presumably normal Boxer sequence (Table 2). We hypothesized homozygosity for the NCL-affected PON but observed heterozygosity for all SNPs (Table 2). Our data indicate that these polymorphisms in CTSD can be excluded as causative mutations for the NCL phenotype in Tibetan Terrier and PON dogs.

References

Correspondence: C. Droegemueller (cord.droegemueller@tiho-hannover.de)

doi:10.1111/j.1365-2052.2005.01378.x

Assignment of 12 genes to porcine chromosome 1 by linkage and radiation hybrid mapping

USDA, ARS, US Meat Animal Research Center, PO Box 166, Clay Center, NE 68933 0166, USA

Accepted for publication 24 August 2005

Source/description: In this study, 12 genes located in regions of human chromosomes 6, 9 and 15, which are homologous to quantitative trait loci (QTL) intervals on swine chromosome 1 (SSC1) (http://www.animalgenome.org/QTLdb/), were mapped on the Meat Animal Research Center (MARC) linkage map, the INRA-University of Minnesota porcine radiation hybrid (ImpRH) panel,1 or both.

Primer design and PCR conditions: Genomic DNA was amplified and sequenced with primers designed using Primer3 software (code available at: http://www-genome.wi.mit.edu/genome_software/other/primer3.html) to target introns and 3’-untranslated regions (UTRs) from porcine expressed sequence tags in the TIGR Pig Gene Index (Table 1). Reactions were performed in a PTC-225 DNA thermal cycler (MJ Research Inc. Watertown, MA, USA) using 0.3 U HotStarTaq™ polymerase (Qiagen, Valencia, CA, USA), 100 ng genomic DNA from eight parents of the MARC swine mapping family, 0.8 μM of each primer and 200 μM dNTPs in 25-μl reactions. Sequences and polymorphisms that were identified have been submitted to GenBank (Table 1).

In order to map genes with the 118-clone ImpRH panel,1 we used primers designed as described above or from intron sequences generated in this study (Table 1). Amplifications were performed in 15-μl reactions in duplicate using 12.5 ng panel DNA, 1.5 mM MgCl₂, 200 μM dNTPs, 1 μM of each primer, 0.25 U HotStarTaq™ and 1X of supplied buffer. The PCR mixture was held at 94 °C for 15 min, cycled 45 times at 94 °C for 20 s, 57 °C for 30 s and 72 °C for 1–1.5 min, and then extended at 72 °C for 5 min. One-half of each reaction was analyzed on a 2% agarose gel and manually genotyped.

Chromosomal location/linkage and radiation hybrid mapping: Amplicons that contained single nucleotide polymorphisms heterozygous in the common sire, or in at least two of the seven dams, were genotyped across the reference family using a primer extension assay on the Sequenom MassARRAY™ system (Sequenom, San Diego, CA, USA). Linkage analyses were performed for the SNPs using seven families (86 progeny) of the MARC swine reference population.2 Multipoint locations for mapped markers were based on the latest published swine genetic map (http://www.marc.usda.gov/). Seven genes with human homologues on chromosomes 6 and 9 (SMPDL3A, RPL24, CREB3, AMBP, PAPPA, PTGS1, and SLCL27A4) were linkage mapped to SSC1 using these SNPs (Table 1).

In addition, radiation hybrid data for eight genes with human homologues on chromosomes 6, 9 and 15 (RPL24, NTRK3, TMEM2, PTGS1, CIZ1, SLC27A4, GFI1B and AGPAT2) were analysed for two-point and multipoint linkage with the ImpRH mapping tool and submitted to the ImpRH database (http://imprh.toulouse.inra.fr/). CarthageGen (http://www.inra.fr/bia/T/CarthageGene/) was used to estimate multipoint marker distance and order using all public markers on chromosome 1 in the ImpRH database (http://imprh.toulouse.inra.fr/) and those developed in this study. Five of the eight genes were assigned to SSC1 by radiation hybrid analysis, whereas three genes (RPL24, PTGS1 and SLC27A4) were mapped to SSC1 by both linkage and radiation hybrid analyses (Table 1).

Comments: Several QTL for carcass and reproductive traits have been identified on the long arm of SSC1.3–6 Previous comparative mapping and chromosome painting7 analyses have shown that SSC1 is homologous to human chromosomes 6, 9, 14, 15 and 18. Mapping of these 12 genes to SSC1 is consistent with the homologous chromosomal regions previously reported,8,9 with rearrangements of human chromosome 9 (70 and 36 Mb) and chromosome 15 (83 Mb) corresponding to 56–96 cM on SSC1 (Table 1).
TLR4 variation in Yellowstone bison

S. N. White, N. D. Halbert, K. H. Taylor, J. N. Derr and J. E. Womack

Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843, USA

*Present Address: US Meat Animal Research Center, USDA, ARS, Clay Center, NE 68933, USA.

Abstract

Toll-like receptor 4 (TLR4) is a cell-surface receptor that activates innate and adaptive immune responses. Because it recognizes a broad class of pathogen-associated molecular patterns, including lipopolysaccharides, TLR4 is a candidate gene for resistance to a large number of pathogens. Important examples are Gram-negative Salmonella, Pasteurella, and Brucella, as well as Mycobacteria, which include the causative agents of tuberculosis and Johne’s disease.

Materials and methods

Primer sets originally designed for cattle TLR4 were used to amplify and sequence bison TLR4, with the exception of one substitute forward primer (5'-CATTTTGGTTTCTATTCAGCAG-3') that was used to sequence the 5'-end of exon 3.

Results

Samples and sequencing: Genomic DNA samples were obtained from seven bison that wandered from Yellowstone National Park in different years and/or localities to minimize the possibility of sampling closely related individuals. Additionally, a portion of TLR4 exon 3 was sequenced in 28 Yellowstone bison collected in 2002 to better estimate allele frequencies for two single nucleotide polymorphisms (SNPs).

Each exon was amplified twice for every individual. The separate replicates of each polymerase chain reaction (PCR) were used for sequencing in the forward and reverse directions, respectively, so as to reduce the risk of reporting

References

Correspondence: D. Nonneman (nonneman@email.marc.usda.gov)

doi:10.1111/j.1365-2052.2005.01383.x

Table 1 Results for genes assigned to porcine chromosome 1 (SSC1).

<table>
<thead>
<tr>
<th>Gene symbol</th>
<th>GenBank accession no.</th>
<th>Forward primer (5’→3’)</th>
<th>Reverse primer (5’→3’)</th>
<th>Amplicon size (bp)</th>
<th>Map²</th>
<th>Human position³</th>
<th>Most significant marker</th>
<th>2-pt LOD</th>
<th>SSC1 position (cM)⁴</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMPDL3A</td>
<td>DQ092608</td>
<td>tgtataaatgacaatttcaacagag</td>
<td>cagctgtaacctgtgatgagaca</td>
<td>450</td>
<td>L</td>
<td>6:123</td>
<td>SW2130</td>
<td>11.35</td>
<td>48</td>
</tr>
<tr>
<td>RPL24</td>
<td>BV102946</td>
<td>caggctgcagggtcaccaga</td>
<td>gagcagaaactctcacaggc</td>
<td>400</td>
<td>R,L</td>
<td>9:70</td>
<td>SW781</td>
<td>32.21</td>
<td>56</td>
</tr>
<tr>
<td>NTRK3</td>
<td>BV103067</td>
<td>tctcttgtcatgtggccga</td>
<td>gtcctgtgagctccagtctc</td>
<td>850</td>
<td>R</td>
<td>15:83</td>
<td>SW1431</td>
<td>8.90</td>
<td>82</td>
</tr>
<tr>
<td>TMEM2</td>
<td>DQ092607</td>
<td>gctgggctagctgtcaagctc</td>
<td>ttctctacacagagcaacagt</td>
<td>500</td>
<td>R</td>
<td>9:72</td>
<td>S0155</td>
<td>7.67</td>
<td>94</td>
</tr>
<tr>
<td>CREB3</td>
<td>BV103209</td>
<td>cagactgctgctgctgctgctg</td>
<td>acacaagtcgaggtgcagtcg</td>
<td>1000</td>
<td>L</td>
<td>9:36</td>
<td>SW1092</td>
<td>27.29</td>
<td>96</td>
</tr>
<tr>
<td>AMBP</td>
<td>BV103453</td>
<td>aaggagaaggtgctggagctg</td>
<td>ttcctctcctcctcctcctc</td>
<td>1200</td>
<td>L</td>
<td>9:112</td>
<td>S0354</td>
<td>31.71</td>
<td>107</td>
</tr>
<tr>
<td>PAPPA</td>
<td>DQ092606</td>
<td>cagctgtgctgctgctgctgct</td>
<td>cgttagccagctgctgctgct</td>
<td>600</td>
<td>L</td>
<td>9:116</td>
<td>SW1957</td>
<td>18.66</td>
<td>110</td>
</tr>
<tr>
<td>PTGS1</td>
<td>BV1029609</td>
<td>cttctcctcctctctgctgctg</td>
<td>ggctcattgcaacactacaca</td>
<td>360</td>
<td>R,L</td>
<td>9:121</td>
<td>S0112</td>
<td>21.97</td>
<td>121</td>
</tr>
<tr>
<td>CI21</td>
<td>BV103601</td>
<td>aagaagctgctgaacctagctg</td>
<td>tgtgagccacacggccgctcag</td>
<td>800</td>
<td>R</td>
<td>9:126</td>
<td>SW705</td>
<td>7.59</td>
<td>122</td>
</tr>
<tr>
<td>SLC27A4</td>
<td>BV103614</td>
<td>gtcctgtgctgctgctgctgct</td>
<td>gtcctctgtgctgctgctgct</td>
<td>850</td>
<td>R</td>
<td>9:127</td>
<td>S0056</td>
<td>8.13</td>
<td>125</td>
</tr>
<tr>
<td>GFI1B</td>
<td>DQ092610</td>
<td>ggcacaggtgctgccaccaagc</td>
<td>tgtgctgtgtgtgctgctgct</td>
<td>700</td>
<td>R</td>
<td>9:131</td>
<td>SSC1008</td>
<td>11.64</td>
<td>136</td>
</tr>
<tr>
<td>AGPAT2</td>
<td>BV102613</td>
<td>acgtgctggcagccgctgctg</td>
<td>cgtgctgtgtgtgctgctgct</td>
<td>150</td>
<td>R</td>
<td>9:135</td>
<td>SSC1008</td>
<td>9.92</td>
<td>136</td>
</tr>
</tbody>
</table>

⁴Marker positions mapped on the radiation hybrid panel are estimated from microsatellite positions on the MARC linkage map.

Acknowledgements: The authors thank Bree Quigley, Sue Hauver, Kris Simmerman and Linda Flathman for expert technical assistance and Sherry Kluer for manuscript preparation. Mention of trade names or commercial products is solely for the purpose of providing information and does not imply recommendation, endorsement or exclusion of other suitable products by the US Department of Agriculture.