number statistical. 

GSE10443. 

oPattern discovery by clustering analysis 

Cluster analysis software requires the ability to handle large input datasets (greater than 100,000 
rows/columns) and should contain versatile microarray analysis features. Although a number 
exist, our laboratory has experience with the licensed package JMP Genomics (SAS, Cary, NO 
and the freeware package R Bioconductor (http://www.bioconductor.org). 

For pattern discovery a number of unsupervised methods exist to partition data into visual 
subsets by a common group of parameters or clusters (Allison et al. 2006; Kerr et al. 2008 ) 
which include hierarchical clustering, heat maps, k-means clustering and principal components 
analysis (PCA). For a concise summary of clustering methods useful to expression datasets, 
see D'Haeseleer (2005). Hierarchial clustering partitions data into groups of genes iteratively 
with each successive finer grouping being more similar. A central component of the method 
is depicting similarity by distance. Shorter branches represent more closely related items. In 
transcriptomic datasets, the distance metric is calculated from gene expression values. The output 
is often shown diagrammatically in a dendrogram, or branched-tree graph. An example of 
such output for imprinted gene expression in the placenta between day 30 control conceptuses 
and swine parthenote conceptuses is shown in Fig. 4). 

DNA microarrays can also be depicted by two-dimensional graphical representations of 
gene expression values called heat maps, where color denotes expression intensity (i.e. red = 

low intensity, green = high intensity). A heat map can quickly show the level of expression 
of a gene across samples, time or treatment (Fig. 4) and is a rapid and simple way of looking 
at a large amount of data in a single figure. K-means analysis, a more complex method, can 
shuffle genes based on their geometric mean into a predicted number of clusters as defined 
by the hypothesis. The method is rapid, but requires a priori knowledge of how many clusters 
are expected, and is therefore biased. 

Principal component analysis (PCA), another clustering method, reduces the complexity of 
a dataset by decomposing the variance into a limited number of dimensions or components 
using the mathematical tools of eigenvalues and covariance matrices. In this manner, the gene 
expression measurements can be visualized in a linear fashion to clarify how each array behaves 
in context with the other arrays in an experiment. The abscissa and ordinate axes represent 
the first and second principal components, respectively. The closer an expression array groups 
together indicates its simi larity. Principal component analysis is a robust methodology for rapidly 
clustering data, and can provide a framework for quality control. An example of the use of 

Fig.PCA for this purpose is described in Fig. 5. The first three principal components were used 
Micas they explained 86%, 5%, and 5% of the total variation, respectively. Initial examination 
gestidentified two discrepant arrays (LG2 and BG3). As 95% of the variation is contained within 
wer 

the concentration ell ipse, both arrays were excl uded from downstream analysis for tech nical D3C 
reasons associated with RNA quality. Close examination of the array data then showed that (Par 
the hybridization levels of both of these arrays were below that required to obtain a reliable inte 
signal. The arrays were then re-normal ized excl ud ing these two arrays to increase the accuracy den 

of the data. It is interesti ng to note, that brai n (BC, BG; blue) and placental (PC, PG; red) tissues 1-3, 
grouped more closely than liver (LC, LG; green) or fibroblast (FC, FG; orange) day 30 swine fetal can 

tissues and suggests brain and placental transcriptomes are more similar than fibroblast or liver alte 
Me'transcriptomes. The main point of this example is that PCA can rapidly identify a hybridization/ 
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~d genes. technical issue in one or more of the arrays and prevent investigators from performing complex 

number statistical analysis with data that are of low quality. 
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G2 
Fig. 5 Principal Component Analysis (PCA) identifies two discrepant arrays. Parthenogentic 
and biparental fetal tissues were hybridized to short-oligonucleotide arrays (PorcineGene 
Chip, Affymetrix, CAl. The encircling ellipse explains 95% of the variation among samples. 
Circles denote parthenotes, squares represent controls. Brain ~ blue, fibroblast = orange, 
Liver = green, Placenta = red. Two arrays fell outside the concentration ellipse, BG3 and 
LG2, and were omitted from downstream analysis. 

Enrichment analysis: functional annotation and pathway analysis 

Classifying genes based on criteria such as biochemical function, genetic interaction and 
pathway, motif searching, and gene ontology is what broadly describes enrichment analysis. 
The overarching goal is to move from the daunting candidate gene lists and distill the dataset 
into meaningful biological processes that can be tested experimentally in the laboratory. A 
suite of over 68 enrichment analysis tools are now available and have recently been reviewed 
in Huang da et a/. (2009). A full description of each is beyond the scope of this chapter, so we 
will focus on tools we have used and provide a summary of key findings. We refer the reader 
to Huang da et a/. (2009) for a comparison of advantages, pitfalls, and operational classification 
of the current tools (e.g. statistical testing methods). 

Gene ontology 

Gene ontology (GO) provides a unique vocabulary that describes or annotates g nes by molecular 
function, biological process and cellular distribution. Because the number and sophistication of 
GO-related programs has increased dramatically, a searching tool SerbGO (Mosquera & Sanchez­
Pia 2008) is available on the web to identify which GO software application may be best for the 
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end-user's dataset. Alternatively, a summary of each application is available on the web at the 
Gene Ontology Consortiu m website: http://www.geneontology.org/GO.tools.microarray.shtml. 
Our group used SerbGO to identify significance analysis of function and expression (SAFE) (Barry 
et al. 2005, Gatti et al. 2009), Database for Annotation, Visualization and Integrated Discovery 
(DAVID) (Dennis et al. 2003), and Gene Set Enrichment Analysis (GSEA) (Subramanian et al. 2005) 
as appropriate tools for our purpose. 

The pmcine parthenogenetic conceptus develops as a small fetus and placenta which eventually 
dies at approximately day 32 of gestation (Fig. 6). To gain biological insight into pathways that differ 
during uniparental embryonic development compared to normal development, we used gene 
ontology (GO) descriptors to analyze our datasets. Two additional categories indicating parent 
of origin expression for each imprinted gene, were added to clarify paternal/maternal imprinting 
contributions. We used a permutation-based ranking method to identify functional categories 
differentially expressed in parthenogenetic fetuses. This approach is similar to SAFE (Barry et al. 
2005) (significance analysis of function and expression) using SAS streamlined with JMP Genomics 
(SAS, Cary, NO in lieu of Bioconductor (http://www.bioconductor.orgl). Probe sets were assigned 
to GO categories based on the Affymetrix Porcine annotation by Tsai et al. (2006a). Initially, custom 
PHP code (http://en.wikipedia.org/wiki/PHP) reads in two files: one with the gene ID followed by 
any number of columns containing ranks for statistical tests that have been performed, and one 
containing the GO categories and the genes they contain. The algorithm calculates the rank sum for 
each GO category for each rank column, and subsequently permutes the gene labels with respect 
to their ranks. For each permutation, the GO category now contains a random set of genes and 
thus a random set of ranks. The permuted rank-sums are calculated, and a running total is kept of 
how frequently the permuted rank is less than or equal to the original rank. Dividing this by the total 
number of permutations provides the p-value estimate. The advantages of this permutation approach 
are to limit Type I errors for individual categories. 

.entic 
Summarized ranks of GO categories that were significant (p < 0.05) between parthenogenotes :::;ene 

and biparental conceptuses for various tissues include paternally expressed imprinted genes, tples. 
mge,	 phosphatidylinositol binding, microtubule dynamics and lipid transporter activity. Not 
I and	 surprisingly, imprinted paternally expressed genes were I'anked significant (p < 0.006) across 

all five datasets correspond ing to each tissue indicati ng that parthenote profil ing can rei iably 
detect transcript dosage differences, regardless of tissue surveyed. Notably, there were marked 
differences in proliferation, biogenesis and biosynthesis pathways as predicted by the parent­
conflict hypothesis. Consistent with our observations and others that parthenogenote conceptuses action and 
are developmentally delayed, various structural proteins ranked highly significant in most tissues. nt analysis. 
The artificial category "imprinted, maternally expressed" showed no significant difference, and the dataset 
may be related to a power-related problem to detect a theoretical 2:1 ratio upon comparison oforatory. A 
maternally expressed genes between parthenotes and biparentals. As many biological pathways n reviewed 
were affected that do not contain imprinted genes, we feel these data support conclusions that a pter, so we 
gene network is present that extends beyond imprinted genes but is epistatically affected by them . the reader 
(Varrault et al. 2006). Thus, utilizing these methods it is possible to go from a list of genes, whichassification 
in most cases is too large to properly address expel"imentally, to a more biologically relevant list of 
biological processes that are Iikely to be affected. Th is can greatly faci Iitate hypothesis generation 
as well as the design of physiological/biochemical experiments. 

I molecular Pathway and interaclome analysis 
stication of 

Additionally, to uncover new meaningful biological relationships it is often helpful to visualize & Sanchez­
gene signatures in the context of curated biochemical pathways as provided by resources such best for the 
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Fig. 6 Functional networks of genes dysregulated in swine parthenogenetic tissues. Ingenuity 
Pathway Analysis was used to map genes differentially expressed in swine parthenogenetic 
fetal tissues into functional pathways. Green represents up-regulation of genes with respect 
to the parthenote, while red represents down-regulation in the parthenote. The following 
panel depicts highest affected pathway in the combined analysis of all tissues. One of the 
central nodes or hub is CDKN1A. Up-regulation of CDKN1A results in cell cycle arrest 
at the Gl/S checkpoint and induces apoptosis. 

as KEGG (Kyoto Encyclopedia of Genes and Genomes) (Okuda et al. 2008), BioCarta (http:// 
www.biocarta.com/genes/allpathways.asp). and Reactome (Matthews et al. 2009). For this 
process, open-source software such as Cytoscape (Cline et al. 2007 , Yeung et al. 2008) and 
MadNET (Segota et al. 2008) are excellent programs that aid the investigator by mapping array 
expression datasets on canonical biochemical pathways. A handful of commercial appl ications 
like Ingenuity Pathways Analysis (IPA; IngenuitySystems, www.ingenuity.com) are also available. 
In general, one should choose the application that best suits the scientific question, helpful 
criteria include text mining options, curated pathway plug-ins, user-created network assembly, 
data visual ization capabi Iities and flexibil ity of data import / output formats. 

We used IPA to explore pathways altered in parthenogenetic swine conceptus tissues, 
similar to the approach taken by Jincho et al. (2008). An example of an interactome depicting 
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genes affected in the parthenote samples compared to normal conceptus samples is shown 
in Fig. 6. Pathway analysis indicated that cell cycle regulation, growth and proliferation, and 
cellu lar assembly pathways were among the most common and most affected pathways in each 
of the tissues profiled. Our functional analysis of parthenogenetic swine conceptus tissues is 
in agreement with the parent-conflict hypothesis, as one might expect growth pathways to be 
asymmetrically affected with a reduction in biogenesis, growth and proliferation pathways. 

Finally, biological text mining has also become more attractive due to its ease of use and 
availability. For the exploration of alternative transcript isoforms, AceView (Thierry-Mieg & 
Thierry-Mieg 2006) is particularly handy. Recently, the community authorship or wiki concept 
inspired WikiGenes (Hoffmann 2008) (http://www.wikigenes.org/), WikiPathways (http://www. 
wikipathways.org) and regulatory networks based on biomedical discipline ( i.e. pathways 
defining stem cell pluripotency using the PluriNET network (Muller et al. 2008; http://www. 
openstemcellwiki.org!). The main advantage of wiki concept is dynamic, collaborative forum 
for scientists to engage in sharing data and publishing ideas. 

A microRNA (miRNA) and target mRNA 

MicroRNAs are known to critically regulate many developmental processes by translational 
inhibition or destabilizing target mRNAs and are often evolutionarily conserved (Grun et al. 

2005, Chen & Rajewsky 2006). Comprehensive arrays are available containing a large number 
of known mouse and human miRNAs. In species such as swine, exploration of miRNAs is 
difficult due to the absence of full sequence information that would permit identification of 
conserved miRNAs and thus the use of these cross-species platforms, although recent reports 
suggest that the degree of microRNA conservation is such that other species platforms can be 
used to globally examine swine miRNAs (Huanget al. 2008). An alternate approach is to utilize 
microarray data as a way to predict which microRNAs are affected. This approach is facilitated 
by the existence of novel bioinformatic tools such as gene set enrichment analysis (GSEA). 

Gene set enrichment analysis is a robust method which utilizes gene sets (Molecular 
Signature Database, MSigDB; http://www.broad.mit.edu/gsea/msigdb) to analyze microarray 
data. The GSEA-P software distinguishes whether genes in known biochemical pathways or 

ty coexpression patterns tend to be at the top or bottom of the ranked genome-wide expression 
ic dataset or randomly distributed. An enrichment score is provided, which is a value of statistical 
·ct 

significance after correction for multiple testing. A full description of the method is available
19 

in (Subramanian et al. 2005).le 
Gene set enrichment analysis of the top hundred differentially expressed genes between 'st 

biparental and parthenote placentas were used as inputs to determine whether there were 
common microRNAs that are dysregulated. This GSEA approach was able to identify five 

a (http:// microRNAs predicted to be differentially expressed in the parthenote samples. Two of these 
For th is microRNAs have been implicated as ligands for- angiotensin receptor II type 1 (AGTR1), a gene 
~8 ) and responsible for angiogenesis (Sasaki et al. 2002 ), vasoconstriction, and increased pregnancy 
ng array complication by preeclampsia (Wallukat et al. 1999). Gross morphological examination of 
'ications swine parthenote placentas showed reduced number of blood vessels, and this observation is 
vailable. also supported by differential expression of AGTR1 in placental tissues (p<0.0009) from our 
helpful microarray datasets. At the time of writing, a single report of miR As surveyed in swine fetal 

sembly, tissues observed on day 33 and day 65 of gestation has been reported (Huang et al. 2008). 

While at this point we have not confirmed the differential expression of these miRNAs in our 
tissues, samples by Q-PCR, we have previously used this method to identify and confirm miRNAs 
2picting affected in human intrauterine growth restriction (manuscript in preparation). 



:
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Conclusion 

Swine are an attractive model to study fetal growth because their placental morphology 
is relatively simple-(diffuse, epitheliochorial, non-invasive)---and may provide clues to 

physiological defects of epigenetic gene dysregulation. The swine parthenote model is already 
yielding important insights into fetal growth retardation. Our collective analyses of these 
datasets will contribute a greater understanding of the role of epigenetic mechanisms critical to 
swine placental function and will hopefully aid our understanding of the formative interactions 

among fetus, placenta and mother, which are depicted and summarized in Fig. 7. 

Fig. 7 Signaling between Fetus, Placenta and Mother. The diagramm highlights interactions between 
fetus, placenta and mother in swine pregnancy and was modified from its original version as described 
in Murphy et al 2006 (Murphy, Smith et al. 2006). The placenta is the nexus between fetus and mother 
and its function in nutrient exchange is critical for fetal growth and pregnancy outcome as outlined by the 
various physiological crosstalk. For example, epithel ial folds of chorionic trophoblasts create interdigitation 
and increase placental surface area, which ultimately promotes fetal blood flow, placental and fetal 
growth, and enhances transport of nutrients across the non-invasive swine placenta. Imprinted genes 
affect mammalian pregnancy outcome and functional studies by gene-targeting have described intrauterine 
growth restriction (IUGR) as one disease state by their perturbation. Knockout (KO) studies in mice have 
shown that the paternally expressed imprinted gene family, such as IGF2 and PEG10, results in placental 
hypotrophy, while KO conceptlls of imprinted maternally expressed growth suppressor PHLOA2 results 
in placentomegaly. Maternal and fetal genotypes also affect conceptus size and placental efficiency, 
respectively (Biensen, Wilson et al. 1999). Growth retardation is not limited to placental insufficiency, 
as severe maternal caloric restriction results in preterm loss and postnatal runting (Martin-Gronert and 
Ozanne 2007; Vuguin 2007). 
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Modern genomic approaches can greatly facilitate the study of physiological phenomena by 
providing a broad overview of the system, followed by the ability to focus on those pathways/ 
systems that vary. Thus, while genomic analyses are not hypothesis driven, they greatly facilitate 
the development of hypotheses that have the most likelihood of yielding important biological 
information. We view genomic approaches as an initial unbiased screening step that can be 
followed up with more targeted functional experiments. They are not, by themselves typically 
conclusive, but are extremely useful for hypothesis generation. By comparison, many times 
candidate gene approaches suffer from too narrow a view of the biological system being studied, 
and fail to uncover novel interactions and pathways. 
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